Electronic Journal of Mathematical Analysis and Applications,

Vol. 2(2) July 2014, pp. 172-177.

ISSN: 2090-729(online)

http://fcag-egypt.com/Journals/EJMAA/

THE k-ANALOGUE OF SOME INEQUALITIES FOR THE GAMMA FUNCTION

KWARA NANTOMAH, MOHAMMED MUNIRU IDDRISU

ABSTRACT. In this paper, we present and prove the k-analogue of the Inequalities obtained by A. Sh. Shabani [3] and N. V. Vinh, N. P. N. Ngoc [4]. We also present some new results involving the k-analogue of the digamma function.

1. Introduction

We begin by recalling some definitions related to the Gamma function.

The classical Euler's Gamma function, $\Gamma(t)$ is defined as

$$\Gamma(t) = \int_0^\infty e^{-x} x^{t-1} dx, \qquad t > 0.$$
(1)

The digamma function, $\psi(t)$ also known as the logarithmic derivative of the Gamma function is defined as

$$\psi(t) = \frac{d}{dt} \ln(\Gamma(t)) = \frac{\Gamma'(t)}{\Gamma(t)}, \qquad t > 0.$$
 (2)

The k-analogue of the Gamma Function $\Gamma_k(t)$ is defined as

$$\Gamma_k(t) = \int_0^\infty e^{-\frac{x^k}{k}} x^{t-1} dx, \quad k > 0, \quad t > 0.$$
 (3)

For several properties and other representation of $\Gamma_k(t)$, see [1].

Similarly, the k-analogue of $\psi(t)$ is defined as follows. (See [2])

$$\psi_k(t) = \frac{d}{dt} \ln(\Gamma_k(t)) = \frac{\Gamma'_k(t)}{\Gamma_k(t)}, \quad k > 0, \quad t > 0.$$
(4)

and

$$\lim_{k \to 1} \Gamma_k(t) = \Gamma(t), \qquad \lim_{k \to 1} \psi_k(t) = \psi(t) \tag{5}$$

Key words and phrases. k-analogue, Gamma Function, Inequality.

Submitted Dec. 23, 2013.

²⁰¹⁰ Mathematics Subject Classification. 33B15, 26A48.

In an effort to generalize some ealier results, A. S. Shabani [3] established the following.

$$\frac{\Gamma(a+b)^r}{\Gamma(\alpha+\beta)^q} \le \frac{\Gamma(a+bt)^r}{\Gamma(\alpha+\beta t)^q} \le \frac{\Gamma(a)^r}{\Gamma(\alpha)^q}, \qquad t \in [0,1]$$
(6)

where $a, b, r, \alpha, \beta, q$ are positive real numbers such that a + bt > 0, $\alpha + \beta t > 0$, $a + bt \le \alpha + \beta t$, $0 < br \le \beta q$ and $\psi(a + bt) > 0$ or $\psi(\alpha + \beta t) > 0$.

Also, by using the Dirichlet's integral, N. V. Vinh and N. P. N. Ngoc [4] proved the following results.

$$\frac{\prod_{i=1}^{n} \Gamma(1+a_i)}{\Gamma(b+\sum_{i=1}^{n} a_i)} \le \frac{\prod_{i=1}^{n} \Gamma(1+a_i t)}{\Gamma(b+\sum_{i=1}^{n} a_i t)} \le \frac{1}{\Gamma(b)}$$
(7)

where $t \in [0, 1], b \ge 1, a_i > 0, n \in \aleph$

Our aim in this paper is to establish and prove the k-analogues of inequalities (6) and (7) presented in [3] and [4] respectively. Further, we present some new results involving the k-digamma function.

2. Preliminaries

Here, we give some Lemmas that will be used to aid the proofs of our main results.

Lemma 2.1. The function $\psi_k(t)$ as defined by inequality (4) has the following series representation.

$$\psi_k(t) = \frac{\ln k - \gamma}{k} - \frac{1}{t} + \sum_{n=1}^{\infty} \left(\frac{1}{nk} - \frac{1}{t + nk} \right)$$
 (8)

where γ is the Euler-Mascheroni's constant.

Proof. In [1] and [2], we have the following representation of $\Gamma_k(t)$

$$\frac{1}{\Gamma_k(t)} = tk^{-\frac{t}{k}} e^{\frac{t}{k}\gamma} \prod_{n=1}^{\infty} \left[\left(1 + \frac{t}{nk} \right) e^{-\frac{t}{nk}} \right]$$
 (9)

Taking the logarithmic derivative of (9) gives

$$-\ln \Gamma_k(t) = \ln t - \frac{t}{k} \ln k + \frac{t}{k} \gamma + \sum_{n=1}^{\infty} \left[\ln \left(1 + \frac{t}{nk} \right) - \frac{t}{nk} \right]$$
$$-\frac{d}{dt} \ln(\Gamma_k(t)) = \frac{1}{t} - \frac{\ln k}{k} + \frac{\gamma}{k} + \sum_{n=1}^{\infty} \left(\frac{1}{t+nk} - \frac{1}{nk} \right)$$
$$\psi_k(t) = \frac{\ln k - \gamma}{k} - \frac{1}{t} + \sum_{n=1}^{\infty} \frac{t}{nk(nk+t)}.$$

Lemma 2.2. Let s > 0, t > 0 with $s \le t$, then

$$\psi_k(s) \le \psi_k(t). \tag{10}$$

Proof. From (8), we have the following.

$$\psi_k(s) - \psi_k(t) = \frac{1}{t} - \frac{1}{s} + \sum_{n=1}^{\infty} \left(\frac{1}{nk} - \frac{1}{s+nk} \right) - \sum_{n=1}^{\infty} \left(\frac{1}{nk} - \frac{1}{t+nk} \right)$$

$$= \frac{s-t}{st} + \sum_{n=1}^{\infty} \left(\frac{1}{t+nk} - \frac{1}{s+nk} \right)$$

$$= \frac{s-t}{st} + \sum_{n=1}^{\infty} \frac{(s-t)}{(s+nk)(t+nk)} \le 0$$

Hence the proof.

By differentiating (8), we have the following representation.

$$\psi_k'(t) = \sum_{n=0}^{\infty} \frac{1}{(nk+t)^2}, \quad k > 0, \quad t > 0.$$
 (11)

Lemma 2.3. Let s > 0, t > 0 with $s \le t$, then

$$\psi_k'(s) \ge \psi_k'(t). \tag{12}$$

Proof. From (11) we have,

$$\begin{split} \psi_k'(s) - \psi_k'(t) &= \sum_{n=0}^{\infty} \frac{1}{(nk+s)^2} - \sum_{n=0}^{\infty} \frac{1}{(nk+t)^2} \\ &= \sum_{n=0}^{\infty} \left[\frac{1}{(nk+s)^2} - \frac{1}{(nk+t)^2} \right] \\ &= \sum_{n=0}^{\infty} \frac{2nk(t-s) + (t^2 - s^2)}{(nk+s)^2(nk+t)^2} \ge 0. \end{split}$$

ending the proof.

Lemma 2.4. Let a, b, α, β be real numbers such that a + bt > 0, $\alpha + \beta t > 0$. Then $a + bt \le \alpha + \beta t$ implies $\psi_k(a + bt) \le \psi_k(\alpha + \beta t)$.

Proof. A direct consequence of Lemma 2.2.

3. Results and Discussion

Now we state and prove the results of the paper. We begin with a Lemma.

Lemma 3.1. Let $a, b, \alpha, \beta, r, q$, be real numbers such that a + bt > 0, $\alpha + \beta t > 0$, $a + bt \le \alpha + \beta t$ and $q\beta \ge rb$. If $\psi_k(a + bt) > 0$ or $\psi_k(\alpha + \beta t) > 0$, then

$$rb\psi_k(a+bt) - q\beta\psi_k(\alpha+\beta t) \le 0.$$

Proof. Let $\psi_k(a+bt) > 0$, $\psi_k(\alpha+\beta t) > 0$. Multiplying both sides of $q\beta \ge rb$ by $\psi_k(\alpha+\beta t)$ yields

$$q\beta\psi_k(\alpha+\beta t) \ge rb\psi_k(\alpha+\beta t) \ge rb\psi_k(a+bt)$$
 (By Lemma 2.4).

Thus

$$rb\psi_k(a+bt) - q\beta\psi_k(\alpha+\beta t) \le 0.$$

Lemma 3.2. Let $t \in [0, \infty)$, $a_i > 0$, $b \ge 1$, $n \in \mathbb{N}$ then, $1 + a_i t \le \beta + \sum_{i=1}^n a_i t$ implies $\psi_k(1 + a_i t) \le \psi_k(\beta + \sum_{i=1}^n a_i t)$.

Proof. A direct consequence of Lemma 2.2.

Theorem 3.3. Define a function Ω by

$$\Omega(t) = \frac{\Gamma_k(a+bt)^r}{\Gamma_k(\alpha+\beta t)^q}, \quad t \in [0,\infty)$$
(13)

where $a, b, r, \alpha, \beta, q$ are positive real numbers such that a + bt > 0, $\alpha + \beta t > 0$, $a + bt \le \alpha + \beta t$, $0 < br \le \beta q$ and $\psi_k(a + bt) > 0$ or $\psi_k(\alpha + \beta t) > 0$ then Ω is decreasing and for every $t \in [0, 1]$, the following inequalities hold.

$$\frac{\Gamma_k(a+b)^r}{\Gamma_k(\alpha+\beta)^q} \le \frac{\Gamma_k(a+bt)^r}{\Gamma_k(\alpha+\beta t)^q} \le \frac{\Gamma_k(a)^r}{\Gamma_k(\alpha)^q}.$$
 (14)

Proof. Let $u(t) = \ln \Omega(t)$ for every $t \in [0, \infty)$. Then,

$$u(t) = \ln \frac{\Gamma_k(a+bt)^r}{\Gamma_k(\alpha+\beta t)^q}$$

= $r \ln \Gamma_k(a+bt) - q \ln \Gamma_k(\alpha+\beta t)$

Then,

$$u'(t) = br \frac{\Gamma'_k(a+bt)}{\Gamma_k(a+bt)} - \beta q \frac{\Gamma'_k(\alpha+\beta t)}{\Gamma_k(\alpha+\beta t)}$$
$$= br \psi_k(a+bt) - \beta q \psi_k(\alpha+\beta t) \le 0. \quad \text{(by Lemma 3.1)}.$$

That implies u is decreasing on $t \in [0, \infty)$. Hence, Ω is decreasing for every $t \in [0, \infty)$. Then for every $t \in [0, 1]$ we have,

$$\Omega(1) \le \Omega(t) \le \Omega(0)$$
 yielding,

$$\frac{\Gamma_k(a+b)^r}{\Gamma_k(\alpha+\beta)^q} \le \frac{\Gamma_k(a+bt)^r}{\Gamma_k(\alpha+\beta t)^q} \le \frac{\Gamma_k(a)^r}{\Gamma_k(\alpha)^q}.$$

Corollary 3.4. If $t \in (1, \infty)$, then the following inequality holds.

$$\frac{\Gamma_k(a+bt)^r}{\Gamma_k(\alpha+\beta t)^q} \le \frac{\Gamma_k(a+b)^r}{\Gamma_k(\alpha+\beta)^q}.$$

Proof. If $t \in (1, \infty)$, then we have $\Omega(t) \leq \Omega(1)$ yielding the result.

Theorem 3.5. Define a function Φ by

$$\Phi(t) = \frac{\prod_{i=1}^{n} \Gamma_k(1 + a_i t)}{\Gamma_k(b + \sum_{i=1}^{n} a_i t)}, \quad t \in [0, \infty)$$

$$\tag{15}$$

where $b \ge 1$, $a_i > 0$, $n \in \aleph$. Then Φ is decreasing and for every $t \in [0,1]$, the following inequalities hold.

$$\frac{\prod_{i=1}^{n} \Gamma_k(1+a_i)}{\Gamma_k(b+\sum_{i=1}^{n} a_i)} \le \frac{\prod_{i=1}^{n} \Gamma_k(1+a_i t)}{\Gamma_k(b+\sum_{i=1}^{n} a_i t)} \le \frac{1}{\Gamma_k(b)}.$$
 (16)

Proof. Let $v(t) = \ln \Phi(t)$ for every $t \in [0, \infty)$. Then,

$$v(t) = \ln \frac{\prod_{i=1}^{n} \Gamma_k (1 + a_i t)}{\Gamma_k (b + \sum_{i=1}^{n} a_i t)}$$

= $\ln \prod_{i=1}^{n} \Gamma_k (1 + a_i t) - \ln \Gamma_k (b + \sum_{i=1}^{n} a_i t)$

Then,

$$v'(t) = \sum_{i=1}^{n} \left(a_i \frac{\Gamma_k'(1 + a_i t)}{\Gamma_k(1 + a_i t)} \right) - \left(\sum_{i=1}^{n} a_i \right) \frac{\Gamma_k'(b + \sum_{i=1}^{n} a_i t)}{\Gamma_k(b + \sum_{i=1}^{n} a_i t)}$$

$$= \sum_{i=1}^{n} \left(a_i \psi_k(1 + a_i t) \right) - \left(\sum_{i=1}^{n} a_i \right) \psi_k(b + \sum_{i=1}^{n} a_i t)$$

$$= \sum_{i=1}^{n} a_i \left[\psi_k(1 + a_i t) - \psi_k(b + \sum_{i=1}^{n} a_i t) \right] \le 0. \quad \text{(by Lemma 3.2)}.$$

That implies v is decreasing on $t \in [0, \infty)$. Hence, Φ is decreasing for every $t \in [0, \infty)$. Then for every $t \in [0, 1]$ we have,

$$\Phi(1) < \Phi(t) < \Phi(0)$$
 yielding.

$$\frac{\prod_{i=1}^{n} \Gamma_{k}(1+a_{i})}{\Gamma_{k}(b+\sum_{i=1}^{n} a_{i})} \leq \frac{\prod_{i=1}^{n} \Gamma_{k}(1+a_{i}t)}{\Gamma_{k}(b+\sum_{i=1}^{n} a_{i}t)} \leq \frac{1}{\Gamma_{k}(b)}.$$

Corollary 3.6. If $t \in (1, \infty)$, then the following inequality holds.

$$\frac{\prod_{i=1}^{n} \Gamma_{k}(1+a_{i}t)}{\Gamma_{k}(b+\sum_{i=1}^{n} a_{i}t)} \le \frac{\prod_{i=1}^{n} \Gamma_{k}(1+a_{i})}{\Gamma_{k}(b+\sum_{i=1}^{n} a_{i})}$$

Proof. If $t \in (1, \infty)$, then we have $\Phi(t) \leq \Phi(1)$ giving the result.

Theorem 3.7. Define a function H(t) by

$$H(t) = \frac{[\psi_k(a+bt)]^{\alpha}}{[\psi_k(c+dt)]^{\beta}}, \quad t \in [0,\infty), k > 0$$
(17)

where a, b, c, d, α , β are positive real numbers such that $a \leq c$, $b \leq d$, $\beta d \leq \alpha b$, $0 < a + bt \leq c + dt$, $\psi_k(a + bt) > 0$ and $\psi_k(c + dt) > 0$. Then H(t) is increasing on $t \in [0, \infty)$ and the inequalities

$$\frac{\left[\psi_k(a)\right]^{\alpha}}{\left[\psi_k(c)\right]^{\beta}} \le \frac{\left[\psi_k(a+bt)\right]^{\alpha}}{\left[\psi_k(c+dt)\right]^{\beta}} \le \frac{\left[\psi_k(a+b)\right]^{\alpha}}{\left[\psi_k(c+d)\right]^{\beta}} \tag{18}$$

holds for every $t \in [0,1]$.

Proof. Let $w(t) = \ln H(t)$ for every $t \in [0, \infty)$. Then,

$$w(t) = \ln \frac{\left[\psi_k(a+bt)\right]^{\alpha}}{\left[\psi_k(c+dt)\right]^{\beta}} = \alpha \ln \psi_k(a+bt) - \beta \ln \psi_k(c+dt)$$

and

$$w'(t) = \alpha b \frac{\psi_k'(a+bt)}{\psi_k(a+bt)} - \beta d \frac{\psi_k'(c+dt)}{\psi_k(c+dt)}$$
$$= \frac{\alpha b \psi_k'(a+bt)\psi_k(c+dt) - \beta d \psi_k'(c+dt)\psi_k(a+bt)}{\psi_k(a+bt)\psi_k(c+dt)}.$$

Since $0 < a + bt \le c + dt$, then by Lemmas (2.2) and (2.3) we have, $\psi_k(a+bt) \le \psi_k(c+dt)$ and $\psi_k'(a+bt) \ge \psi_k'(c+dt)$. Then that implies; $\psi_k(c+dt)\psi_k'(a+bt) \ge \psi_k(c+dt)\psi_k'(c+dt) \ge \psi_k(a+bt)\psi_k'(c+dt)$. Further, $\alpha b \ge \beta d$ implies;

 $\alpha b \psi_k(c+dt) \psi_k'(a+bt) \geq \alpha b \psi_k(a+bt) \psi_k'(c+dt) \geq \beta d \psi_k(a+bt) \psi_k'(c+dt)$. Hence, $\alpha b \psi_k(c+dt) \psi_k'(a+bt) - \beta d \psi_k(a+bt) \psi_k'(c+dt) \geq 0$. Therefore $w'(t) \geq 0$. That implies w(t) and H(t) are increasing on $t \in [0,\infty)$. Thus, for every $t \in [0,1]$ we have.

$$H(0) \le H(t) \le H(1)$$

yielding the result.

Remark 3.8. If we let $a \ge c$, $b \ge d$, $\beta d \ge \alpha b$ and $a + bt \ge c + dt > 0$ in Theorem 3.7, then the function H(t) is decreasing and the inequality (18) is reversed.

4. Conclusion

We have proved that inequalities (6) and (7) also hold for the k-analogue of the gamma function as shown by inequalities (14) and (16). In addition, results involving the k-analogue of the digamma function, ψ_k are also proved and thus shown by inequalities (18).

References

- [1] R. Díaz and E. Pariguan, On hypergeometric functions and Pachhammer k-symbol, Divulgaciones Matemtícas 15 (2), 179-192, 2007.
- [2] F. Merovci, Power Product Inequalities for the Γ_k Function, Int. Journal of Math. Analysis 4 (21), 1007-1012, 2010.
- [3] A. Sh. Shabani, Generalization of some inequalities for the Gamma Function, Mathematical Communications 13, 271-275, 2008.
- [4] N. V. Vinh and N. P. N. Ngoc, An inequality for the Gamma Function, International Mathematical Forum, 4 (28), 1379-1382, 2009.

KWARA NANTOMAH

DEPARTMENT OF MATHEMATICS, UNIVERSITY FOR DEVELOPMENT STUDIES, NAVRONGO CAMPUS, P. O. BOX 24, NAVRONGO, UE/R, GHANA.

 $E ext{-}mail\ address: mykwarasoft@yahoo.com, knantomah@uds.edu.gh}$

Mohammed Muniru Iddrisu

DEPARTMENT OF MATHEMATICS, UNIVERSITY FOR DEVELOPMENT STUDIES, NAVRONGO CAMPUS, P. O. BOX 24, NAVRONGO, UE/R, GHANA.

E-mail address: mmuniru@uds.edu.gh