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Abstract

In this paper, we improve the results of Shabani [7] concerning some
inequalities for the Gamma function. Our approach makes use of the
logarithmic derivative of products of the Gamma function. We also
present some p-analogues.
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1 Introduction

We begin by recalling some definitions related to the Gamma function.

The classical Euler’s Gamma function, I'(¢) is defined as

I(t) = / e “a'dr, t > 0. (1)
0
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The logarithmic derivative of the Gamma function is defined as

() = 1.

o(t) = t>0. (2)

The p-analogue of the Gamma Function, I',(¢) is defined as

t t

plp P
Fp (t) =

tt+1)...(t+p) tI+1)...(1+15) peEN, t>0. (3)

(see also [3] and [4] )

The equivalent definition of ¢(¢) in terms of the p-analogue is given as
follows.

F/
bu(t) = T, 0) = 2 pEN. >0 (W
and
L 0, =T(0). lim 6,(0) = o(0) 6

Our aim in this paper is to establish and prove an extension of the generalized
result of A. S. Shabani:

['(a + b)° - I'(a+ bt)° - [(a)°

D(a+0) — T(a+p0t) — T'(a)l’
where a, b, c, a, 3, f are positive real numbers such that  a+0t > 0, a4+t > 0,
a+bt <a+pt 0<bc<ffand ¢(a+bt) >0 or ¢p(a+ [t) > 0.

The result (6) is a generalisation of some earlier results by Alsina and Tomas
[1], Bougoffa [2], Sandor [5] and Shabani [6].

€ [0,1] (6)

2 Preliminaries

We present the following auxiliary results.

Lemma 2.1. Let t > 0. Then ¢(t) has the following series representation

¢():_7+t_1§ 1+l<; (t+ k) (7)

where 7y is the Fuler-Mascheroni’s constant.
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Proof. See [8].
Lemma 2.2. Let s > 0, t > 0 with s <'t, then
o(s) < o(1). (8)

Proof. From (7), we have the following.

k=0
G s—1)
_;(k—l—s)(k—kt)

and the proof is complete.

Lemma 2.3. Let a,b,a, 3 be real numbers such that a + bt > 0, a + Gt > 0.
Then a + bt < a+ ft implies ¢p(a + bt) < ¢p(a + [t).

Proof. The proof follows directly from Lemma 2.2. (See also[6] and the refer-
ences therein.)

We also have the following lemma from the paper [7].

Lemma 2.4. Let a,b,a, 3,7, q, be real numbers such that
a+0t>0,,a+pt>0,a+bt <a+ Bt and gl > rb.

If (i) ¢(a+bt) >0 or

(1) ¢(a+ 5t) > 0,

then  rbp(a + bt) — qBp(a + Bt) < 0.

Proof. (i) If ¢(a+bt) > 0, then by Lemma 2.3, we have ¢(a+bt) < ¢(a+ [t).
Multiplying both sides of ¢3 > rb by ¢(a + (t) yields;

qBo(a+ pt) > rbd(a + (t) > rbp(a + bt) which implies;

rbo(a + bt) — qBo(a + pt) < 0.

(ii) From Lemma 2.3, we have ¢(a + bt) < ¢(a + (t).
If ¢(a+ Bt) > 0, then there are two possible values of ¢(a + bt). That is,
Case 1: ¢(a+bt) <0 or
Case 2: ¢(a + bt) > 0.
For Case 1, we have rbp(a + bt) < 0 and gfB¢p(a + [t) > 0.
Hence rbo(a + bt) — qB¢(a+ [t) < 0.
Case 2 is shown in (i).
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Lemma 2.5. The function ¢,(t) as defined in (4) has the following series
representation.

op(t) = In(p) — ——, peN, t>0. 9)
Proof. From inequality (3), we have

t t
InT',(t) =tlnp — (lnt+1n(1 +1t) +1In(1+ 5) +---+In(1+ —))

p
Thus
oplt) = Gl (O) =tup— (G g e i)
=lnp— - %
k=0
See also [4].

Lemma 2.6. Let s > 0, t > 0 with s <t, then

Pp(s) < dp(1). (10)
Proof. From (9), we have the following.

and that ends the proof.

The following Lemmas (See [4]) are the p-analogues of Lemmas 2.3 and 2.4
with similar proofs.

Lemma 2.7. Let a,b,a, 3 be real numbers such that a + bt > 0, a + Gt > 0.
Then a + bt < a+ [t implies ¢p(a + bt) < ¢,(a + 5t).

Lemma 2.8. Let a,b,a, 3,7, q, be real numbers such that
a+bt>0,a+Ft>0,a+bt <a+ [t and qf > rb.

If (i) ¢p(a +bt) >0 or

(id) Gylax+ ) > 0,

then — rbo,(a+ bt) — qBe,(a+ 5t) < 0.
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3 Main Results

We state and prove the results of this paper here.
Theorem 3.1. Define a function A by
_ I Dlas + bit)™

[T Dlaq + Bit)”

where a;, b;, a;, G5, 15, qi, 1 = 1,2, ...,n are real numbers such that a; + b;it > 0,
a; + Bit > 0, a; + bt < «a; + Bit and ¢;3; > ribi. If ¢(a; + bit) > 0 or

A(t)

t € 0,00) (11)

d(a; + Bit) > 0 then A is decreasing and for every t € [0,1], the following
inequality holds.

[l Dlai+ 0" _ Ty Tlas +bit)™ _ TTz, Tla)”
H?:1 F(ai + ﬂi)qi N H?:1 F(ai + @.t)qi N H?:1 F(O‘i)%
Proof. Let g(t) = InA(t) for every t € [0,00). Then,
( H?:l ['(a; + bit)" )
H?:l F(ai + @‘t)qi

=In <ﬁ [(a; + bﬁ)”) —In (ﬁ I'(a; + ﬁ,t)‘“)

i=1 =1

(12)

g(t) =1

=

= ribid(a; + bit) = > aiBid(a + Bit)
=1 1=1

= Z [ribip(a; + bit) — q¢;Bip(ci; + Bit)] < 0. (by Lemma 2.4).
=1

That implies g is decreasing on t € [0, 00). Hence, A is decreasing for every
t € [0,00). Then for every t € [0, 1] we have,

A1) < A(t) < A(0) yielding,

H?:1 ['(a; + bi)” < H?:l P(ai + bz‘t)” < H?:l F(ai)” '
[Timi Tlai + B~ [IiZ, Dlas + Bit)s — [[im, Dw)%
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Corollary 3.2. Ift € (1,00), then the following inequality holds.

H?:l F(CLZ + bzt)n < H?:l F(CLZ + bz)ﬁ
H?:l F(OZZ + ﬁit)q”‘ o H?:l F(OZZ + ﬁz)ql
Proof. 1f t € (1,00), then we have A(t) < A(1) yielding the result.

In the following, we present the p-analogues of Theorem 3.1 and Corollory
3.2.

Theorem 3.3. Define a function 2 by
_ T Tolas + bit)™
T, Dolas + Bit)e”
where a;, b;, oy, i, 15, qi, 1 = 1,2, ...,n are real numbers such that a; + b;it > 0,

o + ﬁlt > 0, a; + bt < o; + ﬁlt and qzﬁz > r;b;. [f ¢p(ai -+ blt) > 0 or

op(a; + Bit) > 0 then Q is decreasing and for every t € [0,1], the following
inequality holds.

Q)

te0,00), peN (13)

[T, Dplas + b)" < [T, Dplai + bit)" < [T Dpla) (14)
[Tic Tplas + 8% = T2 Dplew + Bit)% — Tz, Tpla)
Proof. Let h(t) = InQ(t) for every t € [0,00). Then by a similar argument as
in in the proof of Theorem 3.1 we arrive at,

n

h'(t) = Z [1ibidp(ai + bit) — ifBipp(a; + Fit)] < 0. (by Lemma 2.8).

i=1
That implies h is decreasing on t € [0, 00). Hence, 2 is decreasing for every
t € [0,00). Then for every t € [0, 1] we have,
Q1) < Q(t) < Q(0) yielding,

H?:l Pp(ai + bi)n < H?:l Pp(ai + bit)ri < H?:l Pp(ai)n '
H?:l Fp(ai + 51‘)(“ N H?:l Fp(ai + @'t)qi N H?:l Fp(ai)%
Corollary 3.4. Ift € (1,00), then the following inequality holds.

[ Tplai + bit)™ < [T Tplas + bi)"
H?:l Fp(o‘i + Git)a H?:l Fp(ai + ;)4 7
Proof. 1f t € (1,00), then we have Q(t) < Q(1) giving the result.

pERN
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4 Concluding Remarks

We dedicate this section to some remarks concerning inequalities (12) and
(14).
Remark 4.1. In inequality (12), put ¢ = 1, a; = by = a4 = ¢¢ = 1 and
(1 = r1 = n, then we obtain

1 a4+

LT+ e, nex

n! = I'(1 4+ nt)
as in [1].

Remark 4.2. In inequality (12),puti=1 a1 =a; =¢ =1 and 3, =r; = q,
then we obtain

1 (14 t)°
< <1, tel01], a>1
T1+a) ~T(1+at) — 0.1], a

as in [5]
Remark 4.3. In inequality (12), puti =1, a1 =a, oy = o, 01 = 0, ¢1 = ¢
and r; = r, then
[(a)" - C(a+ bt)" - T(a+b)"
L(a)? = D+ pt)? — (o + )7

te0,1]

where a > b > 0, r,q are positive real numbers such that b > ¢8 > 0 and
o(a+ 5t) > 0.

Remark 4.4. Using (5) together with Theorem 3.3 and Corollary 3.4, the
entire results of Theorem 3.1 and Corollary 3.2 are respectively recovered.
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