Comparison of cell membrane thermostability and chlorophyll fluorescence parameters for the determination of heat tolerance in ten cabbage lines

By GEORGE NYARKO1*, PETER G. ALDERSON2, JIM CRAIGON2, ERIK MURCHIE2 and DEBBIE L. SPARKES2
1Department of Horticulture, Faculty of Agriculture, UDS, Box TL 1882, Tamale, Ghana
2School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
(e-mail: nyarko2uds@yahoo.com)
(Accepted 5 April 2008)

SUMMARY
Cell membrane thermostability (CMT) and chlorophyll fluorescence (CF) were determined for ten lines of cabbage in order to select heat-tolerant varieties, to provide an improved method to screen for heat tolerance, and to determine whether there is a relationship between CMT and CF. Chlorophyll fluorescence parameters, especially variable fluorescence (Fv) and the ratio between Fv and maximum fluorescence (Fm), were found to be better than CMT for screening cabbage lines for heat tolerance. Fv values and the Fv/Fm ratio of stressed plants corresponded to high heat damage for the varieties ‘HRI 002605’, ‘HRI 003202’, and ‘HRI 007827’; and to low heat damage for the varieties ‘HRI 013011’, ‘HRI 005237’, and ‘HRI 006556’. The latter group may therefore be more tolerant of high temperature stress in the tropics. There were significant relationships (P < 0.05) between relative injury (RI), an index of CMT, and two of the CF parameters [minimum fluorescence (Fo) and Fv/Fm] under stress conditions (35° – 40°C). This suggests that parameters measured under stress temperatures are more reliable than those measured under non-stressed conditions when determining heat tolerance.

Cabbage (Brassica oleracea L. var. capitata) is a cool-season crop and grows well at 20° – 25°C (Messiaen, 1992; Ghosh and Madhavi, 1998). Normally, for seed production, temperatures between 0° – 10°C are needed for 6 – 8 weeks to induce flowering. Cabbage is one of the few exotic crops for which production and use are increasing rapidly in many tropical countries, especially in West Africa. Techniques are required for the rapid identification of heat-tolerant varieties for commercial production, potential seed production, and breeding programmes in tropical areas. Two tests that have gained in popularity for rapid screening of agricultural crops for high temperature tolerance are cell membrane thermostability (CMT) and chlorophyll fluorescence (CF; Martineau et al., 1979; Chauhan and Senboku, 1996; Sipos and Prange, 1986; Maxwell and Johnson, 2000).

The CMT test is based on the fact that the injury inflicted on leaf tissues under high temperatures weakens the cell membrane, which leads to a leakage of electrolytes out of the cell. If the leaf tissue is then washed in de-ionised water, the amount of electrolyte leakage can be determined using a conductivity meter, and higher conductivity values mean more cell membrane injury (Martineau et al., 1979). The effectiveness of CMT to screen genotypes for heat tolerance has been reported for some plants (Chen et al., 1982; Yeh and Hsu, 2004; Martineau et al., 1979; Chauhan and Senboku, 1996).

In addition to the cell membrane, it has been reported that the thylakoid membrane is one of the first components of the photosynthetic apparatus to be damaged by heat (Santarius, 1974; cited in Sipos and Prange, 1986) which normally leads to changes in the level of chlorophyll fluorescence (CF). The ability of thylakoid membranes, which contain the carriers for electron transport, and photosystems I (PSI) and II (PSII), to resist heat damage varies between species and varieties (Sipos and Prange, 1986). Sipos and Prange (1986) further indicated that, by measuring CF, which is the re-emitted energy absorbed by PSII but not transferred to PSI, the efficiency of electron transport in PSII can be determined, which in turn gives an indirect measure of heat tolerance. Thermal damage within PSII is characterised by a marked increase in initial fluorescence (Fo) and a decrease in variable fluorescence (Fv) and in the ratio of Fv to maximum fluorescence (Fm; Maxwell and Johnson, 2000; Hansatech, 1996; Havaux, 1995; Sipos and Prange, 1986). These fluorescence parameters have been used to screen plants for tolerance to high temperature (Martineau et al., 1979). However, it is not known whether these methods would be effective for screening cabbage for heat tolerance, or whether there is a relationship between the two methods.

The aim of this study was to select heat-tolerant cabbage varieties for growth in the tropics using CMT and CF, and to determine the best method or parameter for future screening of temperature tolerance in cabbage. One further aim was to determine whether there was a relationship between CMT and CF in cabbage.
MATERIALS AND METHODS

Seeds of ten cabbage lines (accession numbers: ‘HRI 011446’, ‘HRI 013011’, ‘HRI 002605’, ‘HRI 003202’, ‘HRI 003720’, ‘HRI 005237’, ‘HRI 006556’, ‘HRI 009617’, ‘HRI 009837’, and ‘HRI 007827’) obtained from Warwick HRI, University of Warwick, Wellesbourne, UK, were used for this study. The heads of cabbage plants, grown in the previous season, were removed to allow axillary buds to develop on the remaining stalk. One month later, five developed buds were cut from each of the ten lines and rooted in 1:1 (v/v) perlite-sphagnum moss mix for 3 weeks, after which they were transferred into Levington F2S compost (Scotts Professional, Ipswich, UK) in 4 cm-square modules in modular plastic trays and kept in a closed propagator in a controlled environment room at 20°C with a 12 h photoperiod at 400 umoles m⁻² s⁻¹ photosynthetic photon flux density (PPFD). After 3 weeks, plants were transferred into 15 cm top-diameter plastic pots, each containing 0.85 kg Levington M2 soil mix (Scotts Professional) and maintained in a glasshouse at 20° – 30°C. Seven weeks after rooting, M2 soil mix (Scotts Professional, Ipswich, UK) after the plants had been dark-adapted using leaf-clips for 30 min. The five plants of each line had been arranged in a completely randomised design. Measurements of Fo and Fm were made on two occasions: (1) after the plants had been stressed at 30° – 45°C for 3 h (T2), achieved by closing the glasshouse ventilators on a hot Summer day; and (2) early the next morning when the plants were not under any stress, when the temperature was between 23° – 26°C (T1). Values of Fv were calculated as the difference between Fm and Fo on each plant, and the Fv/Fm ratio was then determined for each temperature regime.

Analysis of variance was used to determine cultivar variations in RI and in the CF parameters, Fo, Fv and Fv/Fm, using the Genstat statistical package (VSN International, Hemel Hempstead, UK). The values for Fo and Fv were transformed (log₁₀) to normalise the error distributions before analysis.

RESULTS

RI values did not show any significant differences between lines (Table I), despite the fact that RI values ranged from 35.7 (‘HRI 005237’) to 68.0 (‘HRI 009617’). The variability in RI within each line was high (CV = 28.3%), making it difficult to detect any differences between the ten lines in response to heat stress. There were significant differences (P < 0.01) between stressed (T2) and non-stressed (T1) treatments for Fo, Fv, and the Fv/Fm ratio, and interactions between stress and line (stress × line interaction: P = 0.019, 0.012, 0.062, respectively).

Table I

Mean values (%) for relative injury (RI) in ten lines of cabbage treated at 50°C for 15 min

<table>
<thead>
<tr>
<th>Cabbage Line</th>
<th>RI (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘HRI 002605’</td>
<td>60.3*</td>
</tr>
<tr>
<td>‘HRI 003202’</td>
<td>64.0</td>
</tr>
<tr>
<td>‘HRI 003720’</td>
<td>54.7</td>
</tr>
<tr>
<td>‘HRI 005237’</td>
<td>35.7</td>
</tr>
<tr>
<td>‘HRI 006556’</td>
<td>50.1</td>
</tr>
<tr>
<td>‘HRI 007827’</td>
<td>60.2</td>
</tr>
<tr>
<td>‘HRI 009617’</td>
<td>68.0</td>
</tr>
<tr>
<td>‘HRI 009837’</td>
<td>54.5</td>
</tr>
<tr>
<td>‘HRI 011446’</td>
<td>64.1</td>
</tr>
<tr>
<td>‘HRI 013011’</td>
<td>40.9</td>
</tr>
</tbody>
</table>

*n = 40; df = 30; Standard error of the difference (SED) = 11.05.
for Fo, Fv, and Fv/Fm, respectively) indicating that the response to stress differed between lines. This can be seen in Figure 1, which shows the pattern of all three fluorescence parameters in the ten lines of cabbage at T1 and T2. Generally, at T2, Fo values increased, while Fv and Fv/Fm decreased relative to the corresponding values at T1. The Fv/Fm ratios under non-stressed conditions were relatively constant, ranging from 0.83 – 0.86, with an average of 0.84. The greatest decreases in Fv, and in the Fv/Fm ratios of stressed plants were shown by ‘HRI 002605’, ‘HRI 003202’, and ‘HRI 007827’, indicating their higher susceptibility to heat; whereas ‘HRI 013011’, ‘HRI 005237’, and ‘HRI 006556’ showed smaller decreases in Fv/Fm. For two lines (‘HRI 009837’ and ‘HRI 013011’) Fo appeared to decrease under stressed conditions.

DISCUSSION

Only the most recent, fully-expanded leaves were used for the determination of RI, because it has been reported that genotypic differences in membrane thermostability were greatest in newly-developed leaves (Martineau et al., 1979). The scale of within-line variation observed in RI indicated that differences between lines would have to be larger than those observed in this study (Table I) to be detected. Similarly, Martineau et al. (1979) also found large plant-to-plant variation in RI measurements in four soybean (Glycine max L.) cultivars. It seems that RI would only be useful as a screening tool for heat tolerance in cabbage lines that exhibit extreme heat sensitivities, as reported by Chauhan and Senboku (1996). They found differences in RI between the heat-tolerant line ‘Sousyu’ and the heat-susceptible line ‘YR Kishun’. It appears that the ten lines in the present study...
did not exhibit extreme heat tolerance, therefore the differences in CMT between the lines may be too small to detect. Techniques to reduce variability in measurements within lines are therefore needed to use CMT in such cabbages. From the coefficient of variation and the standard error of the data, the minimum number of replications needed to detect differences of the magnitude observed between the cabbage lines at the 5% significance level, with a power of 0.90, using a two-sided test, was calculated to be six. Therefore, if CMT is to be used to screen cabbage lines for heat tolerance in future, a minimum of six replicates should be used.

The differences between stressed and non-stressed plants, and their interaction for the CF parameters F_v, F_o, and the F_v/F_m ratio (Figure 1), showed how variable the ten cabbage lines were, and the different values gave an indication that there were some physiological differences between lines. F_o represents the level of fluorescence when the primary quinone electron acceptors of PSII are maximally oxidised (PSII centres are open). F_m represents the level of fluorescence when the primary quinone electron acceptors of PSII are maximally reduced (PSII centres are closed); whereas F_v demonstrates the ability of PSII to perform primary photochemistry (Baker and Rosenqvist, 2004). The F_v/F_m ratios at T1 gave a consistent average value of 0.84 for all cabbage lines (Figure 2C); whereas, at T2, the F_v/F_m ratio was lower than 0.84 for all lines. These values agree with previous literature (Bjorkman and Demmig, 1987; Johnson et al., 1993; Maxwell and Johnson, 2000) which indicated that optimum F_v/F_m values of approx. 0.83 were recorded for most plant species, and that, when heat-stressed, susceptible lines had much reduced F_v/F_m ratios. The dark-adapted values of F_v/F_m reflect the potential quantum efficiency of PSII and are used as an indicator of plant photosynthetic performance (Maxwell and Johnson, 2000). They also give the efficiency with which light (at low irradiance) is used (Chauhan and Senboku, 1996). Therefore, the extent of the decrease in the F_v/F_m ratio from 0.84, in response to heat stress, may be used to screen cabbages for heat tolerance.

The pattern of CF parameters here (Figure 1) confirmed earlier reports (Baker and Rosenqvist, 2004; Maxwell and Johnson, 2000) that, under stress, F_o increases, while F_v and F_v/F_m decrease. However, in the present study, F_o was not consistent for all cabbage lines (Figure 1). An increase in F_o may therefore not be a reliable indicator of heat tolerance for all lines of cabbage. Sipos and Prange (1986) also observed significant differences in F_v and F_v/F_m, but not in F_o, in ten lines of potato (Solanum tuberosum L.) showing different heat tolerance. Differences in F_v and F_v/F_m between cabbage lines at T2 revealed that these CF parameters are more sensitive indicators of heat tolerance in cabbage than RI, and hence could be used for screening cabbages for growth at high temperatures. This supports earlier literature in which Bjorkman et al. (1980) reported that the thylakoid membrane (which contains PSII) is more sensitive to heat than the cell membrane. The large decreases in both F_v and F_v/F_m values at T2 for lines ‘HRI 002605’, ‘HRI 003202’, and ‘HRI 007827’, and the smaller decreases in lines ‘HRI 013011’, ‘HRI 005237’, and ‘HRI 006556’, from those obtained at T1, indicate high susceptibility and high tolerance to heat, respectively. The four remaining lines can be said to be intermediate between these two groups in their tolerance of heat.

The fact that no relationships were detected between RI and the CF parameters measured at T1, whereas, at T2, there were some significant relationships (Figure 2), suggests that parameters measured under stress temperatures are more important in determining heat tolerance and that, at high temperatures, cell membranes and thylakoid membranes (PSII) are damaged simultaneously. These results also indicate that the thylakoid membrane (PSII) is more affected by heat than the cell membrane, as reflected by the decreases in fluorescence parameters (F_v and F_v/F_m) at T2. In general, the relationships at T2 revealed that RI increased as F_v and F_v/F_m decreased, and as F_o increased. This agrees with earlier work which showed that thermal damage to cell membranes was characterised by a marked increase in RI (Yeh and Hsu, 2004), whereas damage to thylakoid membranes (PSII) was characterised by a marked increase in F_o and a decrease in F_v and the F_v/F_m ratio (Hansatech, 1996; Sipos and Prange, 1986; Maxwell and Johnson, 2000).

CONCLUSION
Chlorophyll fluorescence parameters, especially F_v and F_v/F_m, were found to be more sensitive for screening cabbages for heat tolerance than RI, an index of CMT. Values of F_v and the F_v/F_m ratio of stressed plants showed a marked decrease for lines ‘HRI 002605’, ‘HRI 003202’, and ‘HRI 007827’, indicating higher susceptibility to heat; whereas the corresponding values for lines ‘HRI 013011’, ‘HRI 005237’, and ‘HRI 006556’ indicated a higher tolerance to temperatures commonly experienced in the tropics. A relationship ($P < 0.05$) between the RI and F_v and F_v/F_m existed only under stress conditions (35°C – 40°C), which suggests that such parameters, measured at stress temperatures, are more important for determining heat tolerance.

This work was supported by a scholarship awarded to G. Nyarko by the Government of the Republic of Ghana.
REFERENCES

The scheme was implemented correctly, but there was an error, as presented, in Eq. 2. The correct notation is as follows:

\[
T = \frac{\rho C_p D g_c}{\lambda \gamma} K
\]

where \(\rho\) is the density of air (kg m\(^{-3}\)), \(C_p\) is the specific heat of air, \(\gamma\) is the psychrometric constant, \(D\) is the vapour pressure deficit (kPa), \(\lambda\) is the latent heat of vapourisation, \(g_c\) is the canopy conductance that was obtained as the product of LAI and \(g_s\), and \(K\) is the duration under consideration, which is daylight hours (in s) for the daily time-scale.