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1. Introduction

We begin by outlining the following basic definitions
well-known in literature.
The celebrated classical Euler’s Gamma function, T'(t)

is defined for t >0 as

I(t) = j e *x!dx.
0

The g-Gamma function, I'q(t) is defined for g (0,1)
and t >0 as (see [2])

()= aquI

t+n

Also, the k-Gamma function, T’ (t) was defined by
Diaz and Pariguan [1] for k >0 and t >0 as
» _xk
Iy (t)= je k xtLax.
0

Diaz and Teruel [5] further defined the (g,k)-Gamma
function I'(q ) (t) for g (0,1), k>0 and t>0 as
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is the k-generalized Pochhammer symbol.
Furthermore, Krasnigi and Merovci [4] defined the
(p,0)-Gamma function T', oy (t) for pe N, q<(0,1) and

t>0 as
~ Iplylply!
Cipgy®) = [tlglt+1]q - [t+ pq '
where
p
[ply = z

The psi function, w(t) otherwise known as the
digamma function is defined as the logarithmic derivative
of the Gamma function. That is,
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The g-digamma function, k-digamma function, (p,q)-
diagamma function and (q,k)-digamma function are
similarly defined as follows:
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and

_d IS
Wgk )= o InL g1y (1) _—r(q,k)(t).

It is common knowledge that these functions exhibit the
following series charaterizations (see also [7-12]):
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where y =0.577215664901532...

Mascheroni’s constant.

Of late, the following double inequalities were
presented in [7] by the use of some monotonicity
properties of some functions related with the Gamma
function.

represents the Euler-
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for te(0,), >0, qe(0,2) and k >0.

Results of this form can also be found in [8,9,10,11,12].
By utilizing similar techniques as in the previous results,
this paper seeks to provide some generalizations of the

above inequalities. We present our results in the following
sections.

®

2. Supporting Results

We begin with the following Lemmas.
Lemma 2.1. Suppose that «>0 |,

u>w>0,t>0,peN and qe(0,1) . Then,

>0 ,

uln(l—q)+wln[p]q
+ Uy (a+ pt) ~W¥/(p.q) (a+ pt)<0.

Proof. From the characterization in equations (1) and (3)
we obtain,

UIn(l_q)+W|n[p]q + Uy (t)_WV/(p q) (t)
= (Inq) ui q" wz q" <0
nml-q"  551-q"

We conclude the proof by substituting t by « + gt .
Lemma 2.2. Suppose that >0 , >0 |,
u>w>0,t>0,9e(0,1) and k>1. Then,
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Proof. From the characterization in equations (1) and (4)
we obtain,
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We conclude the proof by substituting t by « + gt .
Lemma 2.3. Suppose that « >0, >0, u>0 w>0,
t>0,k>0,peN and ge(0,1) . Then,

Ink uy u
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Proof. From the characterization in equations (2) and (3)
we obtain,
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We conclude the proof by substituting t by «+ gt .
Lemma 2.4. Suppose that « >0,4>0, u>0 w>0,
t>0,9e(0,1) and k>0. Then,

u w
_In(k™(-q) )+u—7/+ u
k k a+pt
+ Uy (a+ﬂt)—Wl//(q,k) (a+ﬂt) > 0.

Proof. From the characterization in equations (2) and (4)
we obtain,
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We conclude the proof by substituting t by «+ ft .

3. Main Results

We now present our results in the following Theorems.
Theorem 3.1. Define a function E for pe N and

qe(0,1) by

(L-a)" T (a+ )"
[Pl T,y (@+ 8"
where u, w, «, S are positive real numbers such that

u>w. Then, E is non-increasing on t e (0,o) and the
inequalities:

L-9)Mry(@)" _ Tyla+p)"
[P T p gy (@) Tpq e+ B0
@-a) 40T, (@ + p)"
PP o (@t )Y

are valid for each t € (0,1) .
Proof. Let A(t) = InE(t) for every t € (0,00). Then
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as a result of Lemma 2.1. That implies A is non-
increasing on te(0,0) . Consequently, E is non-

increasing on t € (0,) and for each t € (0,1) we have,
E)>E(t)>E(Q)

yielding equation (10).

Theorem 3.2. Define a function F for qe(0,1) and
k>1 by

(-0 rg(a+ By

upt
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where u, w, «, S are positive real numbers such that

u>w. Then, F is non-increasing on t e (0,o) and the
inequalities:

F(t) = te(0,0) (11)
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Proof. Let n(t) = InF(t) for every t € (0,). Then
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as a result of Lemma 2.2. That implies n is non-
increasing on te(0,0) . Consequently, F
increasing on t e (0,0) and for each t  (0,1) we have,

is non-

FO)>F(t)>F(@)
yielding equation (12).
Theorem 3.3. Define a function G for te(0,:) ,
peN, ge(0,1)and k >0 by

upgt upyt
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where u, w, a, B are positive real numbers. Then, G
is increasing on t € (0,00) and the inequalities:
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as a result of Lemma 2.3. That implies 4 is non-
increasing on te(0,0) . Consequently, G
increasing on t € (0,0) and for each t € (0,1) we have,

is non-
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yielding equation (14).

Theorem 3.4. Define a function H for te(0,) ,
ge(0,2) and k >0 by

uprt
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where u, w, o, S are positive real numbers. Then, H
is increasing on t € (0,00) and the inequalities:
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as a result of Lemma 2.4. That implies & is non-
increasing on te(0,0) . Consequently, H is non-

increasing on t e (0,o0) and for each t  (0,1) we have,
HO)<H@{)<H@
yielding equation (16).

4. Conclusion

If we fix u=w= g=1 in inequalities (10), (12), (14)
and (16), then we respectively obtain the inequalities (5),
(6), (7) and (8) as special cases. By this, the previous
results [7] have been generalized.
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