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Full Length Research Article 

 Fluid flow over unsteady stretching surface with chemical reaction and non-
uniform heat source in a quiescent medium extending to infinity was 
investigated. The boundary layer problem was modelled as partial differential 
equations and transformed to a set of ordinary differential equations using 
similarity variables. The three important parameters namely, the unsteadiness 
parameter (S), space-dependent parameter (A*) and temperature-dependent 
parameter (B*) for heat source/sink were included in the problem. The velocity, 
temperature and concentration profiles were obtained using the Runge–Kutta–
Fehlberg method with the shooting techniques. The results obtained show that 

heat and mass transfer rates, )0(   and )0(  , respectively and the skin friction 

coefficient, )0(f  , increased as the unsteadiness parameter increases and 
decreased as the space-dependent and temperature-dependent parameters for 
heat source/sink increase. 

©2013 BluePen Journals Ltd. All rights reserved 

 
 
INTRODUCTION 
 
A great number of fluid dynamic problems with 
significance to aerodynamic applications are inherently 
unsteady. Most of these flow problems are encountered 
during bluff body wakes, turbulent boundary layers, 
chemically reactive flows, turbine and rotor flows, as well 
as aeroelastic problems. The heat transfer problem in 
quiescent fluids driven by a continuously stretching 
surface is one important industrial problem. This problem 
arises during the drawing of polymer sheets, the 
continuous extrusion of filaments from a die, the cooling 
of metallic plates in a bath, aerodynamic extrusion of a 
plastic sheet, continuous casting, rolling, annealing and 
tinning of copper wires. During these processes, some of 
the mechanical properties of the elements are greatly 
affected due to the rate of cooling.  

Sakiadis (1961) is credited for his pioneering works in 
boundary layer research generated by a continuous solid 
surface moving with a constant velocity. Some 
researchers including Vajravelu and Roper (1999), 
Vajravelu (2001), Ali and Magyari (2007), Sajid and 
Hayat (2008), and Ibrahim and Makinde (2010a, b; 2011) 
investigated  the  heat  transfer  problem  in  a   stretching 

sheet with a linear, power-law or exponential surface 
velocity and a uniform or different surface temperature 
conditions. The problem was extended by Abo–Eldahab 
and Aziz (2004) to include space-dependent 
exponentially decaying with internal heat generation or 
absorption. Abel et al. (2007) and Bataller (2007) 
analysed the effects of non-uniform heat source on 
viscoelastic fluid flow and heat transfer over a stretching 
sheets. Other researchers including Pantokratoras 
(2008), Mukhopadhyay et al. (2005), and Mukhopadhyay 
and Layek (2008) extended the problem to include the 
effects of variable fluid properties on the flow over a 
stretching sheet. In most of these investigations, the flow 
and temperature fields were considered at steady state. 
Some other researchers (Dandapat et al., 2003, 2007; 
Andersson, 2000; Ali and Magyari, 2007; Tsai et al., 
2008) have studied the problem for unsteady stretching 
surface condition without considering the effects of 
chemically reactive species. Makinde and Chinyoka 
(2012) analysed the unsteady flow of a variable viscosity 
reactive fluid in a slit with wall suction or injection whilst 
Devakar  and  Iyengar  (2013)  recently  investigated   the 



 
J. Eng. Manuf. Technol.          25 

 
 
 

 
Quiescent fluid, 


CT ,  

2/3

2

2/3

2

)1(
2

)1(
2













at
bx

CCC

at
bx

TTT

refs

refs





 

y 

x 

 
 
Figure 1. Schematic Diagram of the Flow Problem. 

 
 
 

unsteady flows of a micropolar fluid between parallel 
plates using state space approach. 

In this paper, the heat and mass transfer over unsteady 
stretching surface in a quiescent fluid extending to infinity 
in the presence of chemical reaction and non-uniform 
heat source/sink was investigated. The continuity, 
momentum, energy and concentration equations are 
transformed into a two-point boundary value problem 
using similarity analysis. The problem is then solved 
numerically by the Runge–Kutta–Fehlberg method with 
the shooting technique.  
 
 
PROBLEM FORMULATION 
 

The flow problem depicting unsteady, two dimensional 
incompressible and viscous flow on a horizontal thin 
elastic sheet that issues from a narrow slot at the origin 
and is continuously being stretched with a 

velocity )1/( atbxu
s

 , Tsai et al. (2008) (where a and 

b are positive constants, and at /1 ) in the positive x-

direction, (Figure 1). The fluid is considered to be 

Newtonian with constant temperature (


T ) and 

concentration (


C ) away from the surface.  

The surface is assumed to have a non-uniform internal 
heat generation/absorption and the surface temperature 
and concentration varies with the coordinate x and time t.  
The governing equations for unsteady first-order 
chemical reactions are represented by: 
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Where t  is time, u  and v  represent the velocity 

components in x and y directions respectively. T and C  
represent the fluid temperature and concentration, 
respectively. The fluid density, kinematic viscosity, 
specific heat capacity at constant pressure, thermal 
conductivity and the rate of chemical reaction are 

respectively represented by ρ, ν, 
p

c , k , 
 
while q   is 

the non-uniform heat generated )0(
 

or absorbed 

)0(  per unit volume. The value of q   is chosen 

approximately in accordance with Abo-Eldahab  and  Aziz  
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Where *A  and *B  are parameters of space-dependent 
and temperature-dependent heat generation/absorption. 

It is noted that both *A  and *B  are positive to internal 
heat source and negative to internal heat sink. The sheet 

surface temperature (
s

T ) and concentration (
s

C ) are 

considered as functions of distance, x  and time, t  as 

follows: 
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Where 
ref

T
 
and 

ref
C  are constant reference temperature 

and concentration, respectively.  
In this study, the sheet is assumed to be heated and its 

temperature and concentration is higher compared to the 

free stream temperature (


T ) and concentration, (


C ). 

The associated boundary conditions are: 
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Where 
s

u  is the velocity on the surface of sheet.  

By introducing the following dimensionless parameters, 
the problem is transformed to ordinary differential 
equations. 
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Where   is the stream function, )(f  is a 

dimensionless stream function,   and   are the 

dimensionless temperature and concentration 
respectively and   is the similarity variable. The 

continuity equation is identically satisfied when the 
velocity components are defined in the usual way as: 
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Equations 2 to 4 are then transformed to dimensionless 
form; 
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and the associated boundary conditions become 
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Where the primes denote differentiation with respect to 

 , )/( baS 
 

is the unsteadiness parameter, 

)/Pr( kc
p
  is the Prandtl number, )/( DSc   is 

the Schmidt number and )1( at
b




  is the 

instantaneous reaction rate parameter. Note that the 

problem reduces to steady state when 0S . 

Of practical importance in engineering are the local skin 
friction coefficient, local Nusselt number and the local 
Sherwood numbers which are respectively defined as: 
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Where 
s
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is the plate surface shear stress, 

s
q

 
is the 

surface heat flux and 
m

q  is the surface mass flux, which 

are given by: 
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Substituting Equation (15) into equation (14) and 
simplifying: 
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Table 1. Comparison of dimensionless temperature gradient )0(  when ,0S 0 , ,0 and 0* A . 
 

*B  Pr  
)0(   

Vajravelu and Roper (1999) Liu (2004) Tsai et al. (2008) Present study 

-1 1 -1.710937 -1.71094 -1.710937 -1.710934 

-2 2 -2.486000 - -2.485997 -2.485997 

-3 3 -3.028179 - -3.028177 -3.082177 

-4 4 -3.585194 - -3.585192 -3.585193 

-5 5 -4.028535 -4.02854 -4.028540 -4.028535 

 
 
 

Where Rex = Usx/ is the flow local Reynolds number. 
 
 
NUMERICAL PROCEDURE 
 
The set of Equations 10 to 12 subject to the boundary 
conditions (12) are solved numerically by the Runge–
Kutta–Fehlberg method with the shooting technique. 
Computations of the local skin-friction coefficient, the 
local Nusselt number and the local Sherwood numbers 
are done and presented in tables. The velocity, 
temperature and concentration profiles were obtained 
graphically.  

The dimensionless higher order differential equations 
are reduced to a system of first order differential 
equations by letting: 
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Thus, the corresponding system of first order differential 
equations is: 
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subject to the boundary conditions 
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In the shooting method, the unspecified initial conditions; 

,
1

s ,
2

s
 

and 3
s

 
in Equation (19) are assumed and 

Equation (18) integrated numerically as an initial valued 
problem to a given terminal point. The accuracy of the 
assumed missing initial condition is then checked by 
comparing the calculated value of the dependent variable 
at the terminal point with its given value. If a difference 
exists, improved values of the missing initial conditions 
must be obtained and the process is repeated. The 
computations were done by a written program, which 
uses a symbolic and computational computer language 

MAPLE, Heck (2003). A step size of 001.0
 
was 

selected to be satisfactory for a convergence criterion of 
7

10


 in nearly all cases. The maximum value of 


  to 

each group of parameters S, A*, B*, Pr and Sc are 
determined when the values of unknown boundary 

conditions at 0  does not change to successful loop 

with error less than 
7

10


. From the process of numerical 

computation, the local skin friction coefficient, the local 
Nusselt number and the local Sherwood number, which 
are respectively proportional to )0(F  , )0(   and 

)0(   are worked out and their numerical values 

presented in a tabular form. 
 
 
RESULTS AND DISCUSSION 
 
To validate the accuracy of the numerical procedure, the 

results of )0(  are compared with previously published 

data (Table 1), for the case of steady state (S = 0) and A* 
= 0.  The results shown in the table is consistent with 
earlier established data. 

Table 2 shows the effects of varying various controlling 
parameters on the local skin-friction and the rate of heat 
and mass transfers at the sheet surface. It is observed 
that both the skin-friction coefficient and the rate of mass 
transfer do not change with Prandtl (Pr) numbers. A 
similar observation was made for the space-dependent 
(A*)  and  temperature-dependent  (B*)  parameters.  It  is
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Table 2. Effects of parameter variation on )0(f  , )0(  , and )0( 
. 

 

Pr A* B* S Sc   )0(f   )0(   )0(   

0.71 0.05 0.05 1.0 0.24 1 1.414214 1.435639 0.9694777 

3.0 0.05 0.05 1.0 0.24 1 1.414214 3.239729 0.9694777 

7.1 0.05 0.05 1.0 0.24 1 1.414214 5.117666 0.9694777 

0.71 0.1 0.05 1.0 0.24 1 1.414214 1.389026 0.9694777 

0.71 1.0 0.05 1.0 0.24 1 1.414214 0.549986 0.9694777 

0.71 0.05 0.1 1.0 0.24 1 1.414214 1.415432 0.9694777 

0.71 0.05 1.0 1.0 0.24 1 1.414214 0.861092 0.9694777 

0.71 0.05 0.05 2.0 0.24 1 1.732051 1.774437 1.1383073 

0.71 0.05 0.05 3.0 0.24 1 2.000000 2.054749 1.2859428 

0.71 0.05 0.05 1.0 2.14 1 1.414214 1.435639 3.1170885 

0.71 0.05 0.05 1.0 2.64 1 1.414214 1.435639 3.4783306 

0.71 0.05 0.05 1 0.24 2 1.414214 1.435639 1.0952491 

0.71 0.05 0.05 1 0.24 3 1.414214 1.435639 1.2060021 

0.71 0.05 0.05 1 0.24 4 1.414214 1.435639 1.3062607 

 
 
 
clear from the table that the rate of heat transfer, which 
represents the Nusselt number increases with increasing 
values of Pr and reduces with increasing values of A* and 
B*. The unsteadiness parameter (S) is observed to have 
an effect of increasing the skin-friction coefficient and the 
rate of heat and mass transfers at the surface. The 
Schmidt number (Sc) and the reaction rate parameter are 
observed to influence only the rate of mass transfer for 
obvious reasons. 

Figures 2 to 12 depict graphical representations of the 
various controlling parameters on the velocity, 
temperature and concentration profiles. In Figures 2 and 
3, the distribution of the dimensionless velocity profile 

)(f 
 

with increasing values of the unsteadiness 

parameter (S) and the dimensionless variable (η) are 
shown. It is seen that the velocity profile decreases with 
both the unsteadiness parameter (S) and the 

dimensionless variable )( for the reason that unsteadi-

ness will result in higher wall friction coefficient which will 
tend to reduce the velocity of flow. 

Furthermore, it is clear from Figures 4 and 5 that 
increasing the unsteadiness parameter and the Prandtl 
number decreases the temperature profiles for the same 
reasons. The temperature profiles for different space-
dependent and temperature-dependent parameters for 
heat source/sink are presented in Figures 6 and 7, 
respectively. It is observed that both A*and B* increases 
the temperature profiles. The heat generation source 
(A*>0 and B*<0) leads to a larger thermal diffusion 
boundary layer that may increase the thermal boundary 
layer thickness; on the contrary, the layer thickness 
decreases for heat absorption sink (A*<0 and B*>0). 

From Equation (16), the values of ),0(f  )0(  and 

)0(   represent the magnitude of the skin-friction 

coefficient as well as the heat and mass flux at the 

surface of the sheet. It is noted that a positive )0(   

and )0(   denote heat and mass transfer from the 

sheet surface to fluid stream. Increasing the 

dimensionless variable )(
 
is observed to increase the 

temperature and concentration profiles (Figures 8 and 
11). 

In Figures 9 and 10, the concentration boundary layers 
are observed to decrease with increasing values of the 
unsteadiness parameter and the Schmidt number. Same 
is observed in Figure 12 which represents the 
concentration profile when the reaction rate parameter is 
increased for the first – order reaction. This is caused by 
the destructive nature of the chemical reaction within the 
boundary layer. 
 
 
Conclusion 
 
In this paper, the partial differential equations modelling 
the unsteady flow problem is transformed to non-linear 
systems of ordinary differential equations using similarity 
analysis. The problem involved heat and mass transfer in 
an incompressible, quiescent Newtonian fluid flow 
caused solely by a unsteady stretching of a horizontal 
sheet with non-uniform internal heat 
generation/absorption in the presence of chemically 
reactive species. The heat and mass transfer rates, 

)0(  and  )0( 
 
 respectively  and  the  skin  friction  
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Pr = 0.71, A* = 0.05, B* = 0.05, 

Sc = 0.24, 1  

Increasing Unsteadiness Parameter  

S = (0, 0.8, 1.5, 2) 

 
 

Figure 2. Velocity profile for varying values of the unsteadiness parameter (S). 

 
 
 

 

Pr = 0.71, A* = 0.0, B* 

= 0.05, Sc = 0.24 

Increasing Unsteadiness Parameter 

 S = (0, 0.8, 1.5, 2) 

 
 

Figure 3. Velocity profile for varying values of η. 
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Pr = 0.71, A* = 0.0, B* 

= 0.05, Sc = 0.24 

Increasing Unsteadiness Parameter 

 S = (0, 0.8, 1.5, 2) 

 
 

Figure 4. Temperature profiles for varying values of the unsteadiness parameter (S). 

 
 
 

 

A* = 0, B* = 0, S = 0,

0 ,Sc = 0.24, 1  

Increasing Prandtl number  

Pr = (0.71, 2, 5, 7.1) 

 
 

Figure 5. Temperature profiles for varying values of Pr. 
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Pr = 0.71, S = 1, B* = 0.05, 

Sc = 0.24, 1  

Increasing values of A* 

A* = (0.05, 0.1, 0.5, 1.0) 

 
 

Figure 6. Temperature profiles for varying values of A*. 

 
 
 

 

Pr = 0.71, A* = 0.00, S = 1, 

Sc = 0.24, 1  

Increasing values of 

B*= 0.05, 0.1, 0.5, 1.0 

 
 

Figure 7. Temperature profiles for varying values of B*. 
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Pr = 0.71, A* = 0.05, B* = 0.05, 

S = 1, Sc = 0.24, 1  

Increasing values of eta, η 

 
 

Figure 8. Temperature profile for varying values of η. 

 
 
 
 

 

Pr = 0.71, A* = 0.0, 

B* = 0.05, Sc = 0.24 

Increasing Unsteadiness Parameter 

 S = (0, 0.8, 1.5, 2) 

 
 

Figure 9. Concentration profiles for varying values of unsteadiness parameter (S). 
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Pr = 0.71, A* = 0.05, B* = 

0.05, S = 1, 0 , 1  

Increasing values of Sc 

(0.24, 1.78, 2.14, 2.64)  

 
 

Figure 10. Concentration for varying values of Schmidt number (Sc). 

 
 
 

 

Pr = 0.71, A* = 0.05, B* = 0.05, S 

= 1, Sc = 0.24, 1  

Increasing values of eta,  

(η = 0, 1, 2, 3) 

 
 

Figure 11. Concentration profiles for varying values of η. 



 
Seini          34 
 
 
 

 

Pr = 0.71, A* = 0.05, B* = 0.05, S 

= 1, Sc = 0.24, 1  

Increasing values of beta,  

(   = 1, 2, 3, 4) 

 
 

Figure 12. Concentration profiles for varying reaction rate parameter (  ). 

 
 
 

coefficient, )0(f  were investigated and observed to 

increase as the unsteadiness parameter increases. The 

rate of heat transfer, )0(   is observed to be the only 

parameter affected by the space-dependent (A*) and 
temperature dependent (B*) parameters for heat 
source/sink. The graphical illustrations also include the 
effects of chemical reaction on the boundary layer near 
the surface. 
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APPENDIX 
 
Nomenclature: 
x, y  Cartesian Coordinates variables 
u, v  Velocity components in the x- and y- coordinate 
axes 


T

 
Temperature of fluid medium far away from the 

plate surface,  


C       Concentration of the fluid medium far away from 

the plate surface,   
T         Fluid temperature,     

s
T  Plate surface temperature,   

C Fluid concentration,      

s
C  Plate surface concentration,  

D
 

Coefficient of mass diffusivity,  

t           Time (seconds) 

p
c

 
Specific heat capacity at constant pressure,  

s
u  Velocity of stretching surface, 

Tm  Mean fluid temperature,     
Cm       Mean fluid concentration 

ref
T

 
Reference temperature, 

ref
C

 
Reference concentration, 

q         Non-uniform heat source 

*A       Space-dependent parameter                         

*B       Temperature-dependent parameter  
Pr         Prandtl number, 
Sc        Schmidt number, 

w
q        Surface heat flux, 
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m
q        Surface mass flux,  

Rex Local Reynolds number, 

f
C

 
Local skin friction coefficient,  

x
Nu

 
Local Nusselt number, 

x
Sh

 
Local Sherwood number,   

 
Greek Symbols 
η Dimensionless coordinate variable    

w
  Plate surface shear stress,  

 Fluid density,       

 Kinematic viscosity,  
  Thermal diffusivity,      


 

Dimensionless stream function 

  Dimensionless concentration,    

  Dimensionless temperature, 

 
Subscribes 
w         Wall conditions 

  Conditions at infinity 
 


