Potentials of Sodom apple (Calotropis procera) extract as a coagulant to substitute Alum in soy cheese production in Ghana

Chikpah S. K.¹, Teye M², Annor J. A. F³ and Teye G. A³

¹Department of Biotechnology, Faculty of Agriculture, University for Development Studies, Tamale, Ghana.
²Department of Animal Science, Faculty of Agriculture, University for Development Studies, Tamale, Ghana.
³Department of Animal Science, Faculty of Agriculture, University for Development Studies, Tamale, Ghana.

ABSTRACT

This study was conducted to determine the potentials of Sodom apple (Calotropis procera) extract as a sole coagulant of soymilk during soy cheese production. Four alum concentrations were prepared and used as control treatments: A5 (0.5 % conc.), A10 (1.0 % conc.), A15 (1.5 % conc.) and A20 (2.0 % conc.). Four strengths of Calotropis procera extracts (CPE) (C15, C20, C25 and C30) were obtained from 15 g, 20 g, 25 g and 30 g respectively of the fresh plant. Each of the concentrations of alum and CPE was used as a sole coagulating agent of soy milk and the effects on clotting time, product yield, whey volume and organoleptic properties of the curd were assessed. The average milk clotting time, curd yield, and whey volume were significantly (P < 0.05) influenced by the type and concentration of coagulant used to achieve curdling. The average clotting time, curd yield, and whey volume were in the ranges of (6.0 - 31 minutes), (120.2 – 207.8 g/l), and (495.0 – 785.0 ml/l) respectively. Treatments A20 and C30 recorded the shortest clotting times of 6.0 and 9.0 minutes respectively whereas treatment A5 had the longest clotting time (31.0 min). The curd yields were high in treatments A10 (207.8 g/l), C30 (191.2 g/l) and C25 (183.9 g/l) whereas A20 recorded the least curd yield (120.2 g/l). In the alum treatments, positive correlation (r = 0.585) was observed between soymilk clotting time and soy curd yield. On the contrary, there was strong negative correlation (r = - 0.803) between clotting time and curd yield when CPE were used as coagulants. The different concentrations of alum and C. procera added to soymilk had significant (P < 0.05) effects on the organoleptic properties (taste, colour, texture and overall acceptability) of the soy cheese produced. The soy cheese flavour did not vary significantly (P > 0.05) among the treatments. Generally, it was observed that the 25g CPE can be used to substitute for alum in soy curd formulation.

© 2015 Elixir All rights reserved.
are readily available, affordable and with minimal or no health risks for use in soy cheese formulation. Proteolytic enzymes from certain plants have been reported to serve as coagulants of soy milk (O’Connor, 1993). One of such plants is the Sodom apple (Calotropis procera).

Extracts from the succulent leaves and stems of C. procera has been reported to contain rennet enzymes called calotropin that coagulates cow milk at temperatures less than 100 °C (Belewu and Aina, 2000). The extracts from the Calotropis plant has been used traditionally as the sole coagulant of cow milk in a number of African countries for the production of a soft cheese called ‘Wakashi’ (Ibiama and Griffiths, 1987). However, the ability of this extract to coagulate soy milk for the formulation of soy curd is not known. This study therefore sought to investigate the potential of Calotropis procera extract (CPE) as a coagulant during soy curd preparation.

Materials and methods
Study location
The study was conducted at the Food Technology Unit of the Faculty of Agriculture, University for Development Studies (UDS), Tamale, Ghana.

Soybeans and Soymilk Extraction
Soy beans used in this study were obtained from the Tamale central market in the Northern region of Ghana. The milk was extracted from the soybeans according to the method described by Oboh (2006) with some modifications. The soybeans were washed and then soaked in clean water at a temperature of about 30°C for 9 hours. The water was then drained off and the beans were washed again with fresh water. The testa (seed coat) was removed manually by rubbing the soaked beans in between the palms. The dehulled soybeans were milled using a domestic electric blender. Three kilograms of the milled soy bean was manually mixed with 12 litres of distilled water and stirred thoroughly for uniform mixing. The slurry was filtered with the use of an autoclaved-linen filter cloth. The milk was collected in a glass jar for later use.

Coagulants used
Alum solution and Calotropis procera extracts (CPE) of varying concentrations were used as clotting agents of the soy milk.

Preparation of Alum Solutions
Alum crystals were obtained from the Tamale market. Alum stock solutions of concentrations; 0.5 %, 1.0 %, 1.5 % and 2.0 % were prepared by dissolving 5 g, 10 g, 15 g and 20 g of alum respectively in 1 litre each of distilled water, the agitated and the average of the three replicates was calculated for each treatment. The average clotting time of the three replicates of each treatment was calculated and used as the mean clotting time.

Measurement of certain parameters of the curds
The parameters measured include milk clotting time (minutes), the product yields (g/l) and sensory evaluations.

Measurement of Soy Milk Clotting Time
Clotting time is the time taken for the first clot to form. The set up for soy curd preparation was carefully observed and the time (minutes) of first clotting after the coagulant was added was recorded for each treatment. The average clotting time of the three replicates of each treatment was calculated and used as the mean clotting time.

Determination of curd yield and whey volume
The yield or weight (g/ litre of milk) of the final soy curd produced was weighed using an electronic weighing scale (Sartorius, TE 612). The average of the three replicates was computed and used as the mean curd yield of each treatment. Similarly, the volume of whey that was discharged at the end of the cheese making process was measured with a volumetric flask and the average of the three replicates was calculated for each treatment.

Sensory evaluation
A five-point hedonic scale (Table 1) described by Sugri and Johnson (2009) with some modifications was used to assess the sensory characteristics of the soy curd samples. The sensory qualities considered include: taste, flavour, colour, texture and overall acceptability of the products. Raw soy cheese samples were used for colour and texture evaluations whiles cooked (fried) soy curds were used for the evaluation of the taste, flavour and overall acceptability of the products. Fifteen panelists were randomly selected and trained for the sensory evaluation of the products.
Data Analysis

The data generated was subjected to analysis of variance (ANOVA) using GenStat statistical software (fourth edition) and where significant differences occurred, the means were compared at 5% level of significance.

Results and Discussion

Effects of coagulant type and concentration on soy milk clotting time, curd yield and whey volume

The clotting times, curd yields and whey volumes of alum and fresh PCE treated soy milk are shown in Table 2. The average milk clotting time, curd yield, and whey volume were significantly (p < 0.05) influenced by the type and amount of coagulant used for milk clotting (Table 2). The mean soymilk clotting time ranged between 6.0 - 31 minutes. Treatment A20 (2.0 % of alum) recorded the shortest clotting time (6.0 minutes) followed by treatment C30 (9.0 minutes) whereas treatment A5 (0.5 % alum) had the longest clotting time (31.0 minutes). The average clotting time for treatments A10 and C20 were similar (p > 0.05). Again, treatments A15, C25 and C30 were also not significantly (p > 0.05) different, but these were significantly different (p< 0.05) from the other treatments (Table 2). The differences between the clotting times of the various treatments confirms the earlier findings of Shih et al. (1997) who reported that coagulant characteristics such as coagulant types and amount of coagulant added to soy milk affect the rate of coagulation. Generally, the average milk clotting time decreased when concentrations of the coagulants were increased. This agrees with findings of Lopez et al. (1998) and Risso et al. (2008) which stated that clotting time decreases when enzyme concentration is increased because of a higher level of proteolysis of k-casein. It can therefore be suggested that to achieve effective coagulation in one (1) litre soy milk during soy curd formulation, 1.5 - 2.0 % alum concentration and extracts from 25 – 30 g of C. procera leaves and stems can be used for quick coagulation of soy milk.

The average values of soy curd yields ranged between 120.2 – 207.8 g/l. Treatment A10 had the highest curd yield (207.8 g/l) while treatment A20 recorded the least curd yield (120.2 g/l). The curd yields for treatments A5 (178.1 g/l), C25 (183.9 g/l) and C30 (191.2 g/l) were not significantly (p > 0.05) different from each other. Similarly, the curd yields of treatments A15 (123.5 g/l) and C15 (133.7 g/l) did not vary significantly (p > 0.05). The soy curd yield reduced when alum concentrations decreased below or increased above 1.0 % concentration. On the contrary, increase in soy curd yields were observed with increasing strengths of fresh PCE (Table 2).

The average whey volume also differed significantly (p< 0.05) among some treatments. The average whey volume expelled at the end of the curd making process ranged between 495.0 – 785.0 ml/l representing 49.5 % - 78.5 % of initial milk volume. It was generally observed that less whey volumes were discharged when soymilk were coagulated with fresh PCE as compared to the alum coagulated milk treatments.

The significant differences in yield of soy curd and whey volume recorded among the various treatments suggest that these curd parameters were significantly affected by the type and amount of the coagulant added to the milk. This observation agrees with the findings of Akinloye and Adewumi (2014), who reported that the type of coagulant used in cheese production results in variations in yields.

It was generally observed that the average soy curd yields were higher when CPEs were used as coagulants, compared with those produced by using the chemical coagulant, alum. This result agreed to the earlier findings of Awolola et al. (2010) that in the production of ‘Tofu’-soy curd, natural coagulants produced higher yields than those produced with chemical coagulants. It is conclusive that Treatments A10, C25 and C30 had outstanding performances in terms of curd yields.

Correlation between soy milk clotting time and soy curd yield

Figure 1 shows the relationship between clotting time and soy curd yield. There was a positive correlation (r = 0.585) between coagulation time and curd yield when alum solution was used. This indicates that a decrease in clotting time of soy milk will result in a decrease in curd yield and vice versa (Figure 1). On the contrary, there was a strong negative correlation (r = -0.803) between soy milk clotting time and curd yield when coagulation was done using CPE. From Figure 1, it can be observed that the use of CPEs increased yield of curd when clotting time decreases. It is therefore conclusive that Treatments C25 and C30 could be used to effectively substitute alum solution in soy curd production.

Figure 1: Relationship between soy milk clotting time and soy curd yield. (Treatments A5, A10, A15, and A20 represent 0.5 %, 1.0 %, 1.5 % and 2.0 % concentrations of alum solution while C15, C20, C25, and C30 represent extracts from 15 g, 20 g, 25 g and 30 g of C. procera leaves and stems).

Effects of different concentrations of alum and Calotropis procera extracts as coagulants on the organoleptic properties of soy cheese

The mean scores of the organoleptic properties (taste, flavour, colour, texture, and overall acceptability) of soy cheese prepared with different concentrations of alum and CPE as milk coagulants are shown in Table 3. The type and amount of coagulants that were added to the soymilk for curdling had significant (p < 0.05) effect on the taste, colour, texture, and overall acceptability of soy cheese. The taste of soy cheese were scored between the range of 1.77- 2.43. The result indicates that all the soy cheese samples were slightly sweet. The colour of raw soy curd samples ranged between almost white to slightly green. All the curd samples produced from the curdling of soy milk with different concentrations of alum solutions were almost white in colour (scored 1.18 – 1.23) whereas the different concentrations of CPEs impacted a slightly green colour (scored 1.63- 2.40) on the curd samples. The colour of soy curd samples of treatment C25 and C30 were significantly (p < 0.05) different from the soy curd of treatment C15 and C20. The degree of greenness increased with an increasing concentration of CPE.
The green colour of soy curd samples emanated from the chlorophyll present in the leaves and stems of *Calotropis procera*.

The hardness of the soy curds increased progressively with increasing concentrations of coagulants. deMan *et al.* (1986) reported that the texture and microstructure of the soybean curd were greatly influenced by the type of coagulant used. The generally soft nature of the curd produced with the two coagulant types: A20 (2.0% of alum) and C30 (extracts from 30 g of *C. procera*) had significant (p < 0.05) effects of CPE on the nutritional composition and shelf life of soy curds. Efforts should be made to minimize the green coloration. Treatment C25 had a general good effect on curds, thus is a good substitute for alum in soy curd formulation.

Conclusion and Recommendations

It is conclusive that the milk clotting time, yield and quality of soy curds depend on the type and concentration of coagulant added to the milk during curdling. The highest concentrations of the two coagulant types: A20 (2.0% of alum) and C30 (extracts from 30 g of *C. procera*) recorded the shortest milk clotting time. Generally, soy milk clotting time decreases with increasing concentration of the milk coagulant. Treatment A10, C25 and C30 gave the best curd yield whereas treatment A20 had the least yield. Soy curds produced from treatments A10 and A15 had the best overall acceptability whereas curds of treatment C30 were less preferred by the consumers due to the green coloration. Treatment C25 had a general good effect on curds, thus is a good substitute for alum in soy curd formulation.

It is recommended that further work should be done on the effects of CPE on the nutritional composition and shelf life of soy curds. Efforts should be made to minimize the green coloration of CPE in order to reduce the colouration effects on its products.
References