Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/2225
Full metadata record
DC FieldValueLanguage
dc.contributor.authorIDDRISU, M. M.-
dc.contributor.authorOKPOTI, C. A.-
dc.contributor.authorGBOLAGADE, K. A.-
dc.date.accessioned2019-02-27T09:34:40Z-
dc.date.available2019-02-27T09:34:40Z-
dc.date.issued2014-
dc.identifier.issn050-7461-
dc.identifier.urihttp://hdl.handle.net/123456789/2225-
dc.descriptionarticle by staffen_US
dc.description.abstractIn this paper, we present more proofs of the new Steffensen’s inequality for convex functions. First, we provide separate proofs for continuous functions followed by a general proof for all L1([0;1]) functions. The last part is dedicated to the proof of the well known Jensen’s inequality using the new inequality.en_US
dc.language.isoenen_US
dc.publisherAdvances in Inequalities and Applicationsen_US
dc.subjectSteffensen;en_US
dc.subjectJensen;en_US
dc.subjectinequality;en_US
dc.subjectcontinuous functionen_US
dc.titleA PROOF OF JENSEN’S INEQUALITY THROUGH A NEW STEFFENSEN’S INEQUALITYen_US
dc.typeArticleen_US
Appears in Collections:Faculty of Mathematical Sciences

Files in This Item:
File Description SizeFormat 
AproofofJensenIneq.ViaSteffensen.pdf134.56 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.