Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/1909
Full metadata record
DC FieldValueLanguage
dc.contributor.authorIddrisu, M. M.-
dc.contributor.authorOkpoti, C. A.-
dc.contributor.authorGbolagade, K. A.-
dc.date.accessioned2018-04-19T15:05:51Z-
dc.date.available2018-04-19T15:05:51Z-
dc.date.issued2014-
dc.identifier.issn22881433-
dc.identifier.urihttp://hdl.handle.net/123456789/1909-
dc.description.abstractWe present some proofs of the classical integral Hardy inequality. Our approach makes use of continuous functions with compact support in (0,∞), homogeneity of the norm and Schur’s criterion for integral operators.en_US
dc.language.isoenen_US
dc.publisherThe Kangwon-Kyungki Mathematical Societyen_US
dc.relation.ispartofseriesVol. 22;Issue 3-
dc.subjectHardy inequalityen_US
dc.subjectProofsen_US
dc.subjectHomogeneityen_US
dc.subjectIntegral operatorsen_US
dc.titleSOME PROOFS OF THE CLASSICAL INTEGRAL HARDY INEQUALITYen_US
dc.typeArticleen_US
Appears in Collections:Faculty of Mathematical Sciences

Files in This Item:
File Description SizeFormat 
SOME PROOFS OF THE CLASSICAL INTEGRAL HARDY INEQUALITY.pdf260.58 kBAdobe PDFView/Open


Items in UDSspace are protected by copyright, with all rights reserved, unless otherwise indicated.