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ABSTRACT 

 
In this paper, the authors establish some inequalities involving the q-extension of the classical Gamma 
function. These inequalities provide bounds for certain ratios of the q-extended Gamma function. The 
procedure makes use of geometric convexity and monotonicity properties of certain functions associated with 
the q-extended Gamma function. 
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1 Introduction  and Preliminaries 
 
In recent years, the theory of inequalities has developed from a collection of isolated formulas into a vibrant 
independent area of research. This is manifested by the emergence of several new journals devoted to this 
area of research. Particularly, inequalities involving special functions have been studied intensively by 
researchers across the globe. In this study, we establish some new inequalities involving the q-extension of 
the Gamma function. Before we present our results, let us recall the following definitions pertaining to the 
results. 
 

The classical Euler's Gamma function, ( )xΓ  is usually defined for 0x > by 
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It is well-known in literature that the Gamma function satisfies the following basic properties. 
 

( 1) ( ),    x x x x R+Γ + = Γ ∈                                                                                                           (1) 

 

( 1) !,    n n n Z+Γ + = ∈                                                                                                                  (2) 
 

Let ( )xψ  be the digamma or psi function defined for 0x >  as the logarithmic derivative of the Gamma 

function. That is, 
 

( )
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The following series representations hold true for ( )xψ , 0x >  [1]. 
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where γ  is the Euler-Mascheroni’s constant given by 
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Let ( )q xΓ  be the q-extension (also known as, q-analogue, q-deformation or q-generalization) of the 

Gamma function defined for 0x >  and for fixed (0,1)q∈  by (see [2,3] and the references therein). 
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Similarly, ( )q xΓ   satisfies the following properties [4]. 
 

( 1) [ ] ( ),    q q qx x x x R+Γ + = Γ ∈                                                                                                  (5) 

 

( 1) [ ] !,    q qn n n Z+Γ + = ∈                                                                                                           (6) 
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. Note that equations (5) and (6) are respectively the q-extensions of equations (1) and 

(2). 
 

Likewise, the q-extension of the digamma function is defined for 0x >  and (0,1)q∈  as the logarithmic 

derivative of the function ( )q xΓ . That is, 
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It also exhibits the following series representations (see [5,6] and the related references therein). 
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The function ( )q xψ  is increasing for 0x >  [7, Lemma 2.2].  Also, for 0q >  and 0x > ,  ( )q xψ  has a 

uniquely determined positive root [8, Lemma 4.5]. 
 

Further, let qγ  be the q-extension of the Euler-Mascheroni’s constant (see [9-11]). Then, 
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The following limit relations are valid (see [10-12). 
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Remark 1.1. Unlike the value of γ  which is fixed, the value qγ  varies according to the value of q . Tables 

of some approximate values of qγ  can be found in [9,10]. 

 
By taking the m-th derivative of (7), it can easily be shown that 
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for 1m≥ . The functions ( ) ( )m
q xψ  are called the q-extension of the polygamma functions. 

 

Definition 1.2. ([13-15]). Let : (0, ) (0, )f I ⊆ ∞ → ∞  be a continuous function. Then, f  is said to be 

geometrically (or multiplicatively) convex on I  if there exist 2n≥  such that one of the following two 
inequalities holds: 
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then f  is said to be geometrically (or multiplicatively) concave on I . 
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In 1971, Kečkić and Vasić [16, Theorem 1] established the double inequality 
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for 1x y≥ > , by employing  the monotonicity properties of certain functions involving the Gamma 

function. 
 
Also, in 2007, Zhang, Xu and Situ [15, Theorem 1.2] established the double inequality 
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for 0x >  and 0y > , by using the geometric convexity of a certain function related to the Gamma 
function, and as a byproduct, inequality (10) was recovered. 
 
Furthermore, in 2010, Krasniqi and Shabani [13, Theorem 3.5] also established the following related 
inequality for the p-Gamma function. 
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for  0x >  and 0y > . 

 
For more information on inequalities of this nature, one could access the review article by Qi [17]. 
 

Lemma 1.3. Let : (0, ) (0, )f I ⊆ ∞ → ∞  be a differentiable function. Then f  is said to be geometrically 

convex if and only if the function 
( )
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Lemma 1.4. Let : (0, ) (0, )f I ⊆ ∞ → ∞  be a differentiable function. Then f  is said to be geometrically 

convex if and only if the function 
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For proofs of Lemmas 1.3 and 1.4, see [14]. 
 
The purpose of this paper is to establish some related inequalities for the q-extension of the Gamma 
function, by using geometric convexity and monotonicity features of certain functions associated with the q-
extended Gamma function. We present our results in the following section. 
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2 Main Results 
 
Theorem 2.1. Let 1x ≥ , 1y ≥  and (0,1)q∈ . Then the double inequality 
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holds true. 
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Thus, 
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Combining (14) and (15) concludes the proof of Theorem 2.1. Observe that [ ] [ ]
1

x y

q q

q q
y x

q

−− =
−

. 

Corollary 2.2. For 0x >  and (0,1)q∈ , the inequalities  
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Proof. This follows directly from Theorem 2.1 by substituting x  by 1x+ , and y  by 1
2x+ .  

 

Theorem 2.3. Let 0x > , 0y >  and 
*xα ≥ , where x∗

 is the unique positive root of ( )q xψ . Then for 

fixed (0,1)q∈ , the double inequality 
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concluding the proof of Theorem 2.3.   
 

Theorem 2.4. Let 0x y> > . Then for fixed (0,1)q∈ , the double inequality 
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Proof. Define a function qh  for 0t >  and (0,1)q∈  by ( ) In ( )q qh t t= Γ . Let ( , )y x  be fixed. 
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Since ( )q tψ  is increasing for 0t > , then for ( , )c y x∈  we obtain 
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Exponentiating yields the desired results. 
 
Remark 2.5. The double inequality (18) provides the q-extension of [15, Corollary 1.5] and [18, Corollary 
2]. 
 

Corollary 2.6. For 0x > , 0µ λ> >  and (0,1)q∈ , the inequalities 
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hold true. 
 

Proof. This follows directly from Theorem 2.4 by substituting x  by x µ+ , and y  by x λ+ . 
 

Remark 2.7. If we set 1µ =  in Corollary 2.6, then we obtain the q-extension of the result of Laforgia and 
Natalini [19, Theorem 3.1]. 
 

Corollary 2.8. For 0x >  and (0,1)q∈ , the inequalities 
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hold true. 
 

Proof. Follows from Theorem 2.4 by substituting x  by 1x+ , and y  by 1
2x+ . 

 
Remark 2.9. By virtue of relation (5), inequalities (20) can be rearranged as 
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.                                                              (21)  

 
Remark 2.10. Results similar to inequalities (16) and (20) can also be found in [20-22]. 
 

3 Conclusion 
 
In the paper, the authors have established some inequalities for the q-extension of the classical Gamma 
function. The results provide generalizations for several previous results. The findings of this research could 
provide useful information for researchers interested in q-analysis in particular, and the theory of inequalities 
in general. In addition, a further research could be conducted to see if similar results could be obtained for 
other special functions like the q-Beta and q-Psi functions. This could further expand the potential 
applications of our results. 
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