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ABSTRACT 

The Topp-Leone Zubair family of distribution was developed in this study to model 

life time data. This family of distributions is an improvement of the Topp-Leone and 

the Zubair families which lacked scale parameter and shape parameters respectively. 

The statistical properties of the generator were obtained , thus; mixture representation, 

moments, moment generating function, incomplete moments, inequality measures, 

mean deviation, median deviation, mean residual life, stochastic ordering, Stress-

strength, order statistics and the r
th

 non-central moment.  The method of estimations 

for the parameters of the generator was Maximum Likelihood estimation. Five new 

distributions have been developed from the family. These are: Topp-Leone Zubair 

Nadarajah Haghighi, Topp-Leone Zubair Lomax, Topp-Leone Zubair Weibull, Topp-

Leone Zubair Kumaraswamy and Topp-Leone Zubair Inverse Weibull. Further, the 

Topp-Leone Zubair Lomax regression model was developed and applied to censored 

data with independent factors. The simulation results showed that the average bias and 

the root mean square error of the estimators decrease as the sample size increases. 

Thus, the estimators passed the consistency test. The new models were also subjected 

to real life data and they were better than their competing models as per Kolmogorov-

Smirnov test, Bayesian Information criteria, Cramér-Von Mises, Akaike Information 

Criteria and that of Corrected Akaike Information Criteria. Histogram plots 

demonstrated a better fit of the new models on the respective data applied.It is 

recommended that the Topp-Leone Zubair family should be used to enhance the 

modeling performances of existing distributions that lack either shape or scale 

parameters.  
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CHAPTER ONE 

INTRODUCTION 

            1.0 Background of Study 

Many fields in practice apply several computational techniques in their operational 

activities. These fields are, for example; public health, medicine, management, 

biological and engineering. In their daily activities they use lifetime data to model 

stress, machine failure, aerodynamic events and many more. In these applications, 

statistical methods are well used. The most dominating one is the use of statistical 

distributions, especially where lifetime data is the sourced information. In real life 

situations, statistical distributions are used in many parametric analyses. They form the 

basis of many parametric models. Practically, technical problems are addressed using 

these models. In going forward, these applications have motivated researchers to 

develop several prospective distribution techniques to solve different dimensions of 

practical real life problems. In these developments, however, the ability of the 

distributions to exhibit better modeling properties become also of a great concern. This 

is because, flexible distribution models ensure better conclusions and decisions to be 

made on specific problem cases (Nasiru et al., 2018).  

Users of these statistical techniques prefer working with most current, flexible and 

generalized forms of distributions. For this, they see as more convenient and reliable. 

Interestingly, generalizations of statistical distribution techniques have taken 

researchers to different dimensions.  A critical review (Cordeiro et al., 2013; Vatto et 
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al., 2016)   reveals some generalized methods which have been used to generate 

distribution that have desirable properties. Generalization can be traced back before 

1980 where new distributions were developed from quantiles, transformation functions 

and differential equations (Freimer et al., 1988; Lee et al., 2013). Improvements in these 

techniques have created a paradigm shift in generating new distributions. These new 

distributions permit for additional parameters. Recently, some new distributions have 

been developed   from generators and have demonstrated improvements in goodness of 

fit and tail properties (Vatto et al., 2016; Zohdy et al., 2017, Nasiru et al., 2018). 

Furthermore, the Topp-Leone distribution (TL) proposed by Topp and Leone (1955) has 

been very attractive as a generator due to its desirable properties, and this has been 

applied in many fields. The distribution did not get much attention initially though, this 

was because; the important statistical properties were not studied by the initial authors. 

By means of improvement, some of the properties like the moment function, central 

moments and the characteristic function were developed by Nadarajah and Kotz (2003). 

Further to that, a number of researchers became motivated to do further studies on the 

TL. Ghitany et al. (2005) provided the reliability measures. Kurtosis were studied and 

reported by Kotz et al. (2007), a two-sided generalized TL distribution by Vicaria et al. 
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(2008), goodness-of-fit by Al-Zahrani (2012). The various studies presented TL 

distribution more appropriate for lifetime data analysis. 

More recently, Sangsanit and Bodhisuwan (2016) studied the TL distribution and came 

up with a generator known as Topp-Leone G family of distributions. They proposed that 

if  X  is being a TL-G random variable with parameter  and dependency vector     , 

then the cumulative distribution function (CDF) of TL-G follow as; 

                          
1 1( ) [ ( ; )] [2 ( ; )] , 0, 0,TLF x G x G x x         ,

         

 (1.1)

               

 

where 1( ; )G x  is the density CDF. 

Despite some attempts in improving upon the TL distribution, the TL-G family of 

distributions still has some problems that need to be addressed to improve upon lifetime 

data modeling.  

1.1 Problem Statement 

The TL-G family, proposed by Sanganit and Bodhisuwan (2016) lacks a scale 

parameter. This means that any new distribution that would be generated from the TL-G 

may also lack a scale parameter, unless that distribution comes with its own scale 

parameter during the generating stage. The methodological issue arising from the 
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underlining problem is that; the family is inefficient in terms of variability control 

which scale parameters give.  

To overcome this drawback, there was the need to introduce an additional scale 

parameter into the TL-G family. In this case, we have combined the TL-G and Zubair-G 

families into a single family called Topp-Leone Zubair generated (TLZ-G) family of 

distributions. This addresses the problem of lack of scale and shape parameters in the 

TL-G and Zubair-G families respectively. The TLZ-G family of distributions therefore 

has the ability to introduce both scale and shape parameters to an existing statistical 

distribution to make it more flexible. 

1.2 General Objectives 

In a broader perspective the study develops, assesses the statistical properties and 

illustrates the applications of Topp-Leone Zubair generated (TLZ-G) family of 

distributions. 

1.3   Specific Objectives 

i. To develop the TLZ-G family of distributions. 

ii. Derive the statistical properties of the TLZ-G family of distributions. 

iii. Develop estimators for the parameters of the family. 

iv. Investigates the behavior of the estimators through simulations. 

v. Illustrates the applications of some special distributions from the TLZ-G family. 
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1.4 Significance of Study 

The TLZ-G family has the capacity to generate many distributions with sound modeling 

properties than the TL and Zubair generators. In this case, offspring distributions can be 

used efficiently to model in the area of health, engineering, agriculture and 

aerodynamics. Thus, for example; modeling stress levels, cancer conditions, machine 

failure times, crop diseases and many more. The new distribution arising from the TLZ-

G can be used to develop new parametric regression models. 

1.5 Organisation of the study 

This study is grouped into six chapters. Chapter one presents the introduction of the 

study, where in that case, general areas of applications of some probability distributions, 

the TL-G family is presented. In the same chapter, the problem statement, general 

objectives, specific objectives and the significance of the study are also presented. 

In chapter two, literature of probability distributions and some generator families of 

distributions have been reviewed. The gaps in these literatures are well presented. This 

is where the problem of the lack of scale parameter and shape parameters are 

established.  

The chapter three is the methodology which presents the key properties of the Topp-

Leone and the Zubair generator family of distributions. In the same chapter, the 

maximum likelihood estimator, the Kaplan Meier estimator, goodness of fit test, 

Cramér-Von Mises Test, Komogorov-Smirnov test, Akaike information criterion, 

Bayesian information criterion and the total time on test transform are defined.  
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Chapter four presents the theoretical results of the TLZ-G. It also presents the statistical 

properties of the new generator and the six new distributions that are developed.  

Chapter five presents on the simulation studies and the empirical results. In this case the 

applications of the six new models are studied and conclusions on their flexibility to 

model life time are drawn.  

Chapter six presents the summary of the five objectives, conclusion and 

recommendations.   
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CHAPTER TWO 

LITERATURE REVIEW 

            2.1 Introduction 

This chapter presents review of literature on some probability distribution generators. In 

this case, especially, the generators which have been used over the years to modify 

existing distributions with the aim of making them flexible in modeling real life data are 

reviewed. Further to this review, the drawbacks of these generators, by virtue of 

possessing only scale parameters or shape parameters respectively controlling 

variability, skewness and kurtosis have been discussed. The chapter ends with the 

stating need for a generator to possess both scale parameter and shape parameter and 

hence the combination of TL and Zubair generators to form TLZ-G family.  

 2.2 The Kumaraswamy Generator Family of Distribution 

The Kumaraswamy generated family of distributions (Kumaraswamy , 1980) has 

received commendable attention from authors. Some distributions that have been 

developed from it are , Kumaraswamy Weibull(KwW), by Cordeiro et al. (2010), 

Kumaraswamy Gumbel (KwGu), by Cordeiro et al. (2011),  inverted Kumaraswamy by   

Al-Fattah et al. (2017) and Kumaraswamy odd Burr-G family by  Nasir et al. (2018). 

Despite the good contribution of this distribution to modifyng existing distributions, it 

does not have a scale parameter. It only has  two shape parameters. In an attempt to 

develop new distributions like  Kumaraswamy TL, and the  kumaraswamy exponetiated 

exponential, the new distributions based on the Kumaraswamy generated family  would 
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not yield much of flexibily in  terms of variabilty control, this is because the baseline 

distributions themselves have  only shape parameters without scale parameters.   

2.3 Marshall Olkin generated family 

Marshall and Olkin (1997) introduced the Marshall Olkin generated (MO-G) family for 

adding a parameter to distributions. This has given birth to the Kumaraswamy Marshall-

Olkin-G (KwMO-G) and beta Marshall-Olkin-G (BMO-G) by Alizadeh et al. (2015b), 

Marshall-Olkin generalized-G family by Yousof et al. (2018) and among others. The 

MO-G has a single scale parameter to enrich new distributions that do not have such 

parameter. The MO-G is not better in using for modifying distributions which have 

shape parameter deficiencies, more specifically if the objective is to improve upon 

kurtosis and skewness characteristics.  

2.4 Exponentiated Distribution Family 

The exponentiated distribution with a single shape parameter was developed by Gupta 

et al. (1998).  The shape parameter enables the distribution to control kurtosis and 

skewness. Unfortunately, this family does not have a scale parameter to control the 

variability which are mostly characterized with many of real life data. Consequently, 

new distributions that may be developed from this generator automatically inherit such 

limitation, except for those baseline distributions that come along with their own scale 

parameters. The exponentiated distribution family has been used to introduce 

exponentiated Kumaraswamy, exponentiated Lomax and many more (Lemonte, 2013). 

However, these families of distributions suffer the lack of scale parameters. Effectively, 

they are not flexible enough for the lack of variability control (Fernando et al. 2017).  
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2.5 The Beta-Generated Family 

The beta distribution served as a generator in the work of Eugene et al. (2002), to 

propose the beta-generated family of distributions. The family could be described as a 

generalization   of order statistics (Jones, 2004). Also were other proposed distributions, 

for example: beta-extended Weibull (Cordeiro et al., 2012); beta-Weibull (Famoye et 

al., 2005); beta-exponentiated Pareto (Zea et al., 2012);  beta-Gumbel (Nadarajah and 

Kotz, 2004); beta-generalized logistic (Morais et al., 2013); beta-normal (Eugene et al., 

2002); beta-exponential (Nadarajah and Kotz, 2005); beta-Fréchet (Nadarajah and 

Gupta, 2004); beta-Cauchy (Alshawarbeh et al., 2012). The Beta generated family has 

two shape parameters. The limitation here is that, the distribution lacks a scale 

parameter to enrich its family of distributions. Apart from the generator being able to 

control skewness and kurtosis, is has no control over variability that may exist in data of 

real life applications ( Nadarajah et al., 2014). 

2.6 Odd Log Logistics Family of Distribution 

The odd log logistics generated (OLL-G) family was introduced by Gleaton and Lynch 

(2006) to provide flexibility in modeling data having high skewness. Further to that, 

recently, several authors have modified existing distributions using the OLL-G. This 

can be seen in the work of Da Cruz et al. (2016), they came up with the log-odd log-

logistic Weibull regression model for survival analysis, Braga et al. (2017) also 

investigated the odd log-logistic Student t distribution, Cordeiro et al. (2017) also came 
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up with the generalized odd log-logistic family and most recently, Da Cruz et al. (2017) 

looked at the bivariate odd-log-logistic-Weibull regression model, They used the new 

regression to model oral health-related quality of life. Furthermore, the heteroscedastic 

odd log-logistic generalized gamma regression model for censored data was developed 

by Prataviera et al. (2018). The OLL-G has drawn a lot of attention from authors. 

Notwithstanding its diverse applications, the distribution has only a single shape 

parameter which takes control of skewness and kurtosis. It lacks a scale parameter. This 

implies that it may not be appropriate for baseline distributions that lack scale 

parameters to be modified by the OLL-G for the lack of variability control. 

2.7 Quadratic Rank Transmuted Map  

In the work of Shaw and Buckley (2009) they came up with the quadratic rank 

transmuted map (QRTM) family of distribution by using the rank transmuted map as a 

tool for constructing non-Gaussian family of distributions. The QRTM has one scale 

parameter to control variability. There is no shape parameter to control kurtosis and 

skewness which life time data exhibits. In effect, new distributions giving birth from 

this family may lack this key property, for example, the distribution derived from the 

QRTM known as cubic transmuted distribution in Kareema and Maysaa (2017) lacks a 

shape parameter. New distributions may lack shape parameter from this family, unless 

such baseline distributions have embedded shape properties in order to demonstrate 

more flexibility in modeling.  

www.udsspace.uds.edu.gh 

 

 

 

 



11 

 

2.8 Exponentiated Generalized Class of Distributions  

Cordeiro et al. (2013) introduced the Exponentiated Generalized (EG) Class of 

distributions. Out of this distribution, some distributions like the exponentiated 

generalized Weibull (EPGW) in Fernando et al. (2017), exponentiated generalized 

exponential (EGE) in Cordeiro et al. (2013) have been developed. The EG family 

distribution has two shape parameters. The parameters give greater flexibility by 

controlling tail weights and also enhancing the entropy at the center of its density 

function. However, the drawback in this generator is that it is not able to control 

variability in data applications due to the lack of a scale parameter. This means that, in 

an attempt to modifying existing distributions with the EG generator, if the baseline 

distributions do not have scale parameters then the modification will suffer variability 

control.  

2.9 The Logistics-X family 

The logistic-X is developed by Tahir et al. (2016). It has one shape parameter, 

exhibiting   left-skewed, symmetrical, reversed-J shaped and right-skewed, increasing, 

decreasing, upside-down bathtub, bathtub hazard rates shapes. The authors used the 

generator to develop several distributions, for example, the logistic-weibull(LW), 

logistics-Frechet (LF), logistics-Pareto (LP), logistic-uniform (LU) and logistic-Bur XII 

( LBXII). Despite the great applications of the logistic family, it has not been able to 

contribute in enriching baseline distributions with the control of variability.  
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2.10 Topp-Leone Generated Family 

The TL-G family, proposed by Sanganit and Bodhisuwan (2016) has given birth to 

many distributions, for example the TL generalized exponential (TLGE), TL Weibull 

Lomax (TLWLx) in Farrukh et al. (2019), TL Lomax (TLLx) in Sangsanit et al. (2016). 

The drawback of the TL-G is that it   has a shape parameter but with no scale parameter. 

This means that any new distribution that would be generated from the TL-G may also 

lack a scale parameter, unless that distribution comes with its own scale parameter 

during the generating stage. The issue arising from this limitation is that; the family is 

inefficient in terms of variability which scale parameters give.  

2.11 Alpha Power Transformation 

Mahdavi and Kundu (2017) came up with a new method for improving statistical 

distributions. The method has given birth to a lot of distributions, for example, the alpha 

power exponential Weibull, by Rahman and El-Bassiouny (2017), alpha power 

transformed Lindley by Dey et al. (2018), alpha power inverted exponential by Unal et 

al. (2018), alpha power inverse Weibull by Ramadan and Walaa (2018), alpha power 

transformed Frechet by Nasiru et al. (2019), alpha power transformed inverse Lindley 

by Dey et al. (2019) and alpha power transformed power Lindley by Hassan et al. 

(2019). The drawback in the alpha power transformation is the lack of shape parameter 

making it unable to exhibit power over the skewness and kurtosis in data modeling. 
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Notwithstanding this deficiency, the baseline distributions that have shape parameters 

will complement it. 

2.12 Zubair Generated Family of Distributions 

The Zubair-G family of distributions was developed by Zubair (2018). Distributions 

such as the Weibull, exponential, Kumaraswamy , Lomax, inverse Weibul have been 

modified by this generator. These modifications take forms such as Zubair 

Kumaraswamy (ZKw),  Zubair Lomax (ZLx), Zubair Inverse Weibull (ZIW) and 

Zubair Weibull (ZW). The generator has scale parameter but lacks a shape parameter. In 

effect, because the Zubair family has no shape parameter, combing with any distribution 

which also has no shape parameter is not appropriate. The Zubair generator has not 

received much attention in literature, so it has been well   consideration in this study for 

improvement.  

2.13 Summary of Literature Review 

In the literature reviewed, it shows that some generators that have scale parameters do 

not have shape parameters, and those that have shape parameters do not have scale 

parameters. The lack of shape parameters limit the generator in controlling kurtosis and 

skewness and the lack of scale parameter limits the generator in controlling variability. 

More importantly, if baseline distributions have no scale or shape parameters they may 

not inherit from the generator, because the generator itself does not have. In this case, it 

is imperative to develop a generator that has both shape and scale parameters to control 

variability, kurtosis and skewness, so that the baselines that do not have such properties 

may inherit it from the parent. In doing this, the study combined most current 
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generators, thus, TL-G generated family which has a shape parameter,   to Zubair 

generated family which has a scale parameter in order to form TLZ-G family of 

distributions.  In this case, the common distribution would have both scale and shape 

parameters to allow for more flexibility in data modeling. 
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CHAPTER THREE 

METHODOLOGY 

3.0 Introduction 

This chapter explains the various methods which were used to achieve the study 

objectives. The key concepts discussed here are the Zubair-G family, Topp-Leone-G 

family, the maximum likelihood estimation methods, model selection criteria, goodness 

of fit test, Cox-Snell residual, total time on test transform   and source of data.  

3.1 Zubair-G Family 

Supposing X  is a random variable of the Zubair-G family (Zubair, 2018), then the 

CDF, Probability Density Function (PDF), hazard   and the quantile functions are given 

respectively as: 

                      

2( ; )

1

1
( ) , , 0,

1

G xe
G x x

e

 


 


  


,             (3.1) 

       

2( : )

1

2 ( ; ) ( ; )
( ) , , 0,

1

G xg x G x e
f x x

e

 



  
   

  
, 
                     

(3.2) 

       

2

2

( ; )

1 ( ; )

2 ( ; ) ( ; )
( ) , , 0,

G x

G x

g x G x e
h x x

e e

 

  

  
   


, 
                      

(3.3) 

and 

    

1

2
1

1 1

log(( ( 1)) 1)
( ) , , 0,

u e
Q u G x



 


   
   

 
,                       (3.4) 

www.udsspace.uds.edu.gh 

 

 

 

 



16 

 

where ( ; )G x   is the baseline CDF of the existing distribution,   is a scale parameter 

and   is a 1p  vector of parameters.  

3.2 Topp-Leone G Family 

Sanganit and Bodhisuwan (2016) proposed the TL-G family of distributions. In that 

case, supposing a random variable X follows TL-G distribution, then  the CDF, PDF, 

Hazard   and the Quantile functions are given respectively  as; 

                            

1 1
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where ( ; )G x   is the baseline CDF of the existing distribution,   is a shape parameter 

and   is a 1p  vector of parameters.  

 

The TL distribution has some good properties which encourages its use for generating 

other distributions. 
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3.3 Maximum Likelihood Estimation 

The maximum likelihood estimation (MLE) method has been used extensively over 

other methods like the maximum product estimation method, methods of moment 

estimation, graphical method, ordinary least squares estimates, Bayesian method and 

also the Kernel estimation methods to estimate parameters of  probability distributions. 

The method is centered on the likelihood function (Beno, 2018). Choosing a method for 

estimating parameters requires by practically selecting the one which produces the 

minimal error (Ahmed et al., 2010). MLE demonstrates well in minimizing error in 

parameter estimation. It has endowed properties such as consistency, asymptotic 

normality, asymptotic efficiency and invariance. Hence, the MLE was adopted to 

estimate the parameters of the TLZ-G families of distributions.  

Supposing we have n  size of independently and identically distributed random sample  

1 2, ,..., nX X X  with joint PDF 
1

( | ) ( ; )
n

i

i

g x g x 


  and a vector parameters

'

1 2( , ... )k    , k n , which characterizes the PDF. Then, the joint PDF follows as; 

                                     
1

( | ) ( ; )
n

i

i

g x g x 


 .                                           (3.9) 

If the random values of X are known, we determine the likelihood function to make 

way for estimating the parameters. In that case,   becomes the focus property in the 

conditioned function, where the PDF is now the likelihood functions and written as; 
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1

( | ) ( ; )
n

i

i

L x g x 


 .                                         (3.10) 

It is more convenient to apply logarithm to the likelihood function in order to make it 

friendlier to work with. The logarithm reduces the complexities of the functional 

powers. Here, we have log-likelihood function as; 

                                
1 1

1

( | , ,..., ) log ( ; )
n

n i

i

x x x g x 


  .                         (3.11) 

The log-likelihood function is monotonic in nature and implies that any maximization 

responsively maximizes the likelihood function and vice versa. Maximization of the 

likelihood function is realized when the estimates ̂  are values of . Taking the first 

partial derivative of the likelihood function in respective of  1 2, ,..., k    and setting it to 

zero, we obtain the score function as;  

                              1 2( | , ,..., )
0, 1,2,...,n

i

x x x
i k






 


                           (3.12) 

Producing the solution for the equation in respective of 1 2, ,..., k    gives the parameter 

estimates. 
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3.4 Goodness of Fit Test 

Supposing we decide to take random sample 1 2, ,..., nX X X  , where sample is believed to 

come from a specific distribution. In order to be sure of this, we conduct goodness-of-fit 

test to ascertain if indeed the random sample come from the specific distribution. Three 

popular tests have been considered in this case, these include: Cramér-Von Mises Test, 

and Kolmogorov-Smirnov Test (K-S) and Anderson Darling Test.   

3.4.1 Cramér-von Mises Test  

Cramér-von and Mises (1928) proposes the test to judge the goodness of fit of a 

theoretical CDF compared to an empirical CDF or for comparing two empirical CDFs. 

In other applications like transportation analysis, the Cramér-von and Mises theory 

supports algorithm for estimating minimum possible distance.  

Given *W as Cramér-von Mises test statistic: ( ; )iG x   as CDF with a known G  and 

unknown k -dimensional parameter vector   . The test for computing the test statistic 

*W  is as follows: 

1. Order the ix ’s in ascending form and estimate ˆ( ; )i iG x u 
.
  

2. Taking ( )   as the CDF of standard normal distribution and 1( )   as its quantile, 

estimate 1( )i iz u . 
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3. Compute 

2

2

1

(2 1) 1

2 12

n

i

i

i
W z

n n

 
   

 
 , hence, represent 2W   as 

* 2 0.5
1W W

n

 
  

 
 then obtain test statistic. 

We select the model with the smallest *W  as the best between when comparing two 

or more models. 

3.4.2 Kolmogorov-Smirnov Test 

In a specific distribution, we use Kolmogorov-Smirnov ( K S )  test to verify if some 

selected random sample 1 2, ,..., nX X X   coming from a population can be linked to a 

specific distribution. In this case, the K-S test measures the distance between the 

empirical sample distribution and that of the estimated CDF of the competing 

distributions.  The null hypothesis is stated as H0: The sample come from the specific 

distribution. The alternative hypothesis is H1: The sample does not come from the 

specific distribution.  If ( )iG x   is the value of the CDF of the competing distribution at 

ix   and ˆ ( )iG x  is the value of the empirical distribution at ix , then we write the K-S test 

statistic as; 

 1
ˆ ˆ| ( ) ( ) |,| ( ) ( ) | , 1,2,...,i i i iK S Max G x G x G x G x i n                         (3.13) 
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where #{} is the number of points less than or equal to ix , thus when ix  values are 

grouped from the smallest value to the highest. Further, given a significance level and a 

tabulated K-S value, we then can compare between standard values to the computed test 

static value. Here, if we have more than one distribution under study, we pick the 

distribution with the smallest K-S value as the best fit.  

            3.4.3 Anderson Darling Test  

The Anderson Darling ( *A )   test technique assigns weights to tails compared with 

K S  test.  It enable sensitive test to be carried out based on specific distributions. The  

*A  test is   given by: 

                                                     *A M    ,                                     (3.15) 

   where  

 
 

1

2 1
ln ( ) ln(1 ( 1 ))

M

i M

i

i
F F i

M


        , 

and F  is the CDF of the specified distribution. i ,   the ordered data sets. The *A  is 

the test statistic , ( )m i  is the number of points less than i . The test decision criteria  is 

that when the test statistic value is greater than the critical value provided from in the 

table, then the hypothesis is rejected (Stephens, 1974). 
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3.5 Model Selection Criteria 

In a distribution, if more parameters are added, they practically enhance the model 

fitness. It does not matter the primary importance of the addition. The most important 

thing is increase in likelihood of a model over the other. In comparing models, one main 

issue is whether the models are nested. Non nested models are best compared using 

information criteria frameworks than likelihood ratio test. This study makes use of the 

following information criteria: the Bayesian Information Criterion (BIC), Akaike 

Information Criterion (AIC) and Corrected Akaike Information Criterion (AICc). 

3.5.1 Akaike Information Criterion 

The AIC has been outstanding among several model selection tools. It was initiated by 

Akaike (1973) and improved by Akaike (1974)   respectively. The method is applied by 

assuming some optional models and using them as proper models for certain data. Test 

statistic is hereby given as;  

                                   ˆ2 ( ) 2AIC logL k    .                                        (3.16) 

In that case, k  defines the number of model estimated parameters. ˆ( )L    is the 

likelihood of the model. In determining the best model for dataset, the model with the 

smallest value of AIC is picked. 

As an added advantage, for models that have several parameters, the AIC has the 

capacity to penalize them. It is also good for selecting models of large sample. Despite 

the advantages, the criterion produces some biasness. Further, in overcoming this 
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problem, Sugiura (1978) introduced the AICc. In the work of Hurvich and Tsai (1989), 

they demonstrated the ability of the AICc to select models well with small samples and 

many parameters. The AICc test statistic with the sample size n  considered is given by; 

                                  
2 ( 1)

1

k k
AICc AIC

n k


 

 
.                                       (3.17) 

            3.5.2 Bayesian Information Criterion 

In literature, the BIC is also referred to as Schwarz Information Criterion (SIC). It was 

first used by Schwarz (1978). The assumption here is; data should be independent and 

identically distributed in order to permit for approximating the bayes factor in the data. 

The BIC test statistic is given by; 

                                    ˆ2 ( ) log( )BIC logL k n    .                            (3.18) 

The BIC has better functionality over the AIC. It is capable of penalizing models of 

small or large samples and also with several parameters. The model with the smallest 

BIC value is chosen, and this tells the model is better compared to others. It is more 

appropriate to use the BIC along with AIC to achieve better model selection. 

3.6 Cox-Snell Residual 

The Cox-Snell residual was proposed by Cox and Snell (1968). It has been used 

extensively in survival analysis, where censored data is more of concern.  The Cox-

Snell residual is defined as ˆlog( ( ))
ic iS t    , where ˆ( )iS t  is the estimated survival 

function and  it , 1,2,3...i n  represent the event times. The special Cox-Snell property 
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is that:  
ic follows standard exponential distribution when a model well fits a given 

data. The Cox-Snell is adopted in this study to assess the regression model developed.   

3.7 Total Time on Test Transform 

The shape of the hazard rate function of a given dataset is key in stochastic studies. It 

tells if a random sample comes from a known life distribution. Drawing conclusion on 

the shape was a challenge, until Barlow and Doksum (1972) came up with the total time 

on test (TTT)-transform method. The main idea of the method, though, was to solve 

problem of statistical inference in order restrictions. TTT-transform enables a graphical 

view of the bathtub shape of the hazard rate by researchers (Aarset, 1987; Barlow, 

1972). Given the distribution’s CDF as G  and survival function as ( ) 1 ( )S u G u   , 

then TTT-Transform is given by; 

1 ( )
1

0
( ) ( ) , [0,1] .

G P

H p S u du p


         (3.19) 

Hence the scaled TTT-transform is computed from; 

 
1

1

( )
( ) .

(1)

H p
G p

H





      (3.20) 

The curve of ( )G p against 0 1p   is the scaled TTT-transform curve. 

Barlow and Doksum (1972) demonstrated how the scaled TTT-transform curve is used 

to explain the behavior of the hazard rate function. They indicated that;  
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1. When the scaled TTT-transform curve appears concave above the 45
0
 line, then it 

indicates an increasing hazard rate function. 

2. When the scaled TTT-transform curve appears convex below the 45
0
 line, then it 

indicates a decreasing hazard rate function.  

3. When the scaled TTT-transform curve begins as convex below and then concaves 

above the 45
0
 line, it shows the hazard rate function as having a bathtub shape. 

4. When the scaled TTT-transform curve begins with concave above and convex  

below the 45
0
 line, it means that, hazard rate function depicts upside down bathtub 

or unimodal shape. 

With a specified ordered sample 1: 2: :, ,..., ,n n n nX X X  the TTT can be computed using  

: 1:

1

( 1)( ), 1,2...,
i

i j n j n

j

TTT n j x x i n



         (3.21) 

The empirical scaled TTT-transform is given by; 

 

* ,i
i

n

TTT
TTT

TTT
         (3.22) 

where 0 1.nTTT   The empirical scaled TTT-transform curve by plotting 
i

n
 against 

*

iTTT  . 
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3.8 Bowley’s Skewness and Moors Kurtosis 

The Bowley’s skewness (Keeping and Kenney, 1962) and the Moors Kurtosis (Moors, 

1987) use the quantile function Q  of the PDF to compute the numerical skewness and 

kurtosis. The Bowley’s skewness ( B ) and the Moors Kurtosis ( M ) used in this work 

are given respectively below:  

   

(3/4) 2 (1/2) (1/4)

(3/4) (1/4)
,

Q Q Q

Q Q
B

 




                                  (3.23)
 

and     
(7/8) (5/8) (3/8) (1/8)

(6/8) (2/8)
.

Q Q Q Q

Q Q
M

  




                        (3.24) 

3.9 Average Bias and Root Mean Square Error  

The average bias ( AB ) and the root mean square error ( RMSE ) in this work are used to 

measure the errors of the estimated parameter values in the simulation processes. Given 

  as the parameter estimate of   and sample size  k  . The AB  and  RMSE   measures 

are given respectively as: 
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1
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k

i i
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                                            (3.25)        

      and           

 
1 .

k

i i

iRMSE
k

 







                                                  (3.26) 

3.10 Data and Source 

This study used nine secondary data sets to show the applications of the special 

distributions developed. The data sets are  Failure times of device components, 

Maximum stress per 31,000psi, Survival times of guinea pigs, Breaking stress, 
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Windshield Service Times, Waiting Times of blowhole eruption, Milk Production , Cost 

of cybercrimes to GDP and Transformer Turn Data. 

The first data set represents failure times of device component.  The data constitutes 50 

random samples of device components which have failure times. The data set, as shown 

in Appendix B1 can be seen in Aarset (1987) and Hadeel,   (2019).  

The second data set is the maximum stress data,   in Appendix B2. The data   is seen in 

Birnbaum and Saunders (1969) and Sangsanit (2016). This consists of 101 observations 

with maximum stress per 31,000 psi.  

The third dataset in Appendix B3 is the survival times (in days) of 72 guinea pigs which 

were infected with virulent tubercle bacilli. The data was observed and reported in 

Bjerkedal (1960) and also   used by Farrukh et al. (2019). 

The fourth data set constitutes breaking stress of carbon fibres. It is found in Appendix 

B4. The data contains 100 observations on breaking stress of carbon fibers in 

Gigapascals (GPa). This was studied by Nichols and Padgett (2006). The data was also 

used by Amal et al.(2019). 

The fifth data set are service times of 63 aircraft windshield from Tahir et al. (2015). 

The data, shown in Appendix B5   was also used by Farrukh et al. (2019).    

The sixth data set is the Waiting times of consecutive Blowhole Eruptions Data. The 

data was discussed by Pinho et al. (2015). This is a sample of 64 waiting times per 

second within 65 successive eruptions, of a blowhole also called the Kiama Blowhole. 

This data is given in Appendix B6, and has also been used by Hadeel (2019).  
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The seventh data set is the milk production data. The data set was the total milk   

produced by 107 cows who for the first time gave birth at Carnaúba farms of 

Agropecuária Manoel Dantas Ltd (AMDA) in Paraíba (Brazil). The data is showed in 

Appendix B7.  The original data was transformed into bounds [0,1]  and used by De 

Brito et al. (2017) and   Haitham and Mustafa (2017).  

The eighth data set is the Cost of Cybercrimes to Gross Domestic Product data. The 

dataset was first reported by McAfee Incorporation (2014), and to the best of 

knowledge, this is the first time the ratio form of the dataset based on 23 randomly 

selected countries is used in such stochastic modeling. The dataset is shown in 

Appendix B8. 

The ninth data set is the transformer turn data   which can be found in the book of 

(Nelson and Wayne, 2004) and also used by Farrukh et al., (2019). The data in 

Appendix B9 presents the life of a transformer testing, done   under three levels of 

voltages: thus, 35.40Kv, 42.4kv and 46.7kv where (+) indicates censored data. In each 

of the levels, 10 samples were tested of which a total of 13% of the data set were 

censored. The variables of importance for this study are ix  =times of failure of the 

transformer in hours , i  =1,…30. With three voltage levels defined by associated 

dummy variables 35.4Kv: 1 2( 1, 0)i i   , 42.4Kv:( 1 2( 0, 1)i i    and 46.7Kv:(

1 2( 0, 0)i i   .  
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3.11 Summary of Methodology  

This chapter presented definitions of the Zubair-G family and the TL-G family. 

Methods of parameter estimations, for example the maximum likelihood are explained.  

Goodness of fit tests, thus, Cramér-Von Mises test and Kolmogorov-Smirnov test are 

presented. Model selection criteria like the AIC, AICc and the BIC are also defined.   
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CHAPTER FOUR 

THEORETICAL RESULTS 

            4.1 Introduction 

In this chapter, the first three objectives of the study are presented. These include; the 

derivation of TLZ-G family of distributions, statistical properties and methods of 

estimation. Five new distributions generated from the TLZ-G are also presented. These 

new distributions are, TLZ Weibull, TLZ Inverse Weibull, TLZ Lomax, TLZ   

Kumaraswamy and TLZ Nadarajah Haghighi. 

4.2 Topp-Leone Zubair Family 

The TLZ family was developed by substituting the CDF of Zubair 

( : )2 1

1( ) ( 1)( 1) , , 0,G xG x e e x          into the CDF of TL-G

2

1( ) [1 (1 ( : )) ] , 0, 0,TLF x G x x         . Hence, If a random variable X  

follows the TLZ-G distribution, then the CDF of TLZ-G is, 

                

 

            

2 2
( ; )

( ) 1 , 0, 0, ,
1

G xe e
F x x

e


  


 

  
          

                      (4.1) 

and ( ; )G x 

   

assigned as CDF of a baseline distribution. Hence, probability density 

function is also obtained by differentiating the CDF of TLZ-G. In that case, the PDF is, 

         .                 

2 2 2
1

2
( ; ) ( ; ) ( ; )

2

4 ( ; ) ( ; )( )( )
( ) 1 , 0, 0, .

( 1) 1

G x G x G xg x G x e e e e e
f x x

e e



       

 

  
 



   
                

(4.2)
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The hazard function ( )x measures the rate of failure occurring within a given period

( , )t t dt .  The hazard function for TLZ-G exists as, 

2

2 2

2

1
2

( ; )
( ; ) ( ; )

2
( ; )

2

4 ( ; ) ( ; )( )( ) 1
1

( ) , 0, 0, .

( 1) 1 1
1

G x
G x G x

G x

e e
g x G x e e e

e
x x

e e
e

e



  
    





  




  

  



  
          

                      

(4.3)

 

4.3 The Mixture Representation 

The mixture representation makes it easier to study the statistical properties of the 

distribution. This is derived based on the PDF of the TLZ-G family to simplify the 

computation processes of deriving the statistical properties. For instance, in this work, 

the moments, moment generating functions, incomplete moments, inequality measures, 

mean and median deviations mean residual life, stress reliability and the order statics 

are achieved in an easier way, by employing the mixture representation.  

Lemma  4.1. The mixture representation of the TLZ-G family is; 

            

2
2 1

0 0 0 0

( ) 4 ( ; ) ( ; ) ,
ji

m

ijkm

i j k m

f x w g x G x  
 



   

 
             

(4.4)

                      

where

 

      
2

( 1) (1 ) (2 ) 1 2
.

( 1) !

i j k m m m

ijkm j

e j k j k i j
w

i j ke m





 
 



               
                

 

Proof. Expanding the PDF using    binomial expansion
0

(1 ) ( 1) , 1i i

i

Z Z Z
i








 
    

 
 , we get, 
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2 2 2

2 2

2
2

( ; ) ( ; ) ( : )

2
0

2
( ; ) ( ; )

2
0 0

14 ( ; ) ( ; )( )( ) )
( ) ( 1) 1

( 1) 1

1 2( 1)
4 ( ; ) ( ; )( )( ) (

( 1)

i

G x G x G x
i

i

i ji
G x G x

j
i j

g x G x e e e e e
f x

ie e

i
g x G x e e e e

i je

       

 

     



  


  








 

    
             

  
    

   




2( ; ) 1) .G x j 

        

Hence, applying Taylor series expansion, 
0 !

m
Z

m

Z
e

m





 , the mixture representation 

becomes,

 

2
2 1

0 0 0 0

2

( ) 4 ( : ) ( : ) ,

( 1) (1 ) (2 ) 1 2
.

( 1) !

ji
m

ijkm

i j k m

i j k m m m

ijkm j

f x w g x G x

e j k j k i j
w

i j ke m





  

 

 


   

 





               
    



 

4.4 Statistical Properties 

This section presents the statistical properties of the TLZ-G family. The properties 

include; quantile function, moments, moment generating function, incomplete moments, 

inequality measures, Bonferroni curve, mean deviation, median deviation, mean 

residual life, stochastic ordering, stress-strength reliability, order statistics and the thr   

non-central moment of the thp   order statistic. 

4.4.1 The Quantile Function of TLZ-G Family 

The quantile function is relevant in the simulation of random numbers and also presents 

itself as alternative way of describing the shape of a distribution. 
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Proposition 4.1. The quantile function of   the TLZ-G family is of the form,  

                       

1
1 2

1 1
( ) log ( 1) 1 , [0,1] ,XQ u G e e u u  





 
        
                 

(4.5)

 

 

where 1(.)G

 is the quantile function of the baseline distribution .   

 

 Proof. By definition, the quantile function is given as 1( )ux F u , so by setting 

( )u Xx Q u and performing some manipulations, we obtain the Quantile function of 

the TLZ-G as, 

1
1 2

1 1
( ) log ( 1) 1 , [0,1] .XQ u G e e u u  





 
        
   

 

 4.4.2 Moments  

Moments become very important when finding the mean, variance, skewness and 

kurtosis of a given probability distribution.  

Proposition 4.2. The r
th 

 non-central moment of the TLZ-G family is given as; 

                  

2
' 2 1

0 0 0 0

4 ( ) ( ) , 1,2,... .
ji

r m

r ijkm

i j k m

w x g x G x dx r 
  




   

  
            

(4.6)

             

Proof. By definition, ' ( ) ( )r r

r E X x f x dx



    .  Substituting the mixture 

representation into the definition and simplifying gives; 
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2
1 2 1

0 0 0 0

2
2 1

0 0 0 0

4 ( ) ( )

4 ( ) ( ) , 1,2,... .

ji
r m

r ijkm

i j k m

ji
r m

ijkm

i j k m

x w g x G x

w x g x G x dx r

 



 



   

  



   



 



 

 

Alternatively the moment can be expressed in terms of the quantile functions of the 

baseline distribution.  

Let  ( ) , 0,1G x u u  , 1( ) ( )Gx G u Q u  , ( )
du

g x
dx

  and ( ) .du g x dx  By some 

substitutions and simplifications we get, 

                         

2 1
' 2 1

0
0 0 0 0

4 ( ) .
ji

r m

r ijkm G

i j k m

w Q u u du 
 



   

  
                    

(4.7)

                            

 

4.4.3 Moment Generating Function 

The moment generating function (MGF), serves a great purpose in analytical studies. It 

is used in computing moments of distributions. The MGF of TLZ-G family is given in 

proposition 4.3. 

Proposition 4.3. The moment generating function of the TLZ-G family is given as; 

                  

2
2 1

0 0 0 0 0

( ) 4 ( ) ( ) .
!

rji
r m

X ijkm

i j k m r

t
M t w x g x G x dx

r


   



    

       
(4.8)

                  

 

 

Proof: By definition ( ) ( ) ( )tX tx

XM t E e e f x dx



   .  Substituting the mixture 

representation and expanding with the Taylor series, 
!

0

rtx rt
r

x

e x




  , we get, 

2
2 1

0 0 0 0 0

2
2 1

0 0 0 0 0

( ) 4 ( ) ( )
!

4 ( ) ( ) .
!

r ji
r m

X ijkm

r i j k m

rji
r m

ijkm

i j k m r

t
M t x w g x G x

r

t
w x g x G x dx

r
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Alternatively, the moment generating function in terms of quantile function is; 

 

                

2 1
2 1

0
0 0 0 0 0

( ) 4 ( ) .
!

rji
r m

X ijkm G

i j k m r

t
M t w Q u u du

r


  


    

  
               

(4.9)

     

 

4.4.4 Incomplete Moments 

The incomplete moments (IM) serve as the basis for arriving at the inequality measures 

in distribution analyses. For instance the Lorenz (1905) and Bonferroni (1930) curve 

inequality measures.  The IM of   TLZ-G family is given in proposition 4.4. 

           Proposition 4.4. The  thr  incomplete moment of the TLZ-G is, 

                   

2
2 1

0 0 0 0

( ) 4 ( ) ( ) ,
ji t

r m

r ijkm

i j k m

t w x g x G x dx 
 




   

            (4.10) 

where 1, 2,3...r   .

 

Proof. Using the definition of incomplete moment of a random variable 

( ) ( )
t

r

r t x f x dx


   and the mixture representation, the incomplete moment of the 

TLZ-G distribution is,

 

2
2 1

0 0 0 0

( ) 4 ( ) ( ) .
ji t

r m

r ijkm

i j k m

t w x g x G x dx 
 




   

    

Alternatively, in terms the quantile function. Let ( ) ;G x u  ,x   ( ) 0;G x            

;x t  ( ) ( ) ;G x G t  ( ).Gx Q u
 
and ( ),du dxg x thus, 

                      

2 ( )
2 1

0
0 0 0 0

( ) 4 ( ) .
ji G t

r m

r ijkm G

i j k m

t w Q u u du 
 



   

  
          

(4.11) 
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4.4.5 Inequality Measures 

The Inequality measures are very useful in applications, for example in drug 

dispensaries, stress studies and income analysis. Several inequality measures have been 

developed with unique properties (Atkinson, 1970). The Lorenz (1905) and Bonferroni 

(1930) curve properties have been developed for TLZ-G family.   

  Proposition 4.5. The Lorenz curve ( )Lq x  is, 

                        

2
2 1

0 0 0 0

4
( ) ( ) ( ) .

ji t
m

ijkm

i j k m

Lq x w xg x G x dx




 



   

  
             

(4.12) 

 Proof. By definition,  

2
2 1

0 0 0 0

2
2 1

0 0 0 0

1
( ) ( )

1
( ) 4 ( ) ( )

4
( ) ( ) .

t

ji t
m

ijkm

i j k m

ji t
m

ijkm

i j k m

Lq x xf x dx

Lq x w xg x G x dx

w xg x G x dx












 



   

 



   



  
   
  





 

 

 

In terms of the quantile function we have; 

             

2 ( )
2 1

0
0 0 0 0 0

4
( ) ( ) .

ji G t
m

ijkm G

i j k m r

Lq x w Q u u du




  


    

               (4.13) 

 

Proposition 4.6. The Bonferroni curve ( )Bq x is, 

                 

2
2 1

0 0 0 0

4
( ) ( ) ( ) .

( )

ji t
m

ijkm

i j k m

Bq x w xg x G x dx
F x





 



   

  

    

(4.14) 
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Proof. By definition,  

2
2 1

0 0 0 0

( )

( )

1
( )

( )

4
( ) ( ) .

( )

t

ji t
m

ijkm

i j k m

Lq x
Bq

F x

xf x dx
F x

w xg x G x dx
F x









 



   









 

 

 

Alternatively, Bonferroni curve in terms of quantile is,  

 

                            

2 ( )
2 1

0
0 0 0 0

4
( ) ( ) .

( )

ji G t
m

ijkm G

i j k m

Bq x w Q u u du
F x





 


   

            (4.15) 

4.4.6 Mean and Median Deviations 

The mean and median deviation can measure the totality of variation that exists in a 

distribution.  

Proposition 4.7.  The mean deviation is, 

                      

2
2 1

1

0 0 0 0

2 ( ) 8 ( ) ( ) .
ji

m

ijkm

i j k m

F x w xg x G x dx


  
 




   

   

         

(4.16)

       

 

 

Proof. By definition,  

1

1

2
2 1

0 0 0 0

| | ( )

( ) ( ) ( ) ( )

2 ( ) 2 ( )

2 ( ) 8 ( ) ( ) .
ji

m

ijkm

i j k m

x f x dx

x f x dx x f x dx

F x xf x dx

F x w xg x G x dx
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Proposition 4.8. The median deviation is; 

                      

2
2 1

2

0 0 0 0

8 ( ) ( ) .
ji M

m

ijkm

i j k m

w xg x G x dx  
 




   

           (4.17) 

Proof. By definition,  

2

2

2
2 1

0 0 0 0

2
2 1

0 0 0 0

| | ( )

( ) ( ) ( ) ( )

2 ( )

2 4 ( : ) ( : )

8 ( ) ( ) .

M

M

M

jiM
m

ijkm

i j k m

ji M
m

ijkm

i j k m

x M f x dx

M x f x dx x M f x dx

xf x dx

x w g x G x dx

w xg x G x dx







   

 











 



   

 



   

 

   

 

 

 



 





 

 

4.4.7 Mean Residual Life 

A system has residual life |tX X t X t    when it still functions at time t  .  The 

mean residual life (MRL) plays a major role in life expectancy analysis and stress 

testing (Navarro, 2008). 

Proposition 4.9. The mean residual life is;  

                   

2
2 1

0 0 0 0

1
( ) 4 ( ) ( ) .

1 ( )

ji t
m

ijkm

i j k m

m t u w xg x G x dx t
F t


 




   

 
   

  
         (4.18) 

 

Proof. By definition,  

( ) ( )
( ) ( | )

1 ( )

( )
.

1 ( )

t

t

x t f x dx
m t E X t X t

F t

xf x dx
t

F t
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Substituting the mixture representation into the definition and simplifying, we get  

2
2 1

0 0 0 0

1
( ) 4 ( ) ( ) .

1 ( )

ji t
m

ijkm

i j k m

m t w xg x G x dx t
F t

 
 




   

 
   

  
 

 

4.4.8 Stochastic Ordering  

Stochastic ordering is the common way of showing ordering features in lifetime 

distribution. In a likelihood ratio order, a random variable  1X  becomes greater than 2X  

if  1

2

( )

( )

X

X

f x

f x
is an increasing function for all x  . 

Proposition 4.10. Suppose 1 1( ; , , )X TLZ G x     and 2 2( ; , , )X TLZ G x     , 

then 2X  is greater than 1X  in a likelihood ratio order 2 1( )lrX X if 2  is greater than 

1 . 

Proof. The ratio of the density
 1X and

 2X  is, 

                                         

1 2

1

2

2
( : )2( ) )

1
( ) 1

G x
x

x

f x e e

f x e

 
  





  
   

                     

(4.19) 

 Taking the derivative of the ratio of the density with respective to x  , thus 

 
2 2 1 2

2

1

2

1
2( : ) ( : )

( : )
1 1 2

2

2

4 ( : ) ( : ) ( )( )
1

( ) ( 1) 1

G x G x
G x

x

x

g x G x e e ef xd e e

dx f x e e

 
    

  

 

    



 

    
        

 

If 2 1,   1

2

( )
0.

( )

x

x

f xd

dx f x
  Thus, likelihood ratio exist for 1X

 
and 2X

 
at where 2 is less 

than 1   .  Hence, likelihood ratio order is 2 1( )lrX X . 
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4.4.9 Stress-Strength Reliability 

The significance of the stress-strength reliability is seen when a particular study is 

interested in the extent to which an existing strength of a system or its component can 

stand a subjected stress before they break out. If the strength of a system is 1X   and the 

subjected stress is 2X  , the system stands the stress or works satisfactorily if 2 1X X   , 

hence the stress-strength reliability is  2 1 .R P X X    

Proposition 4.11. If  1 ( ; , , )X TLZ G x     and 2 ( ; , , )X TLZ G x    , then 

reliability is presented as, 

                 

2
2 1

0 0 0 0

4 ( ) ( ) .
ji

m
ijkm

i j k m

R w g x G x dx
  




   

  

                    

(4.20) 

Proof. The reliability is defined as ( ) ( )R f x F x dx



  . Substituting the mixture 

representation and CDF into definition and simplifying, we get, 

2
2 1

0 0 0 0

2
2 1

0 0 0 0

4 ( ) ( )

4 ( ) ( ) .

ji
m

ijkm

i j k m

ji
m

ijkm

i j k m

R w g x G x dx

w g x G x dx





 



   

  



   







 

 

4.4.10 Order Statistics 

The Order statistics serves a great purpose when   measuring   the minimum, 

interquartile range and the maximum of set of values (Hogg, 2012). 
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Proposition 4.12. Suppose 1 2, ,..., nX X X  is a random sample of size n  from TLZ-G, 

then the PDF of the thp  order statistic 
:p nX  is; 

              
2

2 1

:

0 0 0 0 0

!4
( ) ( ) ( )

( 1)!( )!

n p j k
q

p n ijkmq

i j k m q

n
f x C g x G x

p n p

   


    


 

  ,    (4.21) 

where, 

2

(1 ( )) (2 ( )) ( ) 1
( 1)

( 1)

i j k q

ijkmq k

e m k m k n p p i k
C

i j me





 
 



                 
    

  .  

 

Proof. The order statistics is defined as; 

   
1

:

!
( ) ( ) 1 ( ) ( ) .

( 1)!( )!

p n p

p n

n
f x F x F x f x

p n p

 
 

 
 

Using the binomial expansion on the definition and based on  the fact that 0 ( ) 1F x  , 

 
1

:

0

!
( ) ( 1) ( ) ( ) .

( 1)!( )!

n p
p ii

p n

i

n pn
f x F x f x

ip n p


 



 
   

   
  

Now, Substituting the mixture representation and CDF, then applying the  binomial 

expansion concept thrice and further applying Taylor series; the order statistics is then 

simplified as; 

2
2 1

:

0 0 0 0 0

!4
( ) ( ) ( ) ,

( 1)!( )!

n p j k
q

p n ijkmq

i j k m q

n
f x C g x G x

p n p
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2

(1 ( )) (2 ( )) ( ) 1
( 1) .

( 1)

i j k q

ijkmq k

e m k m k n p p i k
C

i j me





 
 



                 
    

 

 

 

Proposition 4.13.  The r
th

 non-central moment of the p
th

 order Statistics is 

                                         
                                 

2
' ( : ) 2 1

0 0 0 0 0

!4
( ) ( ) .

( 1)!( )!

n p j k
p n r q

r ijkmq

i j k m q

n
C x g x G x dx

p n p




   



    


 

        (4.22) 

 

Proof. By definition, 
'( : )

: ( )p n r

r p nx f x dx



  . Substituting the thp  order statistics into 

the definition,  

2
' ( : ) 2 1

0 0 0 0 0

2
2 1

0 0 0 0 0

!4
( ) ( )

( 1)!( )!

!4
( ) ( ) .

( 1)!( )!

n p j k
p n r q

r ijkmq

i j k m q

n p j k
r q

ijkmq

i j k m q

n
x C g x G x dx

p n p

n
C x g x G x dx

p n p






  



    

   



    


 


 



 

 

4.5 Parameter Estimation 

The maximum likelihood estimation (MLE) method is used to compute the  parameters 

( , , )T    . Taking 1 2, ,... nX X X  as be a complete random sample of size n  , then 

the log-likelihood of TLZ-G is, 

2

2 2

2
1 1

2
( : )

( : ) ( : )

1 1 1

4
log log( ( : )) log( ( : ))

( 1)

)
log( ) log( ) ( 1) log 1 .

1

i

i i

n n

i i

i i

G xn n n
G x G x

i i i

n g x G x
e

e e
e e e

e



 
   




 



 

  

 
    

 

  
          

 

  

     (4.23) 
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Differentiating  in respective to  , we get, 

              

                                                                                         
2

2

2

2 2

2

( ; )2
( ; )2

( ; )
1 1

( ; ) ( ; )2 2

( ; )
1

( ; )2
( ; ) 1

1

( ; ) ( ( ; ) 1)
( 1)

( 1)( 1)
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i i
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G x i
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i i
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i i

G x
i

e G x en ne
G x e

e e e

e G x e G x e

e e

 
 

  

    

 




 

 


 





 
      

    

  


 

 



 .    (4.24) 

Differentiating  in respective to   , we get, 

    

2( ; )

1

log 1
1

iG xn

i

n e e

e

 

  

   
    

     
   .    (4.25) 

Differentiating  in respective to    , we get, 

2 2

2 2

( : ) ( : )

( : ) ( :

1 1 1

1 1
)

( ( : )) / ( ( : ))
2

e e
2 2 ( 1 )

e e e

/
( : ) ( ( : )) /
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( : ) ( ( : )) / ( : ) ( ( : )) /

1

i i

i i

n n n

i

i i
i i

i i

G x G x

i

i i
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i i i

G x G x

n

i i

g x G x
G x G x

g x G x

G x G x G x G x
 

   



   
  

 

    







  

  

 

   
  

 


  



 



 



  

 

  .  (4.26)

 
4.6   Special Distributions from the Topp-Leone Zubair G Family 

 Five new distributions have been developed from the TLZ-G   family of distributions. 

These distributions are TLZ-G   Weibull, TLZ-G   Inverse Weibull, TLZ-G   Lomax, 

TLZ-G   Kumaraswamy and TLZ-G   Nadarajah Haghighi. The PDF, CDF and quantile 

functions are derived.  

4.6.1 Topp-Leone Zubair Nadarajah Haghighi  

The CDF and PDF of the Nadarajah Haghighi (NH) are 

1 (1 )( ) 1 , 0, 0, 0xG x e x
         and 

1 1 (1 )( ) (1 ) , 0xg x x e x
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respectively. Substituting the CDF of the NH into the CDF of the TLZ-G, we get the 

CDF of TLZNH distribution as, 

                  

2
1 (1 )

2

1

( ) 1 , 0
1

xe

e e
F x x

e










  
 

 

  
  

    
  

   

,                          (4.27)

 

 

where 0  , 0   are scale parameters and 0  , 0   are shape parameters.  

The density function of the TLZNH is, 

   

 

2
1 (1 )

2
1 (1 )

11 1 (1 ) 1 (1 )

1
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1

2

4 1 1

( ) , 0 .

1 1
1
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x

e
x x

e

x e e e e

f x x

e e
e

e


 



   










 
 

 

 
       



 
 

 

 
   
 
  

  
  

     
   

  (4.28) 

The plot of the TLZNH PDF for some chosen parameter values are shown in Figure 4.1. 

TLZNH PDF shows right skewed, symmetric, unimodal and left skewed shapes. 
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                                   Figure 4.1: Plot of TLZNH PDF 

The hazard function of the  TLZNH is; 

21 (1 )
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0 .
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      (4.29) 

The plot of the TLZNH hazard function with some selected parameters is shown in 

Figure 4.2. The hazard plots show very good shapes, thus upside down bathtub, 

monotonically increasing and bathtub. These features confirm the TLZNH to be capable 

of modeling monotonic and non-monotonic failure rates. 
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Figure 4.2: Plot of the TLZNH Hazard function 

The quantile function of the TLZNH distribution  is, 

1

1
1 21 1

( ) 1 log 1 log ( 1) 1 1 , (0,1)XQ u e e u u



  

 

 
    
     

            
     

     
 

  (4.30)

 

 

The quantile function ( )XQ u  enables us to compute the Bowley’s   skewness (Keeping 

and Kenney, 1962) and the Moors kurtosis (Moors, 1987). 

The Bowley’s skewness and the Moors kurtosis plots of TLZNH are shown in Figure 

4.3. It is seen that TLZNH distribution is sensitive to the parameters   and   with 

fixed values of 0.01   and 0.04   . There was a responsive flexible change in the 

skewness and kurtosis. This means that the distribution has the capacity to model 

varieties of lifetime data.  
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Figure 4.3: Skewness and Kurtosis Plots of TLZNH 

The moment of TLZNH is derived by inserting the PDF and CDF of NH into the 

moment of TLZ-G family of distribution. The moment of TLZNH is, 

2
' 1 1 (1 ) 1 (1 ) 2 1

0
0 0 0 0

4 (1 ) (1 ) , 1,2,... ,
B

ji
r x x m

r ijkm

i j k m

w x x e e dx r
    

  
     

   

      (4.31) 

where, 
2

( 1) (1 ) (2 ) 1 2
.

( 1) !

i j k m m m

ijkm j

e j k j k i j
w

i j ke m





 
 



               
    

 

The first six moments for some scenarios have been computed. These are done using R 

software. Different   and  values are used with fixed values of  =0.5 and     =1.5   . 

The computation results indicate integration routines precision. Based on this, it is seen 

that with fixed   parameter,   the addition of  creates a great impact on 
'

r .In effect, 

the moment increases whiles  is increasing.  The moment also increases  whiles     is 

increasing. Table 4.1 represents the first six moments of the TLZNH distribution.  
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Table 4. 1: First six moments for some scenarios of   and , with fixed 

=0.5 and     =1.5   of TLNH  

    
       

'

1   
'

2  
'

3  
'

4  
'

5  
'

6  

0.5 0.5 0.8115  1.1037 1.9850    4.3239 10.9086 31.0303 

1.0 1.1699 1.8452 3.5764 8.1217 20.9964 60.6102 

2.0 1.5501 2.8593 6.0876 14.6572 39.3251 116.2496 

3.0 1.7707 3.5686 8.0670 20.2325 55.8139 168.1269 

4.0 1.9243 4.1175 9.7197 25.1476 70.9256 217.0009 

1.0 0.5 0.9047 1.3325 2.5424 5.7903 15.1132 44.1271 

1.0 1.2944 2.2060 4.5384 10.7923 28.9137 85.8028 

2.0 1.6986 3.3739 7.6238 19.2506 53.6369 163.3420 

3.0 1.9289 4.1748 10.0103 26.3456 75.5638 234.8120 

4.0 2.0875 4.7869 11.9774 32.5253 95.4464 301.5430 

2.0 0.5 1.1079 1.8711 3.9374 9.6472 26.6246 81.1669 

1.0 1.5529 3.0229 6.8742 17.6547 50.2129 156.1322 

2.0 1.9912 4.4859 11.2087 30.6751 91.1496 292.1769 

3.0 2.2318 5.4488 14.4311 41.2153 126.3689 414.4791 

4.0 2.3944 6.1679 17.0223 50.1792 157.6226 526.5669 

3.0 0.5 1.3202 2.4857 5.6444 14.6352 42.1900 133.0931 

1.0 1.8048 3.9051 9.6109 26.2373 78.2904 252.8681 

2.0 2.2574 5.6153 15.1940 44.3537 138.8849 464.5046 

3.0 2.4987 6.7014 19.1968 58.5337 189.4966 650.0616 

4.0 2.6601 7.4983 22.3505 70.3454 233.5396 817.1718 

4.0 0.5 1.5270 3.1330 7.5535 20.4863 61.1659 198.4151 

1.0 2.0334 4.7833 12.5387 35.9625 111.6179 372.1090 

2.0 2.4859 6.6814 19.2597 59.2337 193.6525 671.1329 

3.0 2.7231 7.8553 23.9392 76.9359 260.4091 927.4040 

4.0 2.8813 8.7069 27.5710 91.4420 317.5696 1154.7520 
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4.6.2 Topp-Leone Zubair Lomax (TLZLx) 

The Lomax CDF and PDF respectively defined as ( ) 1 (1 )G x x    

0, 0, 0x    

 

and 1( ) (1 )g x x       . Substituting the CDF of Lomax into the 

CDF of TLZ-G enables us to derive the CDF of  TLZLx as, 

                         

 
2 2

1 (1 )

( ) 1 , 0 ,
1

x
e e

F x x
e





 



   
      

   

                            (4.32)

 

where 0  , 0   are scale parameters and 0  , 0   are shape parameters. 

 The PDF of the TLZLx is, 

2 2
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2
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  (4.33)
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The PDF plot of TLZLx is shown in Figure 4.4. The plot shows right skewed and left 

skewed shapes of the TLZLx PDF. 

 

Figure 4.4:PDF plot of TLZLx 

 

The hazard function of the TLZLx is; 
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  (4.34)
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The hazard function plot of the TLZLx is shown in Figure 4.5. The hazard function of 

the TLZLx shows a decreasing and upside down bathtub shapes. Also shows bathtub 

shape. 

 

Figure 4.5: The plot of TLZL Hazard function 

The quantile function of the TLZLx is, 

     

 

1

1
1 21 1

1 log ( 1) 1 1 , 0,1ux e e u u



  

 

 
    
     

           
           

.             (4.35) 

The Bowley’s Skewness and Moors kurtosis of the TLZLx, are shown in Figure 4.6. It 

shows that   and   have a very sensitive effect on the distribution. For example given 

fixed values of  0.08   and 0.08   . The distribution is equally better in fitting 

different data.  
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Figure 4.6: Skewness and Kurtosis Plots 

The moment of TLZLx is derived by inserting the PDF and CDF of Lomax into the 

moment of TLZ-G family of distribution. The moment of TLZLx  is, 

2
4' 1 2 1

0
0 0 0 0

(1 ) (1 (1 ) ) , 1,2,... ,
ji

r mx x
r ijkm

i j k m

w x dx r
  

  


  
   

   

       (4.36) 
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The first six moments for some scenarios have been computed numerically. Different 

values of   and  are used where values of  =1.5 and     =3.5 are fixed.  The 

computation results indicate integration routines precision. This shows that with fixed 

  parameter,   the addition of  creates a great impact on 
'

r . The impact is seen 

where the moment increases whiles  is increasing. The moment also increases with 

increasing  .Table 4.2 represents first six moments of the TLZLx distribution for 

parameters.  
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Table 4. 2: First six moments for some scenarios of   and , with fixed  =1.5 and   

  =3.5      

    '

1   '

2  '

3  '

4  '

5  '

6  

0.5 0.5 0.3659 0.2941 0.4094 0.9456 3.8671 36.3075 

1.0 0.5553 0.5240 0.7824 1.8625 7.7039 72.5735 

2.0 0.7840 0.8866 1.4555 3.6283 15.2985 144.9909 

3.0 0.9331 1.1767 2.0615 5.3223 22.8018 217.2679 

4.0 1.0449 1.4234 2.6199 6.9592 30.2263 289.4165 

1.0 0.5 0.4198 0.3759 0.5666 1.3828 5.8530 55.9400 

1.0 0.6344 0.6661 1.0784 2.7176 11.6509 111.7989 

2.0 0.8903 1.1185 1.9938 5.2749 23.1040 223.2939 

3.0 1.0553 1.4765 2.8109 7.7159 34.3949 334.5190 

4.0 1.1783 1.7788 3.5595 10.0655 45.5475 445.4999 

2.0 0.5 0.5430 0.5841 1.0024 2.6765 12.0014 118.3115 

1.0 0.8089 1.0196 1.8882 5.2318 23.8426 236.3592 

2.0 1.1159 1.6790 3.4402 10.0716 47.1261 471.7477 

3.0 1.3093 2.1891 4.8007 14.6400 69.9682 706.2994 

4.0 1.4519 2.6139 6.0324 19.002 92.4437 940.1094 

3.0 0.5 0.6793 0.8445 1.6023 4.5910 21.5716 218.3198 

1.0 0.9924 1.4477 2.9827 8.9196 42.7577 435.9450 

2.0 1.3420 2.3340 5.3500 17.0188 84.2042 869.3857 

3.0 1.5582 3.0055 7.3903 24.5809 124.6606 1300.7360 

4.0 1.7164 3.5585 9.2178 31.7471 164.3163 1730.2750 

4.0 0.5 0.8195 1.1426 2.3484 7.1252 34.8146 360.4820 

1.0 1.1722 1.9224 4.3187 13.7560 68.8391 719.4373 

2.0 1.5547 3.0380 7.6319 26.0199 135.0658 1433.4800 

3.0 1.7886 3.8692 10.4465 37.3595 199.4022 2143.1630 

4.0 1.9593 4.5486 12.9464 48.0374 262.2483 2849.1430 
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4.6.3 Topp-Leone Zubair Weibull (TLZW) 

The CDF and PDF of Weibull are defined respectively as: ( ) 1 , 0, 0xG x e x
       

and 1( ) , 0xg x x e x     . Substituting the Weibull CDF into that of TLZ-G  

CDF gives, 

                              

2 2

1

( ) 1 , 0 ,
1

xe

e e
F x x

e










 
 

 

  
  

    
  

   

                           (4.37) 

where 0  , 0   are scale parameters and 0  , 0   are shape parameters. 

Differentiating the CDF  of TLZW gives PDF , 
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The plots of the TLZW PDF with some selected parameters are shown in Figure 4.7. 

The TLZW PDF shows a right skewed, symmetric and unimodal. Implying that the 

distribution can model different data. 

     

Figure 4.7: Plot of the TLZW PDF 

The hazard function of the TLZW is given by; 
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The plot of the TLZW hazard function with some selected parameters is shown in 

Figure 4.8. The hazard function is capable of  showing both bathtub shape  and also 

upside down bathtub shape. The distribution can model monotonic and non monotonic 

failure rate realized in lifetime data. 

 

Figure 4.8: Plot of the TLZW Hazard function 

The quantile function of the TLZW is given as; 
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The Bowleys Skewness and Moors  Kurtosis plots  of TLZW show sensitivity for  

parameters   and   . This is seen below in Figure 4.9,  where  1.09   and 0.03    

are fixed. The TLZW has the capacity to model different data. 

 

Figure 4.9: Skewness and Kurtosis of TLZW 
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The moment of TLZW is derived by inserting the PDF and CDF of Weibull into the 

moment of TLZ-G generated family of distribution. The moment of TLZW  is, 

2
' 1 2 1

0
0 0 0 0

4 (1 ) , 1,2,... .
ji

r x x m

r ijkm

i j k m

w x e e dx r
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The first six moments of TLZW for some scenarios have been computed. In this case, 

different   and  values are used with fixed values of  =0.5 and     =1.5   . The 

computation results indicate integration routines precision. Based on this, it is seen that 

with fixed   parameter,   the addition of  creates a great impact on 
'

r . In effect, the 

moment increases responsively with increasing and increasing . Table 4.3 represents   

the first six moments of TLZW. 
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Table 4. 3: First six moments for some scenarios of   and , with fixed 

=0.5 and     =1.5      

  
 

'

1   
'

2  
'

3  
'

4  '

5  '

6  

0.5 0.5 0.3964  0.7116 2.760 18.5298 192.2205 2868.5160 

1.0 8.5569 1.3600 5.4470 36.9108 384.0006 5735.2180 

2.0 1.0833 2.5213 10.6282 73.2611 766.2915 11463.2900 

3.0 1.3800 3.5530 15.5950 109.1099 1146.9670 17184.4100 

4.0 1.6168 4.4906 20.3822 144.5029 1526.1070 22898.7600 

1.0 0.5 0.4872 0.9771 4.0216 27.8455 293.5058 4414.6660 

1.0 0.8263 1.8558 7.9108 55.4028 586.1002 8825.400 

2.0 1.3045 3.4080 15.3580 109.7302 1168.6850 17635.3600 

3.0 1.6484 4.7680 22.4406 163.1117 1747.9880 26430.4300 

4.0 1.9198 5.9915 29.2230 215.6464 2324.2040 35211.1000 

2.0 0.5 0.7060 1.6977 7.7054 56.2733 610.1946 9311.9350 

1.0 1.1713 3.1779 15.0495 111.6344 1217.180 18608.9100 

2.0 1.7980 5.7111 28.8757 219.9457 2422.1730 37159.6400 

3.0 2.2323 7.8662 41.7943 325.4543 3616.1020 55655.2500 

4.0 2.5675 9.7656 53.9971 428.5336 4799.8640 74098.3500 

3.0 0.5 0.9626 2.6638 13.0646 99.7115 1108.0080 17130.5500 

1.0 1.5565 4.9047 25.3053 197.0915 2207.0950 34216.8300 

2.0 2.3195 8.6151 47.9250 385.9173 4380.9260 68263.5100 

3.0 2.8310 11.683 68.6776 568.0883 6525.5020 102152.3000 

4.0 3.2190 14.3380  88.0192 744.6823 8643.8540 135893.2000 

4.0 0.5 1.2393    3.8338 20.0324 158.7124 1801.997 28191.7400 

1.0 1.9519    6.9396 38.4586 312.4472 3583.6000 56276.8700 

2.0 2.8296 11.9247 71.8823 607.7392 7092.6220 112149.3000 

3.0 3.4031 15.9458 102.0254 889.8534 10538.1700 167654.5000 

4.0 3.8331 19.3735 129.7842 1161.269 13928.1800 222821.8000 
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4.6.4 Topp-Leone Zubair Kumaraswamy (TLZKw) 

The Kumaraswamy distribution is defined on 0 1x  . The PDF and CDF are 

respectively gives 1 1( ) (1 )g x x x       , 0, 0    and ( ) 1 (1 )G x x    .  

Substituting the    CDF of Kumaraswamy into the CDF of TLZ-G , we obtain the CDF 

of TLZKw as; 
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              (4.42) 

where 0  , 0   and 0   are shape parameters and 0   is a scale parameter.  

The PDF of the TLZKw is; 
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 The plots of the TLZKw PDF with some selected parameters are shown in Figure 4.10. 

The TLZKw PDF shows a right skewed, symmetric and unimodal shapes  making it 

suitable for modeling different data. 

       

 

Figure 4.10: The plot of TLZKw PDF 

The hazard function of the TLZKw is given as, 

 

2 2

2 2

1 1 (1 (1 ) ) (1 (1 ) )

1
2 2

(1 (1 ) ) (1 (1 ) )
2

4 (1 ) (1 (1 ) )( )( )
( ) ,

) )
( 1) 1 1 1

1 1

0 1.

x x

x x

x x x e e e
x

e e e e
e

e e

x

   

   

       

 

   


 




     



   

   


                                  

 

   

(4.44) 
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The plot of the TLZKw hazard function with some selected parameters is shown in 

Figure 4.11.  

The hazard function shows both bathtub shape and modified upside down bathtub 

shape.

 

Figure 4.11: The plot of TLZKw Hazard function 

 

The quantile function of the TLZKw is,  
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www.udsspace.uds.edu.gh 

 

 

 

 



64 

 

The Bowley’s Skewness and Moors Kurtosis plots of the TLZKw are shown in Figure 

4.12. The plot shows sensitivity of the parameters   and   ,  where 1.75   and 

0.03   are fixed. The new parameters   and   introduced into the Weibull through 

TLZW makes it better for modeling different data. 

 

Figure 4.12: Skewness and Kurtosis plot for TLZKw 
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The moment of TLZKw is derived by inserting the PDF and CDF of Lomax into the 

moment of Topp-Leone Zubair generated family of distribution. The moment of 

TLZKw  is, 

2
' 1 1 2 1
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4 (1 ) (1 (1 ) ) , 1,2,... .
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r m
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Using some scenarios, the first six moments of TLZKw have been arrived at. In doing 

this, values of   and  are used with fixed values of  =0.5 and     =1.5   . The 

computation results indicate integration routines precision. When   is introduced and 

increasing, of a fixed , we can see the moment 
'

r also increasing. In the same way, if 

 is increasing with fixed   , the moment increases. Table 4.4, presents the first six 

moments of TLZKw.   
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Table 4. 4: First six moments for some scenarios of   and , with fixed  =0.5 and   

  =1.5      

    '

1  '

2  '

3  '

4  '

5  '

6  

0.5 0.5 0.1547 0.0545 0.0257 0.0142 0.0087 0.0057 

1.0 0.2446 0.0967 0.0479 0.0271 0.0168 0.0110 

2.0 0.3506 0.1591 0.0844 0.0497 0.0316 0.0212 

3.0 0.4144 0.2048 0.1139 0.0691 0.0447 0.0304 

4.0 0.4585 0.2403 0.1387 0.0862 0.0567 0.0391 

1.0 0.5 0.1793 0.0682 0.0337 0.0192 0.0119 0.0079 

1.0 0.2793 0.1190 0.0618 0.0362 0.0229 0.0154 

2.0 0.3929 0.1919 0.1070 0.0653 0.0425 0.0292 

3.0 0.4589 0.2433 0.1424 0.0897 0.0597 0.0416 

4.0 0.5035 0.2824 0.1715 0.1107 0.0750 0.0529 

2.0 0.5 0.2336 0.1006 0.0535 0.0321 0.0208 0.0143 

1.0 0.3518 0.1699 0.0956 0.0592 0.0392 0.0272 

2.0 0.4747 0.2618 0.1587 0.1030 0.0703 0.0500 

3.0 0.5409 0.3217 0.2049 0.1376 0.0962 0.0697 

4.0 0.5839 0.3652 0.2410 0.1660 0.1184 0.0869 

3.0 0.5 0.2908 0.1379 0.0778 0.0486 0.0324 0.0227 

1.0 0.4215 0.2246 0.1346 0.0872 0.0596 0.0426 

2.0 0.5459 0.3301 0.2139 0.1459 0.1035 0.0759 

3.0 0.6085 0.3943 0.2680 0.1893 0.1379 0.1032 

4.0 0.6478 0.4389 0.3085 0.2235 0.1662 0.1263 

4.0 0.5 0.3467 0.1772 0.1047 0.0675 0.0462 0.0329 

1.0 0.4837 0.2779 0.1753 0.1178 0.0829 0.0605 

2.0 0.6036 0.3912 0.2669 0.1895 0.1388 0.1044 

3.0 0.6611 0.4563 0.3260 0.2397 0.1805 0.1388 

4.0 0.6963 0.5001 0.3685 0.2777 0.2134 0.1669 
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4.6.5 Topp-Leone Zubair Inverse Weibull (TLZIW) 

Inverse Weibull distributions has PDF and CDF, respectively defined as

1

/( ) x

x
g x e





 


 0, 0, 0x   
 
 and /( ) xG x e

  0x   . Combining the CDF of 

the Weibull and the CDF of the TLZ-G by means of substitution and then simplifying, 

we obtain the CDF of   TLZIW as; 
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where 0  , 0   and 0   are shape parameters and 0   is a scale parameter.  

The PDF   of the TLZIW is; 
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 (4.48) 

The plots of the TLZIW PDF with some selected parameters are shown in Figure 4.13. 

The TLZIW PDF shows a right skewed, symmetric and unimodal shapes. The 

distribution can model variaties of data. 
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Figure 4.13: PDF plot of TLZIW 

 

The hazard function of the TLZIW is,  

    
/ 2

/ 2 / 2

/ 2

1
2

( )2
( 1) 2 / ( ) ( )

2
( )

4 ( 1) 1
1

( , ) ,

1 1
1

0.

x

x x

x

e
x e e

e

e e
x e e e e e

e

x

e e

e

x


   





 
     





 





 



 





   

      
  

   
     
  

   



 (4.49) 
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The plot of the TLZIW hazard function with some selected parameters is shown in 

Figure 4.14. The hazard function depicts both bathtub shape and also upside down 

bathtub shape. 

 

Figure 4.14: Hazard plot of TLZIW 

The quantile function of the TLZIW is given as; 

                  

1

1

1
1

ln ln ( 1) 1 , [0,1].ux e e u u
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The Bowley’s Skewness and Moor’s Kurtosis of TLZIW are shown in Figure 4.15. The 

plots show that   and   are sensitive parameters of the distribution where the values 

43.9   and 10.07    are fixed. This means that TLZIW is good for modeling 

different data. 

 

Figure 4.15: Skewness and kurtosis of TLZIW 

 

 

 

www.udsspace.uds.edu.gh 

 

 

 

 



71 

 

The moment of TLZIW is derived by inserting the PDF and CDF of Inverse Weibull 

into the moment of TLZ-G family of distribution. The moment of TLZIW  is, 

2
' 1 / / 2 1

0
0 0 0 0

4 ( ) , 1,2,... .
ji

r x x m

r ijkm

i j k m

w x e e dx r
    

  
    

   

    (4.51) 
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The first six moments for some scenarios have been computed. In this case, different   

and  values are used with fixed values of  =3.5 and     =2.5   . The computation results 

indicate integration routines precision. Based on this, it is seen that with fixed   

parameter,   the addition of  creates a great impact on 
'

r . In effect, the moment 

increases with increasing  and increasing . Table 4.5 presents the first six moments 

of TLZIW. 
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Table 4. 5: First six moments for some scenarios of   and , with fixed  =3.5 and   

  =2.5      

    '

1   '

2  '

3  '

4  '

5  '

6  

1.0 1.0 1.7318    3.2486 6.7236 15.8383 45.2281 188.2232 

1.5 1.8813 3.8066 8.4319 21.0771 63.2823 274.1532 

2.0 1.9903 4.2424 9.8530 25.6911 80.0042 357.2204 

2.5 2.0766 4.6047 11.0897 29.8783 95.7626 438.1033 

3.0 2.1482 4.9171 12.1953 33.7486 110.7741 517.2235 

1.5 1.0 1.8164 3.5882 7.8481 19.5941 59.4401 263.2192 

1.5 1.9783 4.2206 9.8821 26.1662 83.3678 383.8292 

2.0 2.0958 4.7137 11.5738 31.9577 105.5469 500.4814 

2.5 2.1886 5.1231 13.0454 37.2145 126.4563 614.1005 

3.0 2.2654 5.4757 14.3605 42.0738 146.3796 725.2658 

2.0 1.0 1.9039 3.9523 9.1015 23.9538 76.6503 358.1094 

1.5 2.0772 4.6603 11.4875 32.0476 107.631 522.4585 

2.0 2.2025 5.2110 13.4698 39.1778 136.3485 681.4288 

2.5 2.3011 5.6673 15.1928 45.6478 163.4209 836.2707 

3.0 2.3825 6.0601 16.7319 51.6273 189.2156 987.7707 

2.5 1.0 1.9925 4.3342 10.4651 28.8816 96.8837 474.2394 

1.5 2.1759 5.1168 13.2220 38.6657 136.0838 691.9368 

2.0 2.3081 5.7240 15.5092 47.2784 172.4064 902.4772 

2.5 2.4118 6.2264 17.4955 55.0899 206.6395 1107.5270 

3.0 2.4974 6.6585 19.2689 62.3069 239.251 1308.1350 

3.0 1.0 2.0806 4.7269 11.9171 34.3219 120.0552 612.2431 

1.5 2.2729 5.5818 15.0572 45.9413 168.5887 893.1271 

2.0 2.4109 6.2437 17.6586 56.1601 213.5345 1164.7030 

2.5 2.5191 6.7908 19.9159 65.4236 255.8801 1429.1510 

3.0 2.6083 7.2609 21.9303 73.9792 296.2106 1687.8370 

www.udsspace.uds.edu.gh 

 

 

 

 



73 

 

4.6.6 Topp-Leone Zubair Lomax Regression (TLZLx_R) 

In survival analysis, there are many ways of coming up with a regression model. For 

instance, the location-scale frequency type of regression model is widely used in 

clinical trials.  

In this type of presentation, the regression analysis of lifetimes are specified based on 

the distribution of lifetime, thus: X  with vector of covariates, given as 
1( ,..., )T

P    

. The vector of covariates are therefore allowed to depend on the distribution parameters 

( Furrukh et al. 2019).  In this case the parameter   in TLZLx is allowed to depend on 

  , with a link function 
1exp( )T    , 1,...,i n  where 1( ,..., )T

p    is the 

regression coefficient vector. The TLZLx regression model has    depended on by   . 

This condition is essential in practical studies. Hence, the survival function for |X   

becomes; 

                                         

 
2 2

1 (1 (exp( )) )

( | ) 1 1 , 0
1

T x
e e

S X x
e





  




   
       

         (4.52) 

Equation (4.52) is termed as the TLZLx parametric regression model. The regression 

model can be used to fit several data types. 

Taking that 1 1( , ),..., ( , )n nx x   is a sample of n  independent observations with a 

response variable ix  making up for the observed lifetime or censoring for the ith 

member.  
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Let  lifetime ( F  ) and Censoring ( C  ) be members of  ix . This means that conventional 

likelihood estimation procedure can be administered here. Thus; ( , , , )T T      as 

vector from model (4.52)  has the form  ( )( ) ( ) ( ) c

i i

i F i C

l l l
 

       , where,    

( ) log( ( | ))i i il f x   , ( ) ( ) log( ( | ))c

i i il S x    and ( | )i if x w , ( | )i iS x   are the density 

and survival of X  respectively. The log likelihood for   reduces to; 

1 1
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(4.53)

 

 

4.7 Summary of Chapter four  

The chapter four presented the theoretical results. In this case, the mixture 

representation, and other statistical properties of the TLZ generator family were 

developed. These statistical properties includes the  quantile function of TLZ generator, 

moments, incomplete moments, moment generating function, inequality measures, 

mean and mean residual life , median deviations, stochastic order statistics and the 

maximum likelihood estimators. Six distributions were also developed and these 

include the TLZNH, TLZLx, TLZW, TLZKw , TLZIW and the TLZLx_R.  
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CHAPTER FIVE 

SIMULATIONS AND APPLICATIONS 

5.0 Introduction 

This chapter presents results of objective four and five. These are results on Monte 

Carlo simulations and applications of the developed models to lifetime data.  

  5.1 Monte Carlo Simulation  

Monte Carlo simulation is done to study the behavior of the estimators of the 

parameters under MLE.  

In this case, all the five new distributions were studied. The R software was used in the 

process to enable the Average Bias (AB) and the Root Means Square Error (RMSE) to 

be computed. 

 First of all, simulation study was done on TLZNH using sample sizes as n= 25, 50, 75 

and 100. In each case of sample size, the experiment was replicated 1000 times. Four 

different sets of parameter values were used, these are I: 0.1, 0.2,  

0.1, 0.2   ,II: 0.2, 0.1,   0.1, 0.2     III: 0.2, 0.1,   5.4, 0.3    

and IV:   0.4, 0.2,   0.2, 1.0    . The set of parameters was to generate 

random samples from TLZNH. The result as displayed in Table 5.1 shows AB and the 

RMSE to be decreasing when sample size is increasing.  
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Table 5. 1: Monte Carlo Simulation Result of TLZNH 

 Actual 

Parameter  

 AB RMSE 

   

 

    n  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  

I  0.1 0.2 0.1 0.2 25 1.074 0.120 0.112 7.279 1.629 0.081 0.253 6.231 

     50 0.292 0.060 -0.036 5.399 0.854 0.060 0.133 5.367 

     75 0.092 0.030 -0.067 1.210 0.431 0.051 0.103 5.237 

     100 0.038 0.031 -0.078 0.496 0.232 0.045 0.082 3.896 

II  0.2 0.1 0.1 0.2 25 1.269 0.012 0.328 2.844 1.667 0.034 0.399 9.641 

     50 1.026 0.007 0.298 2.866 1.359 0.022 0.383 5.943 

     75 0.854 0.004 0.270 2.817 1.151 0.017 0.366 5.800 

     100 0.725 0.002 0.254 1.604 0.987 0.013 0.343 5.640 

III 0.2 0.1 5.4 0.3 25 3.171 0.042 5.027 2.335 7.757 0.063 4.603 3.727 

     50 2.571 0.017 4.891 2.374 5.863 0.042 3.169 3.321 

     75 2.560 0.001 4.315 5.653 4.208 0.032 4.496 2.968 

     100 2.135 -0.003 0.529 3.946 3.552 0.029 3.486 1.880 

IV 0.4 0.2 0.2 1.0 25 1.416 0.026 1.606 0.145 1.907 0.075 2.870 0.250 

     50 0.773 0.002 4.784 0.044 2.421 0.065 9.286 0.203 

     75 0.302 -0.015 0.041 -0.037 0.918 0.052 4.836 0.137 

     100 0.062 -0.023 1.412 -0.070 0.400 0.042 2.311 0.097 

 

Similarly, in the simulation study of TLZLx, sample sizes n= 25, 50, 75 and 100 were 

used alongside with four sets of   parameter values such as I: 7.3, 1.2,  

1.4, 1.1    II:  4.3,  1.2,  1.1, 1.1   ,III: 4.3,  1.2,  3.1, 1.1    

and IV: 7.2, 1.2,    1.4, 1.1    . In each case of sample size and set of 

parameter values, the experiment was replicated 1000 times. The result show in Table 

5.2 that both AB and RMSE decrease   with increasing sample size.  
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Table 5. 2: Monte Carlo Simulation Result of TLZLx 

 Actual Parameter  AB RMSE 

   

 

    n  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  

I 7.3 1.2 1.4 1.1 25 6.080 0.104 2.490 9.579 10.768 1.145 7.130 7.681 

     50 9.852 -0.154 4.648 3.309 8.512 0.429 6.511 8.164 

     75 6.721 -0.235 4.860 1.514 7.767 0.349 5.803 7.283 

     100 2.932 -0.278 0.765 0.440 4.207 0.345 5.610 2.999 

II  4.3 1.2 1.1 1.1 25 5.572 0.718 1.222 4.620 6.093 7.730 6.587 7.681 

     50 8.590 0.005 0.750 6.652 9.816 1.388 2.485 4.464 

     75 9.403 -0.126 0.755 3.572 7.352 0.353 2.157 7.491 

     100 1.575 -0.158 0.645 2.931 1.172 0.299 1.935 2.151 

III 4.3 1.2 3.1 1.1 25 7.530 0.613 -0.791 3.674 6.823 7.188 7.366 5.578 

     50 7.406 -0.012 -1.303 7.188 3.765 0.774   3.747 3.225 

     75 3.172 -0.100 -1.411 1.916 8.235 0.329 3.927 3.412 

     100 4.829 -0.118 -1.672 0.848 3.723 0.262 2.479 1.839 

IV  7.2 1.2 1.4 1.1 25 6.444 0.096 2.332 9.497 8.915 0.798 5.018 6.342 

     50 1.756 -0.145 3.469 4.012 5.091 0.741 0.261 3.841 

     75 1.885 -0.253 1.518 3.104 5.004 0.337 1.529 4.932 

     100 0.084 -0.295 1.051 0.976 1.585 0.355 0.043 1.064 
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Simulation study was done for TLZW using sample sizes n= 25, 50, 75 and 100. The 

experiments, on each of the samples were replicated 1000 times. In such case, four 

parameter values were used, these are   I: 0.5,  0.3,  2.2,  0.3 ,   II:  =0.1,

0.11,   0.1,   0.6  , III: 0.1,  0.5,  0.3,  0.1   and IV:

0.1, 0.5,   0.4,   0.4   . Hence, random values were obtained from TLZW.  

The results in Table 5.3 shows AB and RMSE consistently decrease for some parameter 

values whiles others fluctuate with increasing sample size. 

Table 5. 3: Monte Carlo Simulation Result of TLZW 

 Actual Parameter  AB RMSE 

         n  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  

I 0.5 0.3 2.2 0.3 25 2.512 -0.084 -1.623 0.640 3.689 3.689 1.721 0.813 

     50 2.244 -0.087 -1.703 0.594 3.272 3.272 2.723 0.770 

     75 2.246 -0.091 -1.725 0.600 3.259 3.959 1.235 0.773 

     100 1.999 -0.096 -1.744 0.543 2.830 2.830 0.750 0.709 

II 0.1 0.11 0.1 0.6 25 0.935    -0.021 -0.165 0.384 1.227 0.059 0.312 0.902 

     50 0.517 -0.046 -0.250 0.615 1.226 0.058 0.305 0.676 

     75 0.211 -0.058 -0.283 0.881 1.162 0.041 0.299 0.628 

     100 0.123 -0.087 -0.297 0.963 1.131 0.013 0.127 0.365 

III  0.1 0.5 0.3 0.1 25 0.718 -0.282 0.238 0.764 0.910 0.299 0.461 0.858 

     50 0.741 -0.275 0.136 0.693 0.909 0.291 0.277 0.779 

     75 0.691 -0.249 0.058 0.599 0.888 0.270 0.196 0.704 

     100 0.606 -0.229 0.018 0.525 0.834 0.253 0.173 0.646 

IV 0.1 0.5 0.4 0.4 25 0.786 -0.011 0.196 0.236 1.024 0.194 0.454 0.397 

     50 0.742 -0.037 0.138 0.214 0.907 0.140 0.288 0.332 

     75 0.782 -0.044 0.125 0.216 0.933 0.127 0.248 0.315 

     100 0.750 -0.044 0.108 0.204 0.887 0.115 0.219 0.296 
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Simulation results for TLZKw is shown in Table 5.4, the parameter values   I: 

0.2, 0.3,   0.2, 0.5,    II: =0.1, 0.3,   0.2, 0.5    III: 0.2,   

0.3,    0.2, 0.1   , and IV: 0.1,  0.2,  0.4, 0.3    were used with 

samples  sizes n= 25, 50, 75 and 100. In each case of sample size, the experiment was 

replicated 1000 times to obtain random samples from TLZKw. The results indicate AB 

and RMSE to be consistently decreasing when sample size is increasing.  

Table 5. 4: Monte Carlo Simulation Result of TLZKw 

 Actual Parameter   AB RMSE 

         n  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  

I 0.2 0.3 0.2 0.5 25 2.349 0.181 0.367 -0.203 2.877 0.242 0.787 0.287 

     50 1.805 0.132 0.326 -0.217 2.203 0.174 0.577 0.270 

     75 1.502 0.106 0.310 -0.229 1.851 0.137 0.518 0.268 

     100 1.220 0.087 0.319 -0.237 1.532 0.116 0.509 0.271 

II 0.1 0.3 0.2 0.5 25 2.476 0.194 0.328 -0.199 3.003 0.259 0.650 0.286 

     50 1.827 0.137 0.335 -0.216 2.173 0.176 0.657 0.270 

     75 1.461 0.107 0.310 -0.223 1.788 0.139 0.533 0.265 

     100 1.297 0.093 0.297 -0.229 1.585 0.119 0.506 0.262 

III 0.2 0.3 0.2 0.1 25 2.002 0.335 0.095 -0.009 2.475 0.429 0.217 0.041 

     50 1.325 0.245 0.061 -0.001 1.689 0.305 0.152 0.038 

     75 1.047 0.203 0.032 0.007 1.388 0.252 0.102 0.035 

     100 0.853 0.166 0.013 0.015 1.185 0.210 0.079 0.036 

IV 0.1 0.2 0.4 0.3 25 2.267 0.149 0.075 0.038 2.772 0.195 0.636 0.229 

     50 1.480 0.099 0.064 0.015 1.824 0.126 0.539 0.177 

     75 1.249 0.083 0.029 0.017 1.529 0.104 0.372 0.149 

     100 1.084 0.073 0.010 0.018 1.354 0.090 0.232 0.135 
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In the simulation study of TLZIW, just like the earlier ones, sample sizes n= 25, 50, 75 

and 100 were used, where in each case of sample size, the experiment was replicated 

1000 times. Four parameter values were also used in the study, these are I: 0.1,    

0.2  , 0.4,  0.3   II: 0.4,  0.4,  0.2,  0.3   III: 0.2,   0.4, 

0.2,  0.3    IV: 0.2, 0.1,   0.2, 0.2    to obtain random samples from 

TLZIW. In Table 5.5 the AB and RMSE decrease with increasing sample size.  

Table 5. 5: Monte Carlo Simulation Result of TLZIW 

 True Parameter 

Value 

 ABIASS RMSE 

   

 



 
  n  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  

I 0.1 0.2 0.4 0.3 25 3.569 -0.135 0.017  0.255 3.986 0.143 1.440 0.279 

     50 2.936 -0.130 0.016  0.223 4.852 0.136 0.378 0.239 

     75 2.441 -0.153 0.011  0.201 2.722 0.129 0.722 0.240 

     100 2.240 -0.221 0.001  0.194 2.484 0.126 0.190 0.205 

II 0.4 0.4 0.2 0.3 25 4.302 -0.225 0.029  0.021 4.758 0.254 0.096 0.060 

     50 3.507 -0.209 0.007  0.033 3.811 0.232 0.082 0.042 

     75 3.200 -0.201 0.036  0.012 3.472 0.221 0.154 0.037 

     100 2.892 -0.188 0.034  0.004 3.116 0.208 0.033 0.068 

III 0.2 0.4 0.1 0.1 25 0.061 -0.013 0.039  0.001 0.337 0.059 0.256 0.003 

     50 0.021 -0.011 0.025  0.001 0.167 0.045 0.089 0.003 

     75 0.012 -0.008 0.020  0.000 0.088 0.036 0.031 0.002 

     100 0.006 -0.010 0.021  0.000 0.066 0.039 0.074 0.002 

IV 0.2 0.1 0.2 0.2 25 3.002 -0.052 0.078  0.031 3.853 0.067 0.443 0.054 

     50 1.277 -0.026 0.181  0.012 2.205 0.048 2.312 0.033 

     75 0.697 -0.015 0.035  0.006 1.549 0.036 0.116 0.023 

     100 0.336 -0.088 0.027  0.002 1.028 0.026 0.127 0.016 
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5.2 Applications of the special distributions  

This section presents the applications of the five new models to lifetime data. Results on 

the descriptive statistics of data, TTT test, maximum likelihood estimators, the 

goodness-of-fit test and histogram plots are presented. 

5.2.1 Applications of TLZNH 

In the case of TLZNH, two different data sets were used, these are the failure times and 

maximum stress data sets.  

First of all, the failure times data is applied on the TLZNH. The summary statistics in 

Table 5.6 shows an average failure time of 45.666, negatively skewed, thus -0.1319 

with kurtosis of -1.6425.  

Table 5. 6: Descriptive statistics of failure times data 

Dataset Min Max Mean Std. Dev. Skewness    Kurtosis 

Failure times 0.1000 86.000 45.6660 32.8353 -0.1319 -1.6425 

 

The failure times data exhibits a bathtub failure rate. This is seen in Figure 5.1 where 

the TTT transform plot is first convex below the 45 degrees line and then followed by a 

concave shape above the line. 
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Figure 5. 1: TTT transform plot of Failure times  

 

Six models were applied to fit the failure times data. These are: TLZNH, the 

generalisezd power generalized Weibull (GPGW) (Selim, 2017), exponentiated 

generalized Weibull (EPGW) (Fernando et al., 2017), power generalized Weibull 

(PGW) (Nikulin and Haghighi, 2009), Exponentiated Nadarajah Haghighi (ENH) 

(Lemonte et al., 2013) and generalized Nadarajah Haghighi (GNH) (Ortega et al., 

2015). 

Table 5.7 gives the maximum likelihood estimates, standard errors, z-values and the p-

values of each of the six models. The parameters for many of the models were 

significant at 5% level of significance.  
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                 Table 5. 7: Maximum likelihood estimates of   failure times data 

Model Parameter Estimate Standard 

 Error 

z-value p-value 

TLZNH ̂  6.9263 5.599010
-04

 1.2371  10
4
 < 2.2  10

-16
 * 

 ̂  5.7913 1.898510
-05

 3.0505  10
5
 < 2.2  10

-16
 * 

 ̂  2.7978  10
-3

 1.7994  10
-4

 1.5548  10
1
 < 2.2  10

-16
 * 

 ̂  2.0476e-01 3.0346  10
-02

 6.7476 1.503  10
-11

 * 

GPGW ̂  1.3707  10
-1

 1.0484  10
-1

 1.3074 0.1911 

 ̂  6.2574  10
-1

 1.2253  10
-1

 5.1067 3.278  10
-7

 * 

 ̂  1.2213  10
-2

 9.2441  10
-3

 1.3212 0.1864 

 ̂  1.5476  10
1
 6.9336  10

-4
 22320.6634 < 2.2  10

-16
 * 

EPGW ̂  0.6613 0.3198 2.0679 0.03865 * 

 ̂  1.0981 0.4533 2.4224 0.01542 * 

 ̂  0.0022 0.0049 0.4532 0.6504 

 ̂  3.9036 2.1414 1.8229 0.06831 

PGW ̂  0.8294 0.1099 7.5438 4.566  10
-14 

* 

 ̂  0.01299 0.0084 1.5361 0.12451 

 ̂  2.5884 1.1714 2.2098 0.02712 * 

ENH ̂  0.7214 0.1144 6.3058 2.866  10
-10 

* 

 ̂  0.0029 0.0004 7.7513 9.098  10
-15 

* 

 ̂  4.6046 0.0006 7332.2447 < 2.2  10
-16

 * 

GNH ̂  4.9414  10
-1

 3.2528  10
-01

 1.5191 0.128725 

 ̂  2.1342  10
-3

 7.7337  10-04 2.7596 0.005787 * 

 ̂  1.0101  10
1
 3.8614  10

-4
 26159.0273 < 2.2  10

-16 
*** 

                   Significance at 5% is indicated as: * 
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Goodness-of-fit test of the failure times data are presented in Table 5.8 . The results  of  

TLZNH gives smaller values of AIC, BIC, AICc, W*, A*   and K-S than GPGW, 

EPGW, PGW and ENH. The implication is that, TLZNH is better in fitting the failure 

times. 

Table 5. 8: Goodness-of-fit for failure times 

Model AIC BIC AICc W
*
 A

*
 K-S  P-Value 

TLZNH 457.7414 465.3894 458.6302 0.1922 1.3654 0.1152 0.5211 

GPGW 472.7656 480.4137 473.6545 0.3100 2.0034 0.1635 0.1380 

EPGW 476.6777 484.3258 477.5666 0.3704 2.3346 0.2033 0.0321 

PGW 480.9676 486.7036 481.4893 0.4289 2.6492 0.1968 0.0415 

ENH 475.4455 481.1816 475.9672 0.3763 2.3662 0.2092 0.0252 

GNH 477.6980 483.4340 478.2197 0.3108 2.0095 0.1600 0.1546 

 

In Figure 5.2, the histogram plot also demonstrates that the TLZNH provides a better fit 

to the failure times than the existing competing models 

 

 

Figure 5. 2:Histogram and estimated densities of failure times data 
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The TLZNH was further applied to the second data known as the maximum stress data. 

Table 5.9 gives the descriptive statistics of the data. It shows average stress as 133.78 

per 31,000 psi. with positive skewness of  0.3360 and kurtosis of 1.0379. 

Table 5. 9: Descriptive Statistics   of Maximum stress data 

Dataset Min Max Mean Std. Dev. Skewness Kurtosis 

Maximum 

stress 

70.000 212.0000 133.7800 22.6134 0.3660 1.0379 

 

The TTT transform plot of the maximum stress data shows increasing failure rate shape. 

The plot in Figure 5.3  is  concave above the 45 degrees line.  

 

 

Figure 5. 3: TTT Transform plot of Maximum stress  
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Four models are applied to fit the maximum stress data. These are  TL generalized 

exponential (TLGE) ( Sangsanit et al. 2016), generalized exponential (GE) and 

exponentiated generalized exponential (EGE) (Cordeiro et al. 2013). 

The maximum likelihood estimates, standard errors, z-values and p-values of the 

maximum stress data are showed in Table 5.10. Many of the parameters show 

significance at 5%, with the exception of   and  for TLZNH and   for EGE. 

Table 5. 10: Maximum likelihood estimates of  maximum stress data 

Model 
Parameter Estimate Standard 

Error 
z-value p-value 

TLZNH ̂  24.9548 0.0550 453.1038 < 2.2  10
-16

 * 

 

̂  1.0594 0.3878 2.7313 0.0063 * 

 ̂  0.0277 0.0227 1.2201 0.2224 

 ̂  1.8191 1.2429 1.4636 0.1433 

TLGE ̂  0.0288 0.0015 19.5518 2.2  10
-16

 * 

 
̂  22.3132 0.1871 119.2547 2.2  10

-16
 * 

 ̂  3.8993 1.0539 3.6999 0.0002 * 

GE ̂  4.453  10
-2

 8.5789  10
-4

 5.1907  10
1
 < 2.2  10

-16
 * 

 
̂  2.3677  10

+2
 2.9804  10

-8
 7.9442  10

9
 < 2.2  10

-16
 * 

EGE ̂  8.8534  10
-2

 3.1427  10
-1

 2.8170  10
-1

 0.7782 

  ̂  1.2187  10
2
 5.5783  10-

4
 2.1847  10

5
  <2  10

-16
 * 

 ̂  4.4219  10
-1

 1.5696 2.8170  10
-1

 0.7782 

       Significance at 5% is indicated as: * 
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In Table 5.11, the goodness-of-fit results of TLZNH for the maximum stress data gives 

smaller values of AIC, BIC, AICc, W*, A*   and K-S than, TLGE, GE and EGE. The 

TLZNH is better in fitting maximum stress data than the competitive models.  

Table 5. 11: Goodness-of-fit of maximum stress data 

Model AIC BIC AICc W
*
 A

*
 K-S  P-Value 

TLZNH 915.8906 926.3113 916.3117 0.0955 0.5562 0.0862 0.4476 

TLGE 916.7832 924.5987 917.0332 0.1266 0.7272 0.0949 0.3293 

GE 921.4296 926.6399 921.5533 0.0527 0.3507 0.9718 0.0000 

EGE 927.9154 935.7309 928.1654 0.0529 0.3516 0.9605 0.0000 
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The histogram plots and estimates, PDF of TLZNH and other fitted distribution for 

maximum stress data   are presented in Figure 5.4. The plots show better fit for TLZNH.

 

Figure 5. 4: Histogram and estimated densities of maximum stress data 

 

5.2.2 Applications of TLZLx 

 The study applied five models to fit the survival times data, these models are  TLZLx, 

TL Weibull Lomax (TLWLx) (Farrukh et al. 2019), TL Lomax (TLLx) (Sangsanit et al. 

2016),  Weibull Lomax (WLx) (Tahir et al. 2015)  and Gomperz  Lomax (GLx) 

(Oguntunde 2017). 
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The descriptive statistics of the survival data in Table 5.12 shows an average survival 

times of 1.8367 days with positive skewness 1.2156 and kurtosis of 3.9546. 

Table 5. 12: Descriptive Statistics   of Survival times data 

Dataset Min Max Mean Std. Dev. Skewness Kurtosis 

Survival  times 0.0800 7.0000 1.8367 1.2156 1.7184 3.9546 

 

The TTT plot of the survival times data in Figure 5.5 shows an increasing failure rate. 

The line is concave on the 45 degrees line.  

 

 

Figure 5. 5: TTT Transform plot of Survival times data 
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In Table 5.13 shows many of the parameter estimates not significant at 5% significant 

level, except for the parameter   of the TLZNH and the    of TLLx. 

                           Table 5. 13: Maximum likelihood estimates of   survival times data 

Model 
Parameter Estimate Standard 

 Error 
z-value p-value 

TLZLx ̂  9.3413 6.2803 1.4874 0.1369   

 ̂  2.9434 0.9146 3.2183 0.0013 * 

 ̂  1.4329 0.7799 1.8372 0.0662 

 ̂  0.5157 0.3372 1.5292 0.1262 

TLWLx ̂  1.4266 0.9237 1.5446 0.1224 

 ̂  0.6585 0.8895 0.7403 0.4591 

 ̂  0.6939 0.6793 1.0216 0.3070 

 ̂  1.6468 1.2001 1.3723 0.1700 

TLLx ̂  11.9226 14.3159 0.8328 0.4049 

 ̂  0.0426 0.0553 0.7714 0.4405 

 ̂  2.8291 0.5749 4.9209 8.616  10
-7

 * 

WLx ̂  2.2232 0.6967 3.1913 0.0014 * 

 ̂  1.6563 1.7763 0.9325 0.3511 

 ̂  0.4735 0.2625 1.8040 0.0712 

GLx ̂  0.7298 0.8167 0.8936 0.3716 

  ̂  8.4117 9.0255 0.9320 0.3513 

 ̂  2.3277 2.6050 0.8935 0.3716 

 ̂  0.01660 0.03244 0.5116 0.6089 

                     Significance at 5% is indicated as: * 
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In Table 5.14, the results present TLZLx to have smaller values for AICc,   AIC, W*, 

BIC, A*   and K-S than TLWLx, TLLx, WLx and GLx. This means that in the choice of   

fitting the survival times data, it is more appropriate to use TLZLx as it is better than the 

competing models. 

Table 5. 14: Goodness-of-fit for survival times data 

Model AIC BIC AICc W
*
 A

*
 K-S  P-Value 

TLZLx 208.4064 217.5131 209.0034 0.0534 0.3331 0.0713 0.8579 

TLWLx 213.5021 222.6088 214.0991 0.1077 0.7144 0.1013 0.4510 

TLLx 212.3250 219.1550 212.6780 0.1020 0.7175 0.1111 0.3365 

WLx 212.3171 219.1471 212.6700 0.1250 0.8032 0.1077 0.3740 

GLx 216.9100 226.0167 217.5070 0.1740 1.0373 0.1165 0.2828 
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The histogram plots and estimates PDF of TLZLx and other fitted distribution for 

survival data are presented in Figure 5.6. The data plots show better fit of TLZNH than 

TLLx, WLx and GLx. 

 

                     Figure 5. 6: Histogram and estimated densities for survival times data  

 

            5.2.3 Applications of TLZW 

Two data sets: breaking stress and servicing times data are applied in the case of 

TLZW. In the breaking stress data, the models applied are   TL  generalized exponential 

(TLGE) (Sangsanit et al. 2016), generalized exponential (GE) and exponentiated 

generalised exponential (EGE) (Cordeiro et al. 2013). The models compared against 

servicing times data are TL Weibull Lomax (TLWLx), Topp-Leone Lomax (TLLx), 

Exponentiated Lomax (ELx), Gomperz  Lomax (GLx). Table 5.15 shows the 
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descriptive statistics for the breaking stress data. The average breaking stress is 2.6214 

Giga Pascal (GPa) , with positive  skewness of 1.0139 and kurtosis 0.0432.  

Table 5. 15: Descriptive Statistics   of Breaking stress data 

Dataset Min Max Mean Std. Dev. Skewness   Kurtosis 

Breaking stress 0.3900 5.5600 2.6214 1.0139 0.3626 0.0432 

 

The breaking stress data exhibits increasing failure rate for the fact that TTT transform 

plot in Figure 5.7 is concave on the 45 degrees line.  

 

Figure 5. 7: TTT Transform plot of Breaking stress data 

 

The results in Table 5.16 shows many of the parameter estimates based on the 

maximum likelihood estimator to be significant at 5% significance level, except for the 

parameters   and   for TLZNH and   and   for TLGE.  
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                             Table 5. 16: Maximum likelihood estimates of   breaking stress data 

Model Parameter Estimate Standard Error z-value p-value 

TLZW ̂  2.00848 2.45528 0.8180 0.41334 

 

̂  1.47720 0.61208 2.4134 0.01580 * 

 ̂  0.33383 0.39497 0.8452 0.39800 

 ̂  1.07494 0.44692 2.4052 0.01616 * 

TLGE ̂  0.8059 0.1275 6.3220 2.582  10
-10

 * 

 
̂  20.2519 21.6437 0.9357 0.3494 

 ̂  0.3027 0.2947 1.0272 0.3043 

GE ̂  1.0132 0.0874 11.5824 < 2.2  10
-16

 * 

 

̂  7.7883 
1.4962 5.2054 

1.936  10
-07

 

* 

EGE ̂  0.3731 0.0316 11.8001 < 2.2  10
-16

 * 

 

̂  7.7885 1.4962 5.2053 1.937  10
-07

 * 

 ̂  2.7154 0.0043 625.7944 < 2.2  10
-16

 * 

                        Significance at 5% is indicated as: * 

 

TLZW has smaller AICc, AIC, W*, BIC, A*   and K-S than TLGE, GE and EGE. It 

means that TLZW is better and more appropriate to use in modeling breaking stress, as 

shown in Table 5.17. 

Table 5. 17: Goodness-of-fit breaking stress data 

Model AIC BIC AICc W
*
 A

*
 K-S  P-Value 

TLZW 290.3853 300.8060 290.8063 0.0620 0.3730 0.0618 0.8403 

TLGE 292.0938 299.9093 292.3438 0.1386 0.7116 0.0919 0.0618 

GE 296.3646 301.5749 296.4883 0.2267 1.1860 0.1077 0.1962 

EGE 298.3646 306.1801 298.6146 0.2267 1.1860 0.1077 0.1962 
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The histogram plot in Figure 5.8 shows TLZW as best fit model for  analyzing the 

breaking stress data.  

 

Figure 5. 8: Histogram and estimated densities of breaking stress 

 

The second data applied on the TLZW is the windshield servicing times data: The 

descriptive statistics in Table 5.18 depicts an average servicing times of 2.0852 per 

1000hour, with positive skewness of 0.4292 and kurtosis of -0.3535.  

Table 5. 18: Descriptive Statistics of windshield servicing times data 

Dataset Min Max Mean Std. Dev. Skewness   Kurtosis 

Servicing time 0.0460 5.1400 2.0852 1.2452 0.4292 -0.3535 
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The windshield servicing times data exhibits an increasing failure rate as the TTT 

transform plot in Figure 5.9 shows concave on the 45 degrees line.  

 

 

Figure 5. 9: TTT Transform plot of Windshield Servicing Times data 

 

Table 5.19 depicts that only one of the estimated parameters of TLZW and GLx shows 

significance at 5% level of significance. However, for TLWLx ,  none of the estimated 

parameters shows significance. All the estimated parameters of TLLx and ELx shows 

significance.  
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           Table 5. 19: Maximum likelihood estimates of   windshield servicing times data 

Model 
Parameter Estimate Standard 

Error 
z-value p-value 

TLZW ̂  4.6291 2.4131 1.9183 0.0551 

 ̂  1.1521 0.3231 3.5660 0.00036 

 ̂  0.5889 0.3332 1.7671 0.0772 

 ̂  0.4366 0.1522 2.8685 0.004 * 

TLWLx ̂  2.4337 2.3448 1.0379 0.2993 

 ̂  0.0867 0.3914 0.2214 0.8247 

 ̂  2.2714 9.089 0.2499 0.8027 

 ̂  0.4652 0.4388 1.0602 0.2890 

TLLx ̂  2.6674  10
1
 2.8196  10

4
 94602.5448 < 2.2  10

-16
 * 

 ̂  1.3254  10
-2

 1.8461  10
-3

 7.1793 7.005  10
-13

 * 

 ̂  1.9174 3.4711  10
-1

 5.5239 3.316  10
-8

 * 

ELx ̂  1.8812 3.4031  10
-1

 5.5279 3.241  10
-8

 * 

 

̂  3.6789  

10
+01

 
2.1569  10

-4
 1.7056  10

+05
 < 2.2  10

-16
 * 

 ̂  1.9123  10
-2

 2.7020  10
-3

 7.0773 1.470  10
-12

 * 

GLx ̂  1.2435 1.5708 0.7916 0.4286 

  ̂  0.2330 0.6114 0.3811 0.7031 

 ̂  3.3278 0.4099 8.1189 4.703  10
-16

 * 

 ̂  0.6045 1.0558 0.5726 0.5669 

       Significance at 5% is indicated as: * 

In the Goodness-of-fit test results in Table 5.20, TLZW has smaller AICc, AIC, W*, 

BIC, A*   and K-S than TLWLx, TLLx, ELx and GLx. This shows that TLZW is better 

and more appropriate to use in modeling windshield servicing times data.  
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Table 5. 20: Goodness-of-fit of windshield servicing times data 

            

The histogram plot in Figure 5.10 shows TLZW as best fit model for analyzing 

windshield servicing times data.  

 

 

Figure 5. 10: Histogram and estimated densities for windshield servicing times data 

 

 

 

Model AIC BIC AICc W
*
 A

*
 K-S  P-Value 

TLZW 203.8196 212.3921 204.5092 0.0268 0.1875 0.0577 0.9768 

TLWLx 204.5402 213.1128 205.2299 0.0470 0.3042 0.0734 0.8619 

TLLx 213.7357 220.1651 214.1424 0.2123 1.2847 0.1449 0.1283 

ELx 214.0420 220.4714 214.4488 0.2151 1.3022 0.1458 0.1242 

GLx 204.2726 212.8451 204.9623 0.0384 0.2555 0.0676 0.9170 
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5.2.4 Applications of TLZKw 

Two data sets are used to assess fitness of TLZKw. These data sets presents as; milk 

production and cybercrime data. The competing models used are Topp-Leone 

Kumaraswamy (TLKw) (Sangsanit et al.2016) , Zubair Kumaraswamy (ZKw) (Zubair, 

2018), Kumaraswamy(Kw), Weibull(W), Zubair Weibull(ZW), Topp-Leone 

generalized exponential(TLGE) and Topp-Leone Lomax (TLLx). 

In the descriptive statistics of milk production data in Table 5.21, it shows average milk 

production rate of 0.4696 with negative skewness -0.3386 and  kurtosis of -0.4053.  

Table 5. 21: Descriptive Statistics   of milk production data 

Dataset Min Max Mean Std. Dev. Skewness    Kurtosis 

Milk  

production 

0.0168 0.8781 0.4696 0.1938 -0.3386 -0.4053 

 

The milk production data exhibits a bathtub failure rate. In the TTT transform plot in 

Figure 5.11, the data shows concave above the 45 degrees line, depicting as a lifetime 

data. 
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Figure 5. 11: TTT Transform plot of Milk Production data 

Table 5.22 shows the estimated parameters, standard errors, z-value and the p-value. 

The result shows many of the estimated parameters for the models to be significant at 

5% significant level, except for   and   of TLGE. 
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Table 5. 22: Maximum likelihood estimates milk production data 

Model Parameter Estimate Standard Error z-value p-value 

TLZKw ̂  4.6797 2.0135 2.3241 0.0201* 

 ̂  2.3134 0.4941 4.6820 2.84110
-06

 * 

 ̂  0.9832 0.3845 2.5570 0.0106 * 

 ̂  0.5929 0.2268 2.6139 0.0090 * 

TLKw ̂  3.6621 1.7421 2.1021 0.035547 * 

 ̂  5.5355 2.0861 2.6535 0.008 * 

 ̂  0.3178 0.1446 2.1970 0.028022 * 

ZKw ̂  2.9365 1.10061 2.6681 0.0076 * 

 ̂  2.8317 0.3618 7.8263 5.02410
-15

 * 

 ̂  0.8416 0.1911 4.4044 1.06110
-05

 * 

Kw ̂  3.35618 0.57132 5.8744 4.24410
-09

 * 

 ̂  2.1695 0.2229 9.7302 < 2.210
-16

 * 

W ̂  2.57856 0.21056 12.2465 < 2.210
-16

 * 

 ̂  5.2800 0.7680 6.875 6.21310
-12

 * 

ZW ̂  2.64338 0.80811 3.2711 0.001071 * 

 ̂  1.34763 0.14888 9.0519 < 2.210
-16

 * 

 ̂  5.9124 0.5314 11.1269 < 2.210
-16

 * 

TLGE ̂  3.4157 0.4319 7.9069 2.63810
-15

 * 

 ̂  11.4094 7.1401 1.5979 0.11006     

 ̂  0.29385 0.17394 1.6894 0.09115 

TLLx ̂  7.122410
01

 1.326510
-4

 5.369510
5
 < 2.210

-16
 * 

  ̂  2.946910
-2

 2.679110
-3

 1.100010
1
 < 2.210

-16
 * 

 ̂  3.6609 5.6399 6.4911 8.52410
-11

 * 

        Significance at 5% is indicated as: * 
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The results indicate in Table 5.23, that TLZKw achieves smaller values for AICc, AIC, 

W*, BIC, A*   and K-S. This means that,   TLZKw fits the data sets better than TLKw, 

ZKw, Kw, W, ZW, TLGE and TLLx. 

Table 5. 23: Goodness-of-fit for milk production 

Model AIC BIC AICc W
*
 A

*
 K-S  P-Value 

TLZKw -48.6659 -38.0501 -48.2659 0.0271 0.1878 0.0441 0.9867 

TLKw -47.0125 -39.0506 -46.7749 0.0853 0.5475 0.0728 0.6346 

ZKw -46.3392 -38.3773 -46.1016 0.0891 0.6054 0.0533 0.9269 

Kw -44.4216 -39.1136 -44.3039 0.1532 0.9902 0.0780 0.5461 

W -35.9592 -30.6513 -35.8415 0.2349 1.5354 0.0875 0.3981 

ZW -29.3116 -21.3497 -29.0740 0.2833 1.8457 0.0781 0.5445 

TLGE -15.0561 -7.0942 -14.8185 0.5274 3.2613 0.1400 0.0326 

TLLx -1.6198 6.3421 -1.3821 0.7248 4.3705 0.1473 0.0210 
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The histogram plot in Figure 5.12 shows TLZKw as best fit model for analyzing milk 

production   data. 

 .  

Figure 5. 12: Histogram and estimated densities milk production 

 

The second data set applied to TLZKw is cyber security data. Table 5.24 shows average 

of 0.0027 rate of the cost of cybercrimes to GDP, positively skewed 2.7284 with 

kurtosis of 7.8497. 
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Table 5. 24: Descriptive Statistics of Cyber security data 

Dataset Min Max Mean Std. Dev. Skewness  Kurtosis 

Cost of 

cybercrime to 

GDP 

0.0004 0.0160 0.0027 0.0034 2.7284 7.8497 

 

The cyber security data set exhibits an increasing   failure rate in Figure 5.13. This is as 

the TTT transform plot is first concave above the 45 degrees line.  

 

Figure 5. 13: TTT Transform plot of Cost of cybercrimes to GDP  

Table 5.25 shows the majority of estimated parameters of the different models 

significant at 5% level of significance, except for, however three of the parameters of 

the TLZKw, one parameter of TLIW and TLGE that were not significant.  
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Table 5. 25: Maximum likelihood estimates of cyber security data 

Model 
Parameter Estimate Standard 

Error 
z-value p-value 

TLZKw ̂  21.5059 0.2646 81.2796 <210
-16

 * 

 ̂  11.4673 8.7150 1.3158 0.1882 

 ̂  0.2204 0.1387 1.5886 0.1122 

 ̂  0.6326 0.7526 0.8405 0.4007 

TLIW ̂  0.02134 0.0166 1.2898 0.1971 

 ̂  0.6865 0.1467 4.6785 2.8910
-06

 * 

 ̂  0.5316 0.7433 0.7151 0.4746 

TLWLx ̂  4.921210
-01

 1.978610
-01

 2.4872 0.01288 * 

 ̂  6.550210
-01

 3.036810
-01

 2.1570 0.03101 * 

 ̂  2.510510
02

 8.921410
-04

 2.814010
05

 < 210
-16

 * 

 ̂  2.2139 1.4992 1.4768 0.13973 

TLKw ̂  96.5092 0.0011 89918.7070 < 2.210
-16

 * 

 ̂  3.5771 0.6286 5.6905 1.26710
-08

 * 

 ̂  0.0559 0.0173 3.2403 0.0012 * 

TLGE ̂  3.1433 1.6717 1.8803 0.0601 

 ̂  23.1374 0.0016 14248.9174 < 2.210
-16

 * 

 ̂  0.0082 0.0019 4.3231 1.53810
-05

 * 

 Significance at 5% is indicated as: * 

 

 

The results indicate in Table 5.26, that TLZKw also achieves smaller values for AICc, 

AIC, W*, BIC, A*   and K-S. This Indicates that TLZKw fits the data better than 

TLIW, TLKw, TLWLx, and TLGE. 
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Table 5. 26: Goodness-of-fit for dataset   Cyber security 

Model AIC BIC AICc W
*
 A

*
 K-S  P-Value 

TLZKw -220.8348 -216.2928 -218.6126 0.0863 0.4542 0.1517 0.6649 

TLIW -218.4669 -215.0605 -218.4669 0.1598 0.9037 0.1981 0.3273 

TLWLx -215.8569 -211.3149 -213.6347 0.1570 0.8699 0.2477 0.1190 

TLKw -171.1297 -167.7232 -169.8666 0.0951 0.5007 0.4684 0.0001 

TLGE -168.2346 -164.8281 -166.9715 0.0937 0.4934 0.4772 0.0001 

 

The histogram plots and estimates PDF of TLZKw and other fitted distribution for 

Cyber security data are shown in Figure 5.14. The figure reveals that TLZKw fits the 

cyber security data better than the other competing models.

 

Figure 5. 14: Histogram and estimated cyber security data 
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5.2.5 Applications of TLZIW 

The waiting times data is applied to TLZIW, the data set is modeled using these models 

: TLZIW, Topp-Leone inverse Weibull (TLIW) (Salman et al. 2017), Zubair Weibull 

(ZW), Inverse Weibull (IW) (Calabria and Pulcini 1994), Topp-Leone generalized 

exponential (TLGE), Topp-Leone Weibull Lomax (TLWLx), exponentiated generalized 

exponential (EGE) and Weibull (W). 

In Table 5.27, it shows the average waiting times of the data as 39.8281 per second. The 

data is positively skewed with kurtosis of 2.5921.  

Table 5. 27: Descriptive Statistics of waiting times data 

Dataset Min Max Mean Std. Dev. Skewness  Kurtosis 

Waiting  times 7.000 169.0000 39.8281 33.7505 1.5103 2.5921 

 

The dataset shows   a bathtub failure rate. The TTT transform plot in Figure 5.15 is 

concave on the 45 degrees line.   

 

Figure 5. 15: TTT Transform plot of Waiting Times data 
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In Table 5.28, it shows that the estimated parameters on the waiting times data show 

significance at 5% level of significance, except for one of the parameters of TLZIW , 

two parameters of EGE and four of the TLWLx.  
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                                  Table 5. 28: Maximum likelihood estimates of waiting times data 

Model Parameter Estimate Standard Error z-value p-value 

TLZIW ̂  4.2984 1.9036 2.2581 0.02394 * 

 ̂  109.8955 81.1952 1.3535 0.17590 

 ̂  1.5393 0.1984 7.7604 8.46510
-15

 * 

 ̂  0.2542 0.1088 2.3367 0.01946 * 

TLIW ̂  142.0229 168.7576 0.8416 0.4000 

 ̂  1.1059 0.1492 7.4125 1.2410-
13

 * 

 ̂  0.2177 0.2107 1.0331 0.3015 

ZW ̂  57.0051 0.0024 24008.984 < 2.210
-16

 * 

 ̂  0.2693 0.0242 11.105 < 2.210
-16

 * 

 ̂  2.1020 0.16667 12.611 < 2.210
-16

 * 

IW ̂  48.7580 17.4430 2.7953 0.0052 * 

 ̂  1.3275 0.1293 10.2634 < 2.210
-16

 * 

TLGE ̂  1.401710
-02

 2.575010
-03

 5.4435 5.22510
-08

 * 

 ̂  2.574910
-01

 3.386110
-02

 7.6043 2.86510
-14

 * 

 ̂  1.179910
+01

 4.656510
-04

 25339.9044 < 2.210
-16

 * 

TLWLx ̂  1.7447 1.6562 1.0534 0.2921 

 ̂  1.4607 5.0759 0.2878 0.7735 

 ̂  0.1859 0.1581 1.1756 0.2397 

 ̂  4.7929 9.0878 0.5274 0.5979 

EGE ̂  0.0569 0.3827 0.1487 0.8818 

 ̂  1.7308 0.3197 5.4134 6.18510
-08

 * 

 ̂  0.6146 4.1335 0.1487 0.8818 

W ̂  1.2620 0.1194 10.5657 < 210
-16

 * 

  ̂  0.0086 0.0044 1.9676 0.04911 * 

                           Significance at 5% is indicated as: * 
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In Table 5.29, the results of maximum likelihood estimates are presented. The goodness 

of fit shows that the TLZIW has smaller values of AIC, BIC, AICc, W*, A*   and K-S 

than TLIW, ZW, IW, TLGE, TLWLx, EGE and W. This implies that TLZIW is better 

and appropriate for modeling the waiting times. 

Table 5. 29: Goodness-of-fit for waiting times data 

Model AIC BIC AICc W
*
 A

*
 K-S  P-Value 

TLZIW 589.8260 598.4615 590.5039 0.0785 0.5935 0.0750 0.8642 

TLIW 593.6580 600.1347 594.0580 0.1331 0.9515 0.0956 0.6029 

ZW 594.1804 600.6570 594.5804 0.1222 0.8892 0.0974 0.5777 

IW 595.0162 599.3339 595.2129 0.1826 1.2501 0.1005 0.5380 

TLGE 595.1706 601.6472 595.5706 0.1122 0.8080 0.1123 0.3953 

TLWLx 595.6701 604.3056 596.3480 0.1106 0.8131 0.0924 0.6460 

EGE 597.3321 603.8087 597.7321 0.1288 0.9010 0.1227 0.2905 

W 597.8110 602.1287 598.0077 0.1464 1.0036 0.1077 0.4484 

 

The histogram plots and estimates PDF of TLZIW and other fitted distribution for 

waiting times data is presented in Figure 5.16. The plot shows that the TLZIW provides 

better fit to the waiting times data. 
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                        Figure 5. 16: Histogram and estimated densities for waiting times data 
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   5.2.6 Application of  TLZLx_R 

The transformer turn data were modeled using the TLZLx regression (TLZLX_R) 

model. The descriptive statistics in Table 5.30 shows the transformer data to have an 

average time of   135.6833 hours,   positive skewness of 2.4884, and kurtosis of 5.2136. 

Table 5. 30: Descriptive Statistics   of transformer turn data 

Dataset Min Max Mean Std. Dev. Skewness   Kurtosis 

Transformer 

data 

0.6000 1002.3000 135.6833 261.8842 2.4884 5.2136 

 

The transformer data shows a bathtub failure rate. This is seen in Figure 5.17 where the 

TTT transform plot shows convex below the 45 degrees line. 

 

                                Figure 5. 17: TTT transform plot of transformer turn data  
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The study compares the following models: TL Zubair Lomax Regression (TLZLx_R), 

TL Gomperz Lomax Regression (TLGLx_R) (Sangsanit et al., 2016) and Gomperz 

Lomax Regression ( GLx_R) (Oguntunde 2017). Table 5.31 shows results of maximum 

likelihood estimates, standard errors and p-values. The results of the TLZ_R implies 

that, in subjecting the transformer to 35.4 Kv, there is a significant increase in the 

failure rate of the transformer by 2.8944. Also, at 42.4Kv, there is a significant increase 

of the transformer failure rate by 0.7414 with   insignificant constant increase of 1.0999. 

The result generally suggests that, subjecting the transformer to different voltage levels 

has different effects. Hence, the presence of the regressive parameters are in good place 

to estimate for these effective differences in the failure rates for 35.4 .Kv and 42.4 Kv 

independent voltage factor levels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

www.udsspace.uds.edu.gh 

 

 

 

 



114 

 

 Table 5. 31: Maximum likelihood estimates of   Transformer Turn Censored Data 

Model Param

eter 

Estimate Standard 

Error 

z-value p-value 

TLZLx_R ̂  9.6351 10.0557 0.9582 0.3379 

 ̂  1.2519         0.4199 2.9815 0.0029* 

 ̂  0.4301 0.4108 1.0470 0.2951 

 ˆ0  1.0999 0.9494 1.1584 0.2467 

 1̂  2.8944 0.4786 6.0482 1.465  10
-09

* 

 ˆ2  0.7414 0.4225 1.7548 0.0492* 

TLGLx_R ̂  0.2330 0.1449 1.6078 0.10789 

 ̂  0.0817 0.0841 0.9713 0.33141 

 ̂  1.5650 0.7779 2.0117 0.04425 

 ˆ0  -16.0651 0.9850 -16.3096 < 2.0  10
-16

* 

 1̂  -0.0104 0.8444 -0.0124 0.99011 

 ˆ2  -1.8744 24.1138 -0.0777 0.93804 

GLx_R ̂  0.8676 2.9644 0.2927 0.7697 

 ̂  0.0377 0.0226 1.6709 0.09474 

 ̂  0.8805 3.0509 0.2886 0.7728 

 ˆ0  -12.0952 28.2851 -0.4276 0.6689 

 1̂  -11.1954 23.8355 -0.4697 0.6385 

 ˆ2  -7.1001 0.05282 -134.3983 < 2  10
-16

* 

                                     Significance at 5% is indicated as: * 

The goodness of fit test in Table 5.32 shows the AIC and BIC results for TLZLx_R , 

TLGLx_R and GLx_R. It is seen that TLZLx_R is better for modeling transformer data. 

This is because it has smaller values of AIC and BIC than the competitive models. 
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  Table 5.32: Goodness-of-fit for Transformer Turn Censored Data 

Model AIC BIC 

TLZLx_R 272.7620 281.1692 

TLGLx_R 296.6745 305.0817 

GLx_R 297.5820 305.9892 

 

Cox-Snell residual analysis was conducted to see how the TLZLx_R model fits the 

Transformer Turn data against the other competitive models. In this case, if the model 

fits the data, the Cox-Snell residual is expected to follow a standard exponential 

distribution. The test results in Table 5.33 shows that the Cox-Snell residual of 

TLZLx_R follows the standard exponential better than TLGLx_R and GLx_R . The  

TLZLx_R has the smallest value of   K-S and the highest P-value among the 

competitive models.  

           Table 5.33: Standard exponential test results of Cox-Snell residual 

Model K-S P-Value 

TLZLx_R 0.1124           0.8433 

TLGLx_R 0.1296 0.6950 

GLx_R 0.1403 0.5960 

 

Hence, using the standard exponential distribution to compute the CDF of the Cox-Snell 

residual   and plotting it against the empirical CDF of the Cox-Snell residuals is 

expected to cluster along the diagonal. The P-P plot of the Cox-Snell residual of 

TLZLx_R  is seen in Figure 5.18 to cluster along the diagonal more better than 

TLGLx_R and GLx_R. The TLZLx_R  shows a better fit to the Transformer Turn data. 
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Figure 5.18: Theoritical and empirical probabilities of Cox-Snell residual for: (a) 

TLZLx_R , (b) TLGLx_R and (c) GLx_R.  
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5.3   Summary of Chapter Five 

In this chapter, the simulation studies and empirical applications were presented. In the 

simulation study of the special distributions, when sample size was made to increase, 

there was responsive decrease of   average bias and that of root mean square error. The 

special distributions: TLZNH, TLZLx, TLZW, TLZKw, TLZIW and TLZLx_R, were 

subjected to data applications, all of them were better than their competitive 

distributions. The results show that the special models are appropriate for modeling 

several lifetime data from different application fields. 
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CHAPTER SIX 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

6.1 Introduction 

This chapter presents the summary, conclusions and recommendations of the entire 

study.  

6.2 Summary of Results 

This section gives the summary of results based on the specific objectives. In all, there 

were five objectives. 

Objective one results: The TLZ generator was developed. The new generator 

possessed at least one scale parameter and one shape parameter. The CDF, PDF and the 

hazard functions were primarily derived. Furthermore, six new models were derived 

from the TLZ generator. These new models were TLZNH, TLZLx, TLZW, TLZKw, 

TLZIW and the TLZLx_R. Each of the new models at least had a scale parameter and a 

shape that made them flexible enough to exhibit symmetrical, right skewed and left 

skewed illustrated by the PDF plots. The models also exhibited bathtub shape, upside 

down bathtub shapes by virtue of their hazard function plots.  

Objective two results: The statistical properties of the TLZ generator were derived. 

These includes the moment generating function, quantile function, incomplete 

moments, moments, mean and median deviations, inequality measures, mean residual 

life, stochastic ordering, stress- strength reliability and order statistics. 
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Objective three results: The parameter estimators were derived. The maximum 

likelihood technique was used in this case. The score functions were derived from the 

total log likelihood function.  

Objective four results: Simulation study was conducted to study the behavior of the 

parameter estimators. In the simulation study of the special distributions, whiles sample 

size was made to increase, there was responsive decrease of   average bias and that of 

root mean square error. This satisfied the consistency property of the maximum 

likelihood estimator. 

Objective five results: In this last objective, the applications of the new models to real 

life data set. The special distributions: TLZNH, TLZLx, TLZW, TLZKw and TLZIW 

were subjected to data applications against some competitive models. The best model 

was however selected based on smaller AIC, BIC, Cramér-von and Mises test and 

Komogorov-smirnov values. The extent to which the models mimic density of the data 

was also illustrated through histogram plots. The TLZNH was subjected to the failure 

times data against competitive models: GPGW, EPGW, PGW, ENH and GNH. It was 

further subjected to the maximum stress data against competitive models: TLGE, GE 

and EGE. The TLZNH was better in both two data applications. The TLZLx was also 

applied to the survival times data against competitive models: TLWLx, TLLx, WLx and 

GLx. The TLZLx was better than the competing models.   The TLZW was applied to 

the breaking stress data against competitive models: TLGE, GE and EGE. It was again 

subjected to the windshield servicing times data against the competitive model: 

TLWLx, TLLx, ELx and GLx. All two data presented the TLZW to be better. The 

www.udsspace.uds.edu.gh 

 

 

 

 



120 

 

TLZKw was also applied to the milk production data and the cyber security data 

respectively against the models: TLKw, ZKw, Kw, W, ZW,TLGE, TLLx and TLIW, 

TLWLx, TLKw, TLGE. Furthermore, the TLZIW was applied to the waiting times data 

against competitive models: TLIW, ZW, IW, TLGE,  TLWLx, EGE and W . The model 

was better than the competitive models.  In a similar way,   the TLZLx_R, was applied 

to model the transformer turn censored data which had independent factors.  The 

TLZLx_R, which is a parametric regression model, was better than its competitive 

model, thus TLGLx_R and GLx_R.   The results show that the special models are 

appropriate for modeling several lifetime data from different application fields.  

 

6.3 Conclusions 

In this study, the TLZ-G family was developed with desirable statistical properties and 

well behaved parameter estimators. The special models, TLZNH, TLZW, TLZKw, 

TLZIW and TLZLx based on the family demonstrated well in modeling. This is due to 

the presence of both shape parameter and scale parameters inherited from   the TLZ-G 

family. The models are capable of controlling skewness, kurtosis and variability, hence, 

permitting modeling of several lifetime data sets. Specifically:   

 The special models were able to model right skewed, left skewed and 

symmetrical data sets.   

 The hazard functions of the special models demonstrated bathtub and upside 

down bathtub characteristics. Hence they were able to model monotonic and 

non-monotonic data sets. 
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 The quantile function of the special models had closed forms, hence made 

generations of random numbers easier in simulation processes.  

 The MLE of the special models exhibited consistency; thus,   the average bias 

and root mean square error were decreasing when sample size was increasing.  

 The special models fitted several data sets and they were all better than their 

competing models. 

6.4 Recommendations 

 Further studies may employ the TLZ-G generator to modify and study the 

properties of   other existing distributions to model lifetime data.  

 The bivariate extensions for the special distributions can be done to model 

bivariate data, for example studying some characteristic dependencies of age 

and employment. 

 Also, further studies can look at the mixture distributions of the special models. 

In such case, different samples that come from the same population can be 

modeled. An example is modeling the failure rate of an aircraft that has right 

side and left side cooling systems.  

 Further studies can also extent the special distributions to model extreme value 

events, for example, times of volcanic eruptions and river floods. 
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APPENDIX A 

PDF AND CDF OF COMPETITIVE MODELS 
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APPENDIX B 

DATA 

Appendix B1: Failure times of device components 

0.1   0.2   1.0   1.0  1.0   1.0   1.0 2.0   3.0  6.0   7.0  11.0 

12.0       18.0  18.0  18.0  18.0  18.0 21.0  32.0 36.0  40.0  45.0 45.0 

47.0  50.0  55.0  60.0  63.0  63.0 67.0  67.0  67.0  67.0  72.0 75.0  

79.0  82.0  82.0  83.0  84.0 84.0  84.0  85.0 85.0 85.0  85.0  85.0 

86.0  86.0           

 

Appendix B2: Maximum stress per 31,000psi 

70  90   96  97  99   100  103  104  104 105 107 108  

108    108  109 109   112  112 113  114 114 114 116 119 

120   120  120 121   121       123        124  124 124 124  124  128 

128  129  129 130 130  130  131 131 131  131 131 132  

132  132 133 134 134 134 134  136 136  137 138 138 

138   139  139 141 141  142  142 142 142 142 142  144 

144  145 146 148  148  149   151 151 152 155  156 157 

157  157 157 158  159  162 163 163 164  166  166  168 

170 174  201 212          
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Appendix B3: Survival times of guinea pigs 

0.10         0.33      0.44       0.56      0.59      0.72      0.74       0.77      0.92      0.93      0.96      1.00    

 1.00       1.02      1.05      1.07        07   0.08        1.08       1.08      1.09       1.12      1.13      1.15  

1.16      1.2        1.21      1.22       1.22      1.24       1.3          1.34      1.36      1.39      1.44      1.46      

 1.53      1.59       1.6        1.63       1.63      1.68      1.71      1.72      1.76      1.83      1.95      1.96 

1.97      2.02      2.13      2.15       2.16      2.22       2.3        2.31       2.4        2.45      2.51      2.53   

2.54      2.54      2.78      2.93      3.27      3.42      3.47      3.61       4.02       4.32      4.58      5.55 

 

Appendix B4: Breaking stress 

3.70      2.74    2.73    2.5      3.6       3.11    3.27     2.87    1.47    3.11     4.42     2.41    

3.19    3.22    1.69    3.28    3.09    1.87    3.15     4.90     3.75      2.43    2.95     2.97   

3.39    2.96    2.53    2.67    2.93    3.22    3.39     2.81    4.20        3.33    2.55     3.31    

3.31    2.85    2.56    3.56    3.15    2.35    2.55     2.59    2.38      2.81    2.77     2.17    

2.83    1.92    1.41    3.68    2.97    1.36    0.98     2.76    4.91      3.68    1.84     1.59    

3.19    1.57    0.81    5.56    1.73    1.59        2.00 1.22     1.12     1.71    2.17     1.17  

5.08    2.48    1.18    3.51    2.17    1.69    1.25    4.38     1.84       0.39    3.68     2.48   

0.85    1.61    2.79    4.70    2.03    1.80       1.57      1.08      2.03    1.61    2.12      1.89  

2.88    2.82    2.05    3.65               
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Appendix B5:  Windshield Service Times 

0.046          1.436         2.592          0.140         1.492         2.600         0.150         1.580         2.670           0.248   1.719   

2.717          0.280         1.794         2.819         0.313         1.915         2.820         0.389           1.920         2.878   0.487         

1.963         2.950          0.622 1.978         3.003         0.900         2.053          3.102          0.952          2.065   3.304          

0.996         2.117         3.483         1.003          2.137         3.500          1.010          2.141         3.622         1.085   2.163         

3.665         1.092          2.183         3.695          1.152          2.240         4.015         1.183         2.341          4.628   1.244         

2.435         4.806          1.249          2.464         4.881         1.262         2.543         5.140    

 

Appendix B6: Waiting Times of blowhole eruption 

83 51 87 60 28 95 8 27 15 10 18 

16 29 54 91 8 17 55 10 35 47 77 

36 17 21 36 18 40 10 7 34 27 28 

56 8 25 68 146 89 18 73 69 9 37 

10 82 29 8 60 61 61 18 169 25 8 

26 11 83 11 42 17 14 9 12   
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Appendix B7: Milk Production  

0.4365 0.4260 0.5140 0.6907 0.7471 0.2605 0.6196 0.8781 0.4990 0.6058 

0.6891 0.5770 0.5394 0.1479 0.2356 0.6012 0.1525 0.5483 0.6927 0.7261 

0.3323 0.0671 0.2361 0.4800 0.5707 0.7131 0.5853 0.6768 0.5350 0.4151 

0.6789 0.4576 0.3259 0.2303 0.7687 0.4371 0.3383 0.6114 0.3480 0.4564 

0.7804 0.3406 0.4823 0.5912 0.5744 0.5481 0.1131 0.7290 0.0168 0.5529 

0.4530 0.3891 0.4752 0.3134 0.3175 0.1167 0.6750 0.5113 0.5447 0.4143 

0.5627 0.5150 0.0776 0.3945 0.4553 0.4470 0.5285 0.5232 0.6465 0.0650 

0.8492 0.8147 0.3627 0.3906 0.4438 0.4612 0.3188 0.2160 0.6707 0.6220 

0.5629 0.4675 0.3635 0.4111 0.6844 0.3413 0.4332 0.0854 0.3821 0.4694 

0.5349 0.3751 0.1546 0.4517 0.2681 0.4049 0.5553 0.5878 0.4741 0.3598 

0.7629 0.5941 0.6174 0.6860 0.0609 0.6488 0.2747    

  

Appendix B8: Cost of cybercrimes to GDP 

0.0008 0.0032 0.0017 0.0063 0.0014 0.0041 0.0011 0.0160 0.0021 

0.0020 0.0004 0.0002 0.0001 0.0018 0.0017 0.0041 0.0014 0.0007 

0.0011 0.0016 0.0064 0.0013 0.0019     

 

Appendix B9: Transformer Turn Data 

Voltage     Hours      

35.4kV  40.10  59.40  71.20  166.50  204.70  229.70  308.30  537.90  1002.30+  1002.30+  

42.4kV  0.60 13.40  15.20  19.90  25.00  30.20  32.80  44.40  50.20+  56.20  

46.7kV  3.10  8.30  8.90  9.00  13.60  14.90  16.10  16.90  21.30  48.10+  
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