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ABSTRACT 

 

Recently, statisticians have been exploring the generalization and extension of classes of 

distributions to make them more flexible for data analysis. There are a lot of data sets that are 

either extremely skewed, bimodal, bathtub or have heavy tails. However, inverse exponential 

distribution cannot model data sets that exhibit these features properly.  In this study, a new 

family of inverse exponential distribution called T-inverse exponential {Y} family based on 

quantile function approach has been developed to fill some of the gaps identified in the inverse 

exponential distribution. Statistical properties such as quantile function, mode, entropy and 

moments of the family have been derived. Three sub-families namely, T-IE{Weibull} T-

IE{Logistic} and T-IE{Lomax} families were defined. Three (3) special cases of these family of 

distributions namely, Log-logistic-IE{Weibull}, Weibull-IE {Logistic} and Gumbel-IE{Lomax} 

distributions were developed. Monte Carlo simulations were done to investigate the properties of 

the maximum likelihood estimation, ordinary least square estimators, weighted least square 

estimators, Cramér-von Mises minimum distance estimators and Percentile based estimators  for 

estimating the parameters of the special distributions. It was revealed that, maximum likelihood 

estimators for the parameters of the special distributions were consistent. Empirical applications 

of the special distributions to real life data sets were done and they showed greater flexibility for 

different kinds of lifetime data sets than other competing distributions. It is recommended that, 

parametric regression models for the special distributions can be developed to examine the 

relationship between the dependent and the independent variables of the distributions. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background 

Data scientists usually model data using either parametric or non-parametric statistical models. 

Parametric statistical modeling demand the knowledge of appropriate distributional assumptions 

of data sets, while non-parametric statistical modeling does not (Sheskin, 2000).  

Parametric statistical distributions have widely been used in the field of social and applied 

sciences to model data sets and make statistical inferences. For instance, modeling the survival 

times of heart attack patients in medical sciences; modeling life expectancy in demography; 

modeling urban air pollution in environmental science among others. In these area of applied 

research however, the data generating process may have varied degrees of features in terms of 

the skewness and kurtosis. The data may also exhibit non-monotonic failure rates. As a result, 

modeling data with the existing classical distributions may provide an approximation of a 

parametric fit rather than a reality and the conclusions might be incorrect if the data set deviates 

from the distributional assumptions (Nasiru, 2018; Hoskin, 2010). 

On the other hand, non-parametric statistics which does not rely on certain assumptions could be 

used for modeling to reduce the challenges of parametric statistics. It is however realized that, 

non-parametric procedures also has some serious weakness which include, lower power if the 

underlying distributional assumptions of the data set are known, low precision of measurements, 

loss of information, computational difficulties and explanation of non-parametric methods can 

also be more difficult as compared to parametric procedures (Nasiru, 2018; Hoskin, 2010 ; 

Allison, 1995).  

www.udsspace.uds.edu.gh 

 

 

 

 



2 
 

As a result of these challenges, most recent literatures are focused on classical statistical 

distributions with the aim of improving the existing distributions to make them more flexible and 

also, develop new statistical distributions for modeling data sets from various fields of study. 

This is because, it is desirable to use a probability distribution that provide a better fit to a data 

set than to transform it as this may affect the originality of the data set and the results 

(Oguntunde, 2017). 

There is a growing demand for modification, generalization and extension of the existing 

standard probability distributions to make them flexible and fit for the various situations. It is a 

fact that, an existing distribution may be tractable, that makes it easy for simulation but not 

flexible.  With this, many statisticians have extended the existing standard probability 

distributions using several approaches to make them flexible. One of such is by using generators 

to formulate the generalization of the existing probability distribution. With generalization, an 

extra shape parameter(s) from the family of distributions is added to the distribution. The extra 

shape parameter(s) is to vary the tail weight of the resulting compound probability distribution, 

in so doing inducing it with skewness (Oguntunde, 2017). In addition, the flexibility of a 

probability distribution can be gotten by combining two or more standard distributions. 

Among the distributions generalized in literature, the inverse exponential (IE) distribution in 

recent times has received much attention by researchers. IE distribution is used to model data 

sets with inverted bathtub failure rate. If X  follows IE distribution with parameter , then the 

probability density function (PDF) is given by; 

2( ) ( )exp( ), 0, 0.                                               (1.1)
xx

g x x       

In order to make the IE more flexible, a number of researches have been done which include, 

inverse generalized exponential models (Khan et al., 2009); exponential IE distribution with 
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applications to lifetime data (Oguntunde et al., 2017); the beta generalized IE distribution with 

real data applications (Bakoban et al., 2017)  and exponentiated generalized IE distribution 

(Oguntunde et al., 2017). Despite these attempts, there still exist some drawbacks. For instance 

some of the distributions are unable to give better parametric fit to data sets that exhibit non-

monotonic failure rates, some fail to properly model symmetric data (Oguntunde, 2017) and no 

extra shape parameter for improving the flexibility of modified distributions (Alzaatreh et al., 

2013). Hence, this research is aimed at developing and studying the statistical properties of the 

T-inverse exponential{Y} family of distributions using { }T X Y   framework pioneered by 

Aljarrah et al. (2014) that will be more flexible for life time data analysis. 

1.2 Problem Statement 

For lifetime data analysis, the selection of appropriate distribution is very vital for modeling a 

given data set. Data from different fields of study may exhibit different traits such as heavy tails, 

skewness, kurtosis and non-monotonic failure rates. However, the existing statistical 

distributions usually do not offer realistic fit to certain data sets. Hence, researchers started 

developing generalized classes of distributions to overcome these challenges. IE distribution is 

used to model data sets with inverted bathtub failure rates but cannot model data sets that are 

extremely skewed or that have heavy tails properly (Abouammoh and Alshingiti, 2009). Also, 

the IE is not suitable for modeling data that exhibit bimodality and bathtub failure rate. 

 Dey and Pradhan (2014) indicated that there is little literature on the generalization of the IE 

distribution compare to other distributions for flexible modeling of data. It is necessary therefore 

to rigorously explore the IE distribution so that data sets with these features can be modeled 

easily.  

www.udsspace.uds.edu.gh 

 

 

 

 



4 
 

Although the literature is filled with barrage of generalized classes of distributions, there is no 

specific generalized class of distributions that is appropriate for all kinds of data. Thus, 

developing new generalized classes of distributions in addition to the existing ones is necessary. 

This will help provide several choices of distributions from which researchers can compare and 

select the best for a given data set. This study therefore proposes another new class of 

distributions called the T-inverse exponential {Y} family of distributions to fill some of the gaps 

identified in the existing distributions. 

1.3 Objectives of the study 

1.3.1 General Objective 

The main objective is to develop and study the statistical properties of T-inverse exponential {Y} 

family of distributions. 

1.3.2 Specific Objectives 

The specific objectives are to; 

1. Develop the T-inverse exponential {Y} family of distributions. 

2. Derive the statistical properties of the new family of distributions. 

3. Develop estimators for estimating the parameters of T-inverse exponential{Y} family.  

4. Perform simulations to compare the performance of the estimators 

5. Demonstrate the applications of the distributions using real data set. 

1.5 Significance of the Study  

The usefulness of probability distributions in predicting and describing real life phenomenon 

cannot be over emphasized. Although a lot of distributions have been developed to model and 

analyze lifetime data, there are always rooms for developing new distributions. This study 

www.udsspace.uds.edu.gh 

 

 

 

 



5 
 

proposes another new class of distributions called the T-inverse exponential {Y} family of 

distributions to model lifetime data sets that are bimodal, extremely skewed, heavy tailed, 

monotonic and non-monotonic failure rates. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction  

Developing new distributions and extending the existing ones has been ongoing for some time 

now. This chapter captures the review of literature that are related to the development of the new 

statistical distributions. To enhance clarity, this chapter is divided into two sections. First section 

reviews literature on modification and generalization of IE distributions and the second section 

reviews literature that used the { }T X Y  family of distributions.  

2.2 Generalization and Modification of the Inverse Exponential Distribution 

In order to induce skewness to the IE distribution given in equation (1.1), to make it more 

flexible for modeling lifetime data, a lot of generalizations and modifications has been done on 

the IE distribution. Examples include; generalized IE distribution by Abouammoh and Alshingiti 

(2009) and beta generalized IE distribution by Bakoban and Abu-zinadah (2017). 

Beta-generated family of distributions was introduced by Eugene et al. (2002). This family of 

distributions is the generalization of the distribution of ordered statistics. Despite these enormous 

literature on this class of distributions, Cordeiro et al. (2009) concluded in their study that, the 

beta class of distributions were not fairly tractable. This among others led other researchers to 

suggest alternative bounded distributions for which Kumaraswamy distribution named after 

Pondi Kumaraswamy is an example Kumaraswamy (1980). This distribution has been identified 

as a good alternative to beta distribution because they both have the same basic shape properties 

and also Kumaraswamy distribution is deemed mathematically tractable because of its mild 

algebraic properties.  
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Abouammoh and Alshingiti (2009) generalized the IE distribution by adding another parameter 

to the IE distribution and called it the generalized IE distribution. The application of the 

generalized IE distribution was demonstrated using life time data and it proves to perform better 

than the IE distribution. Though better than IE distribution, this distribution cannot model data 

sets that exhibit bimodality or bathtub failure rate properly. 

 Elbatal and Muhammed (2014) proposed four parametric-distribution known as exponentiated 

generalized inverse Weibull distribution. It can be used to model various failures including 

bathtub and cost effectiveness in reliability test.  

Oguntunde and Adejumo (2015) introduced the transmuted IE distribution as another 

generalization of the IE. The hazard function of the distribution has inverted bathtub shape. It 

should be noted that this distribution reduces back to the IE distribution if the transmutation 

parameter is equal to zero.  

Bakoban and Abu-zinadah (2017) employed the beta generated family to develop the beta 

generalized IE distribution as a generalization of the IE distribution proposed by Keller and 

Kamath (1982). This compound distribution is a combination of the beta function and 

generalized IE function. The beta generalized IE distribution is unimodal, positively skewed and 

has a long right tail.  

Yahaya and Mohammed (2017) proposed transmuted Kumaraswamy-IE distribution with four 

parameters. This distribution is an extension of Kumaraswamy-IE distribution. It was observed 

from their study that, the distribution is positively skewed with non-existent moments. 

Oguntunde et al. (2017) proposed exponentiated generalized IE distribution using exponentiated 

family of distributions. They claimed that, this distribution better fit lifetime data sets than 
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competing distributions such as Kumaraswamy IE, generalized IE and IE distribution except 

when the variance of a data set is larger than the mean. 

Oguntunde (2017) proposed the generalization of the IE with special cases as, the Kumaraswamy 

IE, transmuted IE, exponentiated generalized IE and Weibull IE distributions. He however, 

indicated that the derived distributions cannot properly model symmetric and over-dispersed data 

sets. 

2.4 Generating T-X{Y} Family of Distributions using Quantile Function  

Modifying an existing distributions has gained a lot of attention recently. The result of the 

modifications is that one or more extra parameter is added to the existing distribution making it 

more flexible for data modelling than the baseline distribution. A number of procedures have 

been adopted over the years in modifying baseline distributions. For instance, Azzalini (1985) 

modified the normal distribution by adding an extra parameter to the normal distribution and 

called the new distribution, skewed normal distribution. This new distribution performed better 

than the normal distribution since it has skewness parameter that makes it more flexible. This 

procedure could be applied to modify other symmetric distributions. When the skewed parameter 

equals zero, the proposed distribution reduces back to normal distribution.  

Elal-olivero (2010) introduced the alpha-skew-normal distribution. This distribution is an 

extension of the normal distribution which can be used to model skewed data sets.  

Acitas et al. (2015) introduced alpha-skew generalized t distribution. This is an extension of the 

distribution formulated by  Elal-olivero (2010). This distribution is more flexible than the   

alpha-skew-normal distribution.  
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Hutson et al. (2020) proposed and studied Log-epsilon-skew normal distribution as a 

generalization of the log-normal distribution. This new distribution is related to the epsilon-skew 

normal distribution and has log-normal distribution as a special case. 

Mudholkar and Srivastava (1993) introduced a new method and used it to proposed and study 

exponentiated-Weibull distribution. This approach added an extra shape parameter to the two 

parameter Weibull distribution. This new distribution performed better than the existing 

distribution due to its flexibility. When the value of the extra shape parameter equals one, then 

the exponentiated-Weibull distribution returns to the two-parameter Weibull distribution.  

Gupta et al. (1998) proposed the general class of exponentiated distributions. This approach has 

widely been accepted and used by many researchers. For example, Elbatal and Muhammed 

(2014) introduced exponentiated generalized inverse Weibull distribution, Rao and Mbwambo 

(2019) used the procedure to introduce exponentiated inverse Rayleigh distribution, Elgarhy et 

al. (2017) introduced exponentiated extended-G family of distributions and Mansoor et al. (2016) 

introduced exponentiated exponential Fréchet distribution. 

Eugene et al. (2002) introduced a new way of generating distributions called the Beta-G family 

of distributions. This approach adds two extra shape parameters to the baseline distribution. This 

procedure has widely been used by scientists to generate distributions with two extra shape 

parameters. 

 Nadarajah and Kotz (2004) introduced beta Gumbel distribution. Gumbel distribution is one the 

distributions that is widely been used in the field of engineering. The beta Gumbel distribution is 

an extension of the Gumbel distribution which was developed by using the beta distribution as 

the generator. 
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Famoye et al. (2005) introduced the beta-Weibull distribution. The hazard rate function for beta-

Weibull distribution could be increasing, decreasing and bathtub shape. Lee et al. (2007) studied 

and discussed the properties of this distribution and applied it to censored data set. 

 Akinsete et al. (2008) proposed and studied the beta-Pareto distribution. The family of Pareto 

distributions are widely used modelling data set that are heavy-tailed. The beta-Pareto 

distribution is an extension of the Pareto distribution. This new distribution has a decreasing and 

inverted bathtub hazard rate function. It is used to model unimodal data set.  

Eugene et al. (2012) introduced beta-normal family of distributions. Beta-normal distribution has 

been applied to a variety of data set including data set that exhibit bimodality. The difference 

between beta-normal distribution and the skewed normal distribution is that, the beta-normal 

distribution developed by adding more parameters to the baseline distribution using beta 

distribution as the generator. The two extra shape parameters introduced control the tail weight 

of the distribution. Skewed normal on the other hand introduces skewness into normal 

distribution. The skewness can be determined using the skewness parameter. 

Percontini et al. (2013) introduced the beta Weibull Poisson distribution. They proposed beta 

Weibull Poisson distribution by compounding Weibull Poisson and beta distributions. This 

distribution is an extension of the Weibull Poisson distribution.  

Handique et al. (2017) proposed and studied the beta generated Kumaraswamy-G family of 

distributions. This is a generalization and improvement of the Kumaraswamy-G family of 

distributions. The density could be unimodal and reverse-J shape with varied combinations of 

parameter values.   
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Bakoban and Abu-zinadah (2017) proposed and studied the beta generalized inverse exponential 

distribution. The beta generalized inverse exponential distribution is a generalization of the 

generalized inverse distribution. The PDF of this distribution could be positively skewed and 

unimodal.  

Tablada and Cordeiro (2019) introduced the beta Marshall-Olkin Lomax family of distributions. 

This distribution was proved to be efficient in modelling lifetime data using uncensored data set. 

The beta-generated procedure was extended by Cordeiro and Castro (2009). They use 

Kumaraswamy distribution as a generator instead of the beta distribution. This approach was 

seen as an improvement over the beta-generated distributions.  

The beta-generated family of distributions was generalized by Alzaatreh et al. (2013). They 

introduced a new method of parameter induction by defining the transformed-transformer (T-X) 

family of distributions. This procedure was introduced by replacing the beta PDF with a PDF of 

any continuous random variable and applying a link function (0)W  that satisfied certain specific 

situations. This family of distributions has no extra shape parameter. This makes it not flexible to 

model lifetime data sets that have heavy tails and non-monotonic failure rates. 

This method of generating distribution was extended by Alzaghal et al. (2013). They introduced 

the exponentiated T-X family of distributions with some applications. One special case of this 

family is exponentiated Weibull exponential distribution. The density of the distribution could be 

right skewed or left skewed. The limitation of adding only one shape parameter is that, the 

distribution is not flexible enough to model data sets that have heavy tails with varying degrees 

of skewness and kurtosis.  
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Aljarrah et al. (2014) used the quantile function of random variable Y  as the link function (.)W  

to generate the T-X{Y} family. Special cases under their study could be applied to data that 

exhibit either unimodal or bimodal shapes. This approach has wildly been applied by many 

researchers to extend and develop new families of distributions. 

Alzaatreh et al. (2014) introduced T-normal{Y} family of distributions with four special cases. 

This family of distributions can be applied to data set that are skewed to both right and left. 

Though, the family can be applied to data set that exhibit bimodality, what is unknown is if the 

distributions can fit well with data set that have multimodal, modified bathtub and modified 

inverted bathtub shapes. 

Alzaatreh et al. (2016) introduced T-gamma {Y} family of distributions as generalization of 

gamma distribution. This was to add extra flexibility to the existing distribution. It was observed 

that the shapes of the densities of the new family could be unimodal, bimodal, right and left 

skewed. This makes the distributions more flexible than the parent distribution in modeling real 

life data. 

Alzaatreh et al. (2016) introduced the T-Cauchy{Y} family of distributions. This is an 

improvement on the Cauchy distribution. The generalization of the Cauchy distribution using the 

quantile function approach induces skewness on to the baseline distribution thereby making it 

more flexible than the baseline distribution. This new family of distributions is unimodal and 

might not be able to properly model data sets that exhibit multimodality.   

Nasir et al. (2017) proposed and studied a new distribution called T-Burr family of distributions. 

This family of distributions is an improvement of the Burr type XII distribution. The shape of the 

density is unimodal with monotone hazard rate function. This implies that, the distribution may 
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not be appropriate for modelling data set that are multimodal and non-monotonic hazard rate 

functions. 

Mansoor et al. (2017) developed the Lomax-Weibull family of distributions and applied it to 

both censored and uncensored data. They developed a special model as a generalization of 

Weibull distribution to model lifetime data sets which are both monotonic and non-monotonic. A 

special case of the new family of distributions has a density function with approximately 

symmetric, bimodal, negatively skewed, positively skewed and reversed-J shapes.  

Aldeni et al. (2017) introduced the T R {generalized lambda} family of distributions using the 

quantile function of the generalized lambda distribution. The shapes of the densities could be 

symmetric, positively skewed, negatively skewed and bimodal.  

 Zubair et al. (2018) introduced  T-exponential Y family of distributions using quantile 

functions of well-known distributions. Some of the special classes of this distributions are the 

Weibull-E {Log-logistic}, the gamma-E{log-logistic} and the normal-E{logistic}.  It is however 

observed that, none of these new models could modeled data that exhibits bimodality. 

Ghosh and Nadarajah (2018) introduced the Weibull-R family of distributions using Weibull as a 

baseline distribution. This was one attempt to minimize if not eliminate some of the drawbacks 

identified by Bain (1978) associated with Weibull distribution. The Weibull-R family of 

distributions is broader than gamma-generalized distributions and can be used to model censored 

data.  

Hamed et al. (2018) introduced the T-Pareto{Y} family of distributions. These extensions and 

generalizations are necessary to cure the weaknesses of standard Pareto distribution which is 

used to fit right-skewed data set. They used quantile functions of six different standard 
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distributions to develop six generalized families of distributions. It can be observed that, the 

various models introduced can model data sets with various shapes except those which are 

symmetric in nature and those with increasing failure rate. 

Jamal et al. (2018) proposed the T-Burr III{Y} family of distributions. They introduced three 

Burr-III sub-families and applied them to both censored and uncensored data to confirm their 

flexibility and robustness in fitting data. In all, the distributions performed better. 

Nasir et al. (2017) used the quantile function approach to develop the new Weibull Burr-XII 

distribution. They generalized the Weibull distribution by inducting two additional parameters 

that makes it more flexible compare to its competitors. It was observed that, data that exhibit 

bimodality and bathtub failure rate might not properly be modeled by this family. 

Nasiru et al. (2020) used the quantile function method to develop the T-NH{Y} family of 

distributions. These family of compound distributions proved to perform better in modelling data 

sets with non-monotonic failure rates than their competing models.  
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CHAPTER THREE 

METHODOLOGY 

3.0 Introduction  

This chapter presents the methodology that was applied in achieving the objectives of the study. 

The topics discussed are data and source, the IE distribution, T-X{Y} framework, parameter 

estimation, goodness of fit test, information criteria and total time on test (TTT).  

3.1 Inverse Exponential Distribution 

The IE distribution was proposed by Keller and Kamath (1982) and has been studied and 

extensively used for modeling. If a random variable Y  has an exponential distribution, then 

1
Y

X   will have IE distribution. If ( ),X IE   then the probability density function (PDF) is 

given by; 

2( ) exp( ), 0, 0                                               (3.1)
xx

g x x       

 and the cumulative distribution function (CDF) is 

( ) exp( ), 0, 0.                                                    (3.2)
x

G x x       

The corresponding survival function and hazard rate function are respectively given by; 

( ) 1 exp( ), >0, >0,                                          (3.3)
x

S x x     

and 

2 exp( )( )
( ) , 0, >0.                                                     (3.4)

( ) 1 exp( )

xx

x

g x
h x x

S x

 





  

 
  

3.2 The T-X{Y} Framework 

Aljarrah et al.  (2014) used quantile function of continuous random variable Y to generate the 

 T X Y   family of distributions. Let the CDFs of the random variables T , R and Y be 

( ), ( )T RG x G x  and ( )YG x . Also let their PDFs be    ,  gT Rg x x  and  Yg x  respectively. If the 
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quantile function of the random variable Z  is     inf : ,0 1Z ZQ u z G z u u    .  Then, the 

corresponding quantile functions for the random variables T, R and Y are    ,  T RQ u Q u  and 

 YQ u  respectively. The CDF, PDF and the hazard rate function are defined respectively as; 

( ( ))

( ) ( ) ( ( ( ))),                            (3.5)
Y RQ G x

X T T Y R

a

G x g t dt G Q G x   

 
( ( ( )))

( ) ,                                              (3.6)
( ( ( )))

t Y R
X R

Y Y R

g Q G x
g x g x

g Q G x
   

and 

( ( ( )))
( ) ( ) .                                             (3.7)

( ( ( )))

T Y R
X R

Y Y R

h Q G x
h x h x

h Q G x
   

3.3 Estimation of Parameters 

This section presents five (5) parameter estimation procedures for estimating the parameters of 

the T-IE{Y} family of distributions. These estimators are: Maximum Likelihood estimators, 

Ordinary Least Square estimators, Weighted Least Square estimators, Percentile based estimators 

and Cramér-von Mises minimum distance estimators. 

3.3.1 Maximum Likelihood Estimation  

In estimating the parameters of the T-IE{Y} family of distributions, the maximum likelihood 

estimation (MLE) for both complete and incomplete samples were used. The maximum 

likelihood estimation is the most widely used classical approach for approximating parameters 

due to its desirable properties over others and is based on a likelihood function.  At a specific 

value of the parameters, the likelihood function attains its maximum.  

www.udsspace.uds.edu.gh 

 

 

 

 



17 
 

Suppose that X  is distributed randomly with size k with PDF  ;g x   where  
'

1 2, ,..., n    ,

n k , is the vector of parameters that governs the PDF. The joint PDF can be expressed as 

1

( / ) ( ; ).                                                    (3.8)
k

i

i

g x g x 


  

The joint PDF becomes a function of   and called likelihood function when the random sample 

is collected. The likelihood functions for complete and incomplete samples are defined 

respectively as  

1

( / ) ( ; ),                                                              (3.9)
k

i

i

L x g x 


  

   
1

1

( / ) ( , ) 1 ( , ) .                                (3.10)        i i

n
r r

i i

i

L x g x G x  




    

The estimator ̂  is the value of   that maximize the likelihood function through the following 

procedure. 

1. Obtain the likelihood function 

2. Find the log-likelihood function 

3. Find partial derivatives of the log-likelihood function with respect to the parameters 

4. Equate the derived equations to zero and solve simultaneously. 

3.3.2 Ordinary Least Square Estimators and Weighted Least Square Estimators 

The ordinary least squares (OLS) estimators was proposed by Swain et al. (1988) to estimate the 

parameters of beta distribution. Given the ordered statistics 
(1) (2) ( ), ,..., nx x x  of the random sample 
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of size n  from ( ; )G x  , where   is a vector of parameters.The OLS estimates   for the 

parameters can be obtained by minimizing the function 

2

( )

1

( ) ( | ) .                               (3.11)
n

i

i

i
L G x

n i

 
     

  

with respect to  or equivalently solving the following non-linear function 

( ) ( )

1

( | ) ( | ),                                          (3.12)
n

i s i

i

i
G x x

n i

 
     

   

where 1,2,...s  and 
( ) ( )( | ) ( ; ).s i ix G x


   


  

 The Weighted Least Square (WLS) estimates are obtained by minimizing the following function 

with respect to :   

22

( ) ( )

1

( 1) ( 2)
( | ) ( | ) .             (3.13)

( 1) 1

n

i i

i

n n i
L x G x

i n i n

   
       

  

3.3.3 Estimators Based on Percentile 

The percentile based estimators (PCE) was introduced by Kao (1958). The main advantage of 

this procedure is that, the estimates can be obtained in explicit forms. The PCE are mainly 

obtained by minimizing the Euclidean distance between the sample percentile and population 

percentile points. Let 
(1) ( ),..., nx x  be a sample ordered statistics and 

( 1)
i

i n
u


  be unbiased 

estimator of 
( )( | ).iG x   Then, the PCE of the distribution are obtained by minimizing the 

function with respect to : 

 
2

1

( ) ( )

1

( | ) ( ) .                             (3.14)
n

i i i

i

p x x G u



    

www.udsspace.uds.edu.gh 

 

 

 

 



19 
 

3.3.4 The Cramér-von Mises Minimum Distance Estimators 

The Cramér- von Mises estimators (CME) is a method that is based on the difference between 

the estimate of the CDF and the empirical distribution function (Louzada et al., 2016). It is also 

called maximum goodness-of-fit estimators. Among the minimum distance estimators, CME is 

less  biased. The CME can be obtained by minimizing the following function 

22 1
( ) 2

1

1
( ) [ ( | ) ] .                  (3.15)

12

n

i
i n

i

c G x
n





      

3.4 Broyden-Fletcher-Goldfarb-Shannon Algorithm (BFGS) 

When the maximum likelihood estimators have no closed form, then the systems of equations are 

solved using numerical techniques. BFGS was employed in this study to solve such system of 

equations. The BFGS is an iterative technique for solving unconstrained nonlinear optimization 

problem and was independently developed by the four researchers as cited by (Nasiru, 2018). It 

is an optimization technique that is used to maximize likelihood. To optimize a given likelihood 

function, the ensuing steps are reiterated as i  converges to the solution with a preliminary guess 

0  and an estimated Hessian matrix 0H .  

1. First obtain a direction ib  by solving 

  0.i i iH b    

2. A one dimensional optimization is then performed to look for an acceptable step size i  

in the direction found in the first step. 

3. Set         and update           . 

4. Let    1i i iy    .  
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5. 
' '

1 0 ' '

i i i i i i
i

i i i i i

y y H a a H
H H

y a a H a
    . 

Convergence can be checked by noting the norm of the gradient  | |i . In practice, 0H can be 

initialized with 0H   , to make the first step equivalent to a gradient descent, but additional 

steps are refined by the approximation of the Hessian, iH . Step one of the algorithm is carried 

out using the inverse of the matrix iH . This can be achieved proficiently by introducing the 

Sherman-Morrison formulae to the fifth step of the algorithm. Hence, 

' ' '

' ' '

1 1

1 ( ) ( ) .                                      (3.16) i i i i i i

i i i i i i

a y y a a a

i iy a y a y a
H I H I 

      

Recognizing that 1

1iH 


 is symmetric and ' 1

i i iy H y  and '

i ia y  are scalars, equation (3.10) can be 

computed efficiently using the following expansion 

' ' 1 ' 1 ' ' 1

' 2 '

( )( )1 1

1 ( )
.                 (3.17)i i i i i i i i i i i i i

i i i i

a y y H y a a H y a a y H

i i a y a y
H H

    

     

3.5 Goodness of Fit Test  

If 1 2 3, , ,..., kX X X X  is a randomly selected sample from a given distribution, then the goodness-

of-fit tests is a method that measures whether the random sample came from a specified 

theoretical probability distribution. In this study, three tests were employed; likelihood ratio test 

(LRT), Kolmogorov-Smirnov (K-S) and Cramér-von Misses test (CVM). 

3.5.1 Likelihood Ratio Test  

This method is usually used to compare the goodness of fit of two models that are nested. 

Assuming we let X be a random sample with PDF  ;g x  . The hypotheses test is of the form  
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0 0:H    verses 1 1:H   , where 0  and 1  are the parameter spaces for the reduce and full 

model respectively. The test statistic is given as 

0

1

ˆ( )

ˆ( )
2ln( ),                                                   (3.18)

L

L




    

 where 0L  and 1L  are the likelihood functions of the two models. The best model is the one that 

maximizes the likelihood function. When the null hypothesis is not accepted, it implies that the 

full model gives a better fit than the reduce model. 

3.5.2 Kolmogorov-Smirnov  (K-S) Test 

This is a Hypotheses test procedure for testing whether a given random sample belongs to a 

population with specific distribution. The K-S test is defined by; 

H0: The sample follows a specified distribution, 

against 

H1: The sample does not follow the specified distribution. 

If  iG x  is the value of the CDF of the candidate distribution at ix  and ˆ( )iG x  is the value of the 

empirical distribution at ix  , then the test statistic for the K-S test is defined as 

1
ˆ ˆmax{| ( ) ( ) |,| ( ) ( ) |}, 1,2,..., .       (3.19)i i i iK S G x G x G x G x i n      

The computed value of test statistic is then compared with a K-S table value at a given 

significance level to make a decision of rejection or not of the null hypothesis. If multiple 

distributions are to be compared, the distribution with the smaller K-S value is the most 

appropriate. 
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3.5.3 Cramér-von Misses 

Suppose ( , )iG x    is the CDF such that the form of G   is known and the n -dimensional 

parameter vector   is unknown. The test statistic 
*Z , is obtained as follows: 

1. In ascending order, arrange the 'ix s  and estimate ˆ( ; )i iG x   .  

2. Estimate  1

i iw  .  

3. Compute 
2 22 1 1

2 12

1

( )
n

i
i n n

i

Z w 



   .  

4. Transform 
2Z  into * 2 0.5(1 )

n
Z Z   to obtain the test statistic. The model with the 

smallest test statistic 
*Z  is the best. 

3.6 Information Criteria 

The effect of increasing the quantity of parameters is that it improves the fit of a given model and 

causes the likelihood to increase irrespective of whether the new parameter is important or not. 

The information criteria enable us do comparison of models when they are not nested. The 

information criteria discussed in this study are; the Akaike Information Criterion (AIC), 

Corrected Akaike Information Criterion (AICc) and Bayesian Information Criterion (BIC). 

3.6.1 Akaike Information Criterion 

The AIC is a model selection tool derived from the information theory. It is designed to select 

the model that reduces the Kullback-Leibler distance between the model and the truth (Akaike, 

1974). The test statistic is given by 

2ln 2 ,                                                   (3.20)AIC L n    

 where L  is the value of the likelihood and n  is the number of estimated parameters of the 

model. AIC introduces good model selection for large samples and is able to penalize models 
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with many parameters. In order to overcome an issue of biasness associated with this method, a 

Corrected AIC was introduced. The test statistic for AICc is given by 

 2 1
.                                      (3.21)

1

n n
AICc AIC

k n


 

 
 

3.6.2 Bayesian Information Criterion 

BIC is basically a model selection technique that measures the trade-off between model fit and 

complexity of the model. It assumes that the data is independently and identically distributed 

(Schwarz, 1978). The test statistic is given as 

ˆln( ) 2ln ,                                             (3.22)BIC k n L   

 where k  is the sample size. Just like the AIC, the appropriate model is the one with the 

minimum BIC value. 

3.7 Total Time on Test 

There has been a generalization of the TTT in literature. Among these generalizations are TTT-

transform and TTT-plot. This study employed the TTT-transform technique. This technique is 

used to check whether a random sample is from a class of lifetime distributions with hazard rate 

function displaying bathtub shape.  If G  is the CDF of a distribution, then TTT-transform is 

define as 

1 ( )
1

0
( ), (0,1),                                    (3.23)

F p

G S u p


    

 where  S u  is the survival function. The scaled TTT-transform is computed using 

  
 

 

1

1
.                                                    (3.24)

1

G p
F p

G





  
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The curve of  F p  verses 0 1p   is scaled TTT-transform curve. The shape of the hazard 

rate function can be classified as one of the following according to Barlow and Doksum (1972). 

1. The hrf is said to be increasing if the scaled TTT-transform curve is concave above the 45
0
 

line. 

2. The hrf is decreasing if the scaled TTT-transform curve is convex beneath the 45
0
 line. 

3. The hrf exhibits a bathtub shape if the scaled TTT-transform curve is first convex below the 

45
0
 line and then concave above the line. 

4. The hrf is upside down bathtub or unimodal if the scaled TTT- transform curve is first 

concave above 45
0
 line and then convex below the 45

0
 line. 

Suppose an ordered sample 1: 2: :, ,...,k k k kY Y Y , from a lifetime distribution G , then the TTT test 

statistics to the 
thi  failure is given as 

  : :1

1

1 , 1,2,..., .                       (3.19)
i

i j k j k

j

TTT k j y y i k



      

The empirical scaled TTT-transform is given by 

* ,  0 TTT 1.                                                    (3.20)i
i k

k

TTT
TTT

TTT
    

This curve is obtained by plotting 
i

k
 against *

iTTT .  
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CHAPTER FOUR 

THEORETICAL RESULTS  

4.0 Introduction  

In this chapter a new family of distributions called T-IE{ }Y family of distributions is introduced 

by using the quantile functions of well-known statistical distributions. This idea of parameter 

induction was pioneered by Aljarrah et al.(2014), this they did by taking a special case of the 

work of Alzaatreh et al. (2013). The results obtained include, derivations of the T-IE{ }Y  family 

of distributions and their statistical properties.  

4.1 T-IE { }Y Family of Distributions 

In this section, the CDF, PDF, survival function and hazard rate function of the proposed T-IE

{ }Y family of distributions has been developed.  

Suppose R  follows the IE random variable with CDF ( ) exp( )xRG x   , 0x   and PDF 

2( ) exp( )xR x
g x     where 0, 0x    is scale parameter. Using the technique by Aljarrah et 

al.(2014) as in equation (3.5), the CDF of T-IE{ }Y   family of distributions is given by 

(exp( ))

( ) ( ) ( [exp( )]).                 (4.1)
Y xQ

xX T Y
a

G x g t dt G Q





    

Differentiating equation (4.1) with respect to x  gives the corresponding PDF as: 

2( ) exp( ) (exp( )) { (exp( ))}.         (4.2)X Y T Yx x xx
g x Q g Q        

The associated survival function is given as: 

( ) 1 ( [exp( )]).                             (4.3)xX T YS x G Q     
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The hazard rate of a system usually depends on time. It is the frequency at which a system or 

component fails. Unlike the survival function, hazard rate function focuses on the event failing 

(that is, the event of interest occurring). The hazard rate function of the new family, T-IE{ }Y  

family of distribution is given by 

2 exp( ) (exp( )) ( (exp( )))
( ) .           (4.4)

[1 ( (exp( )))]

 

x x xY T Yx
X

xT Y

Q g Q
h x

G Q

   



  


   

Lemma 4.1. If X  follows the T-IE{ }Y family of distributions given by equation (4.1), then the 

quantile function is 

( ) , (0,1).
log[ ( ( ))]

X

Y T

Q u u
G Q u


    

Proof. Equating the CDF of T-IE{ }Y  family of distribution ( ) expX T Y

u

G x G Q
x

   
      

   

 to u  

and solving for ux  completes the proof.  

The quantile function of the T-IE{ }Y family can be obtained by taking the inverse of equation 

(4.1). The quantile function  XQ u  can be used to generate random samples from the T-IE{ }Y  

family of distributions. In practice, the first quartile, median and third quartile can be obtained by 

substituting 0.25u   0.5u   and 0.75u    respectively into Lemma 4.1. 

Lemma 4.2. Suppose X  follows the T-IE{ }Y family of distributions given by equation (4.1), 

then 
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( ( ))Y

X
LogG T


  . 

Proof. From equation (4.1), equating T  to expYQ
X

  
  
  

 and solving for X completes the 

proof. 

Lemma 4.3. If the distribution of Y  follows IE and X  follows the T-IE{ }Y  family of 

distributions given by equation (4.1), then   
d

X T . 

Proof. Substituting ( ) expYG T
T

 
  

 
 into Lemma 4.2 gives 

( ( ))Y

X T
LogG T


   . This 

completes the proof.  

4.2 Sub-families of T-IE{Y} Family of Distributions 

The T-IE{Y} family in equation (4.2) can produce many different sub-families for life time data. 

Three sub-families of T-IE{Y} class using quantile functions of Weibull, Logistic and Lomax 

distributions have been developed. Quantile functions are used to generate random samples from 

statistical distributions during simulations. The three sub-families are T-IE{Weibull}, T-

IE{Logistic} and T-IE{Lomax} families of distributions. 

4.2.1 T-IE{Weibull} Family   

LetY ~Weibull distribution with the CDF ( ) 1 exp( )YG x x    and the PDF

1( ) exp( )Yg x x x    , where   is the scale parameter and   is the shape parameter. Taking 

the inverse of the CDF (Weibull distribution) will result in 
1

1( ) ( log(1 ))YQ u u 


   . Also, from 

equation (4.1), the CDF of T-IE{Y} class is ( ) [( (exp( )))]xX T YG x G Q    . 
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Let 1   and by substitution the CDF of the IE into the quantile function of the Weibull 

distribution, the CDF for T-IE{Weibull} family is given by 

1

( ) [{ log(1 exp( ))} ],                                         (4.5)xX TG x G      

where T (0, )   , 0   is the scale parameter and 0   is the shape parameter. 

The corresponding PDF of T-IE{Weibull} class of distributions is given by 

1 11

2

exp( )
( ) { log(1 exp( ))} [{ log(1 exp( ))} ].  (4.6)

(1 exp( ))

x
x xX T

x

g x g
x

 


 








      

 
 

It is worth noting that, some distributions are sub-models of T-IE{Weibull} family of 

distributions. For example if 1  , we obtain T-IE{exponential} family and If 2  , then we 

obtain the T-IE{Rayleigh} family.  

4.2.2 The T-IE{logistic} Family 

AssumingY follows Logistic distribution with quantile function 11( ) log( 1)YQ u u


   . If

exp( )
x

u   , then, the CDF of T-IE{Logistic} is given by;  

1( ) [ log(exp( ) 1)],                                 (4.7)xX TG x G 


    

where the random variable ( , )T   . 

The corresponding PDF is given by 

1

2

exp( )
( ) [ log(exp( ) 1)].     (4.8)

(exp( ) 1)

x
xX T

x

g x g
x









  


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4.2.3 T-IE{Lomax} Family 

Assuming Y follows Lomax distribution with the quantile function 
1

( ) {(1 ) 1}YQ u u 


   . If 

(0, )T   , 1   and exp( )
x

u   , then the CDF of the T-IE{Lomax}family of distributions is 

given by; 

1

( ) [(1 exp( )) 1].                                  (4.9)xX TG x G 


     

 The corresponding PDF is given by 

1

1 12

exp( )
( ) (1 exp( )) 1 .    (4.10)

(1 exp( ))

x
xX T

x

g x g
x


















     
  

 

 4.3 Statistical Properties of the T-IE{ }Y  Family 

In this section, a detailed investigation of some statistical properties of the T-IE{Y } family of 

distributions has been done. The relationship between random variable T  and X  for some cases 

which can be used to simulate X  from T   is given in Lemma 4.4, 4.5 and 4.6. 

Lemma 4.4. If T  is a random variable with CDF ( )TG x , then the random variable 

log(1 exp )T
X 




 


 follows the T-IE{Weibull} family of distributions. 

Proof. Substituting the CDF of Weibull distribution, 1 exp( )YG T     into Lemma 4.2 yields

log[(1 exp )]T
X 




 


. Thus, the proof is complete.  

Lemma 4.5. If T  is a random variable with CDF ( )TG x , then the random variable 

1log(1 exp )T
X




 

 


 follows the T-IE{Logistic} family of distributions. 

www.udsspace.uds.edu.gh 

 

 

 

 



30 
 

Proof. Substituting the CDF of logistic distribution, 
1

1 exp( )
YG

T


 
  into Lemma 4.2 yields

1log(1 exp )T
X




 

 


. Thus, the proof is complete. 

Lemma 4.6. If T  is a random variable with CDF ( )TG x , then the random variable 

 log(1 1 )
X

T





 
 

follows the T-IE(Lomax) family of distributions. 

Proof. Substituting the CDF of Lomax distribution, 1 (1 )YG T     into Lemma 4.2 yields

 log(1 1 )
X

T





 
 

. Thus, the proof is complete. 

Quantile functions are used to generate random samples from a given distribution. Quantile 

functions can be used to describe the characteristics such as skewness and kurtosis of a 

distribution. The following are quantile functions for T-IE{Weibull}, T-IE{Logistic}and T-

IE{Lomax} families of distributions. 

Lemma 4.7. The quantile functions for T-IE{Weibull}family is given by; 

( ) ,  (0,1).          
log[1 exp( ( ( )) )]

X

T

Q u u
Q u 


  

 
 

Proof. Equating the CDF of T-IE{Weibull} 

1

( ) log 1 expX T

u

G x G
x



   
       

    
 to u and 

solving for ux  completes the proof.  

Lemma 4.8. The quantile functions for T-IE{Logistic}family is given by; 
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( ) , (0,1).                
log[exp( ( )) 1]

X

T

Q u u
Q u




 

 
 

Proof. Equating the quantile function for T-IE{Logistic} family of distributions. 

1( ) log exp 1X T

u

G x G
x



   
      

    

 to u  and solving for ux  completes the proof. 

Lemma 4.9. The quantile functions for T-IE{Lomax}family is given by; 

( ) , (0,1).                  
log[1 ( ( ) 1) ]

x

T

Q u u
Q u 




  
 

 

Proof. Equating the CDF of T-IE{Lomax} family 

1

( ) 1 exp 1X T

u

G x G
x




   

           

 to u  and 

solving for ux completes the proof. 

4.3.1 Mode  

 The most commonly occurring value in a set of observation is termed the mode. The mode could 

either be unimodal or multimodal. A distribution with one mode is termed unimodal while those 

with more than one mode are termed multimodal (bimodal, trimodal and so on).  

Proposition 4.1. If ( )Xg x  is the PDF of T-IE{ }Y  family of distributions, then, the mode of the 

T-IE{Y} family is obtained by finding the solution to the equation 

2

2[ (exp( ))] [ ( (exp( )))] =0,   (4.11)x xY T Y xx
Q g Q          

where   .
q

q
q




  

Proof. Recall that the PDF of the T-IE{Y} family of distributions is   
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2( ) exp( ) (exp( )) { (exp( ))}.
x x x xX Y T Yg x Q g Q        

Taking logarithms of both sides, we have 

log ( ) log( ) 2log( ) log (exp( )) log { (exp( ))}.  (4.12)x xX Y T YX
g x x Q g Q          . 

Differentiating equation (4.12) with respect to x  and equating to zero, we have  

2

2
[ (exp( ))](exp( ))

( ) 0.
(exp( )) [ (exp( ))]

xx t YY
x xx

x xY t Y

g QQd
g x

dx Q g Q




 

  
    

  
 

Rearranging and simplifying the terms, we have 

2

2
[ (exp( ))](exp( ))

0.
(exp( )) [ (exp( ))]

xx t YY
xx

x xY t Y

g QQ

Q g Q




 

  
   

  
 

Simplifying further, we have 

2

2[ (exp( )] [ ( (exp( )))] 0x xY T Y xx
Q g Q          . Hence, the proof is complete. 

4.3.2 Moments  

In statistical analysis, moments are very essential especially in application. They are used for 

finding skewness, kurtosis, measures of variation, measures of central tendency among others.  

Proposition 4.2. If the moments exist, then the 
thn  non-central moment of the T-IE{Y} family 

of distributions is given as 

( 1) [log ( )] , 1,2,...      (4.13)n n n

n YE G T n       
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Proof.  By definition ' ( ).nE X   Substituting 
log ( )Y

X
G T


  from Lemma 4.2 and 

simplifying results in ( 1) [log ( )]n n n

n YE G T     . Hence, the proof is complete. 

Corollary 4.1. The moments of the T-IE{Weibull}family of distributions is given by 

      1 log 1 exp , 1,2,...   (4.14)
n

nn n

n E X E T n 


       
 

 

Proof. Substituting the CDF of the baseline Weibull distribution ( ) 1 exp( )XG t T    into 

equation (4.13) completes the proof. 

Corollary 4.2. The moments of the T-IE{Logistic} family of distributions is given by 

( ) ( 1) [log(1 exp( ))] , 1,2,...    (4.15)n n n n

n E X E T n           

Proof. Substituting the CDF of the baseline logistic distribution ( ) 1 exp( )XG t T    into 

equation (4.13) completes the proof. 

Corollary 4.3. The moments of the T-IE{Lomax} family of distributions is given by 

( 1) [log(1 (1 )) ] , 1,2,...     (4.16)n n n

n E T n         

Proof. Substituting the CDF of the baseline Lomax distribution ( ) (1 (1 ))XG t T     into (4.13) 

completes the proof. 

4.3.3 Shannon Entropy 

Entropy is a measure of variation or uncertainty. Shannon entropy (1948) has been used in 

several applications in engineering, machine learning and information theory. It provides a way 

to estimate the mean number of bits needed to encode a string of symbols. The entropy of 
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random variable X  with PDF ( )Xg x  is given by [log ( )]X XE g X   . The following 

proposition gives the Shannon entropy of T-IE{Y} family. 

Proposition 4.3. The Shannon entropy of T-IE{Y} family of distributions is given by 

1= (log ( )) log( ) 2 (log( )) ( ),        (4.17)X T Y X
E g T E X E        

where T  is the Shannon entropy for the random variable T .  

Proof. As ( ( )),
d

R YX Q G T  then, ( ( )),
d

Y RT Q G X hence, from equation (3.6) we can write 

( )
( ) ( ).                                        (4.18)

( )

T
X R

Y

g t
g x g x

g t
  

Taking logarithms of both sides of equation (4.18) and multiplying through by negative one 

gives 

log ( ) log ( ) ( log ( )) ( log ( )). (4.19)X T Y Rg x g t g t g x        

Taking expectation of both sides of equation (4.19), we have 

( log ( )) ( log ( )) ( log ( )) ( log ( )). (4.20)X T Y RE g X E g T E g T E g X        

But by definition, 

 log ( ) .X XE g X    

This implies that, 

(log ( )) (log ( )).           (4.21)X T Y RE g T E g X     

Recall that,  
2( ) exp( ).R xx

g x     

Taking logarithms of both sides of 
2( ) exp( )R xx

g x   and substituting into equation (4.21) gives 
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(log ( )) (log( ) 2log( ) ).x T Y X
E g T E X         

Simplifying further results in 

1= (log ( )) log( ) 2 (log( )) ( )X T Y X
E g T E X E       . Hence, the proof is complete. 

Corollary 4.4. The Shannon entropy for the T-IE{Weibull}family of distributions is given by 

1log( ) ( 1) (log( )) ( ) 2 (log( )) ( ).   (4.22)Xx T E T E T E X E
           

Proof. For the Shannon entropy of T-IE{Weibull}family of distributions, 

 The density function of Weibull distribution is 1( ) exp( ).Yg T T T     

Taking logarithm of the density function of the Weibull distribution, we have

log ( ) log( ) ( 1) log( ) .Yg T T T      

Now, substituting the above into equation (4.17) and simplifying results in 

1log( ) ( 1) (log( )) ( ) 2 (log( )) ( )Xx T E T E T E X E
          . 

Hence, the proof is complete. 

Corollary 4.5. The Shannon entropy for the T-IE{Logistic}family of distributions is given by 

 1log( ) ( ) 2 (log(1 exp( ))) 2 (log( )) ( ).(4.23)Xx T E T E T E X E
             

Proof. For the Shannon entropy of the T-IE{Logistic} distribution, 

Let the density function of Logistic be 2

exp( )
( )

(1 exp( ))
Y

t
g T

t

 






 
. Taking logarithms of both sides 

of the density function, we have 
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log ( ) log( )- T-2log(1 exp( ))Yg T T      

Now, taking expectation of the log-density, substituting into equation (4.17) and simplifying, we 

have  

1 = log( ) ( ) 2 (log(1 exp( ))) 2 (log( )) ( )XX T E T E T E X E
           . 

 Hence, the proof is complete. 

Corollary 4.6. The Shannon entropy for the T-IE{Lomax}family of distributions is given by 

1log( ) ( 1) (log(1 )) 2 (log( )) ( ).         (4.24)Xx T E T E X E
           

Proof. Let the density function of Lomax distribution be ( 1)( ) (1 )Yg T T     . 

Taking logarithm of both sides of the density function, we have 

( 1)log ( ) log( (1 ) )=log( )-( 1) log(1 ).Yg T T T        

Now, taking expectation and substituting into equation (4.17), we have  

1log( ) ( 1) (log(1 )) log( ) 2 (log( )) ( )Xx T E T E X E             , 

and simplifying further gives 

1= log( ) ( 1) (log(1 )) 2 (log( )) ( )XX T E T E X E
         . 

Hence, the proof is complete. 
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4.3.4 Moment Generating Function 

When the distribution of the random variable is heavy tail, moment generating function may not 

exist as the moment does not exist. Let X  be a random variable with | | ,rE X    for r N . The 

moment generating function for X  is ( ) ( )zX

XM z E e  . 

Proposition 4.4. The Moment generating function of the T-IE{Y} family of distributions is 

defined as 

0

( 1)
(z)= [log ( )] .             (4.25)

!

r r r
r

X Y

r

z
M E G T

r







  

Proof. By definition 

0 0

( ) ( ) ( ).
! !

r r r
zx r

X

r r

z X z
M z E e E E X

r r

 

 

 
   

 
   

Substituting Lemma 4.2, 
[log ( )]Y

X
G T


   into ( )XM z  and simplifying gives  

0

( ) ( 1) [log ( )] .
!

r
r r r

X Y

r

z
M z E G T

r







   Hence, the proof is complete. 

The following are the moment generating functions for T-IE{Weibull}, T-IE{Logistic} and T-

IE{Lomax} family of distributions. 

Corollary 4.7. Moment generating function for T-IE{Weibull} family of distributions is defined 

as 

0

( 1)
( ) [log(1 exp( ))] .          (4.26)

!

r r r
r

X

r

z
M z E T

r







    
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Proof. If 
'

0

( )
!

r

X r

r

z
M z

r






  and ' ( 1) [log(1 exp( ))]r r r

r E T       , then by substitution, we 

have  

0

( 1)
( ) [log(1 exp( ))]

!

r r r
r

X

r

z
M z E T

r







   . 

 Hence, the proof is complete. 

Corollary 4.8. Moment generating function for T-IE{Logistic} family of distributions is defined 

as 

 
0

( 1)
[log(1 exp( ))] .    (4.27)

!

r r r
r

X

r

z
M z E T

r










    

Proof. If   '

0 !

r

X r

r

z
M z

r






  and ' ( 1) [log(1 exp( ))]r r r

r E T       , then, by substitution, we 

have
0

(1)
( ) [log(1 exp( ))]

!

r r r
r

X

r

z
M z E T

r









   . Hence, the proof is complete. 

Corollary 4.9. Moment generating function for T-IE{Lomax} family of distributions is defined 

as 

 
0

( 1)
[log(1 (1 ) )] .      (4.28)

!

r r r
r

X

r

z
M z E T

r


 




    

Proof. If 
'

0

( )
!

r

X r

r

z
M z

r






 and ' ( 1) [log(1 (1 ) )]r r r

r E T        , then, by substitution, we 

have 
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0

( 1)
( ) [log(1 (1 ) )]

!

r r r
r

X

r

z
M z E T

r


 




   . Hence, the proof is complete. 

4.4 Special Distributions 

In this section, three special distributions in the T-IE{Y} family of distributions have been 

developed. These three distributions are Log-Logistic-IE{Weibull}(LLIEW), Gumbel-

IE{Logistic}(GIEL) and Weibull-IE{Lomax}(WIEL).  

4.5 The Log-Logistic-IE{Weibull} Distribution 

Let  Log-Logistic ,T    distribution with the CDF 1( ) 1 [1 ( ) ]x
TG x 


    and the PDF 

1 2( ) [1 ( ) ]x
Tg x x 







    with  as a shape parameter and  as a scale parameter. Using CDF 

of T-IE{Weibull} family of distribution, the CDF of the Log-Logistic-IE{Weibull} (LLIEW) 

distribution is defined as 

1

1 1( ) 1 [1 ( {log(1 exp( ))} ) ] , 0,     (4.29)xXG x x          

where 0, 0, 0, 0.        Figure 4.1 shows the plots of the CDF of the LLIEW 

distribution. The parameters ,  determine the shape of the distribution while ,  are the scale 

parameters. When the difference between the values of   and   increases, the curve sharply 

approaches its maximum. Also, as the value of   increases, the curve takes longer time to reach 

the maximum value.  
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Figure 4.1: CDF of LLIEW distribution 

From equation (4.28), the PDF of LLIEW distribution is given by 

1 11 1

1

2 1 2

exp( ){ log[1 exp( )]} [{ log[1 exp( )]} ]
( ) , 0.       (4.30)

(1 exp( ))[1 [ {log(1 exp( ))} ] ]

x x x

X

x x

g x x

x

    

  



  

 



      
 

     

 

Figure 4.2 shows the plots of the PDF of LLIEW distribution. The PDF can be positively 

skewed, negatively skewed, J-shape and reversed-J shape. In addition, it can be observed that, 

the distribution can be unimodal and almost symmetrical with varied degree of skewness and 

kurtosis for different parameter values. When 1   and the values of   is greater than the 

values of  , we have reversed-J shape. When the values of the parameters are more than or 

equal one, we have a unimodal.  
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Figure 4.2: PDF of LLIEW distribution  

Also, the survival function for LLIEW is given as: 

1
1 1( ) {1 ( {log(1 exp( ))} ) } , 0.          (4.31)xXS x x          

Figure 4.3 shows the plots of the survival function of LLIEW distribution. When gamma is less 

than one and theta is more than or equal to one, the curve is constant for some time and decreases 

sharply towards zero. When alpha, theta, and gamma are all less than or equal to one and lambda 

more than one, the curve move slowly towards zero.  
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Figure 4.3: Survival function of LLIEW distribution 

 

The hazard function is  

 

1 1

1

1 1

2 1

exp( ){ log(1 exp( ))}  [{ log(1 exp( ))} ]
, 0.       (4.32)

(1 exp( ))[1 { [log(1 exp( ))] } ]

x x x

X

x x

h x x
x

 



  

  



  

 



      
 

     
 

Figure 4.4 represents plots of the hazard function of LLIEW distribution. The plots of hazard rate 

function give various shapes such as decreasing, increasing and inverted bathtub. This makes the 

LLIEW distribution suitable for modelling failure rates that are monotonic and non-monotonic in 

real life. 
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Figure 4.4: Hazard rate function of LLIEW distribution 

Distributions of random variables can be described by their quantile functions. The quantile 

function is useful in computing the characteristics of a distribution such as median, skewness and 

kurtosis. When 0.5u  , 0.25u  and 0.75u  we get the median, lower quartile and upper 

quartile respectively. The quantile function of the LLIEW distribution for (0,1)u  is given by 

  1
1

.            (4.33)
log[1 exp{ [(1 ) 1] } ]

XQ u
u  



 
 

  
 

 Random samples from LLIEW distribution can be generated using equation (4.33).  

4.5.1 Methods of Parameter Estimation of LLIEW Distribution 

This section presents five (5) parameter estimation procedures for estimating the parameters of 

LLIEW distribution. These estimators are: Maximum Likelihood estimators (MLE), Ordinary 

Least Square estimators, Weighted Least Square estimators, Percentile based estimators and 

Cramér-von Mises estimators. 
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4.5.2 Maximum Likelihood Estimation Method for Complete Sample 

In estimating the parameters of LLIEW distribution, the MLE was employed. Arguably, the 

MLE is the most commonly used parameter estimation. Given that ~ ( , , , ),X LLIEW    

( , , , )T      and  log(1 exp( ))i x
z     . Let X  be a random sample from size n  of 

LLIEW distribution, then the likelihood function is given by: 

1 11 1

1
1 2 1 2

exp( )( ) [{ } ]
( ; ) .       

(1 exp( ))[1 [ ( ) ] ]

i

i

n
x i i

i

i

xi i

z z
L x

x z

  

 



  

 

 

 
 

   
     

  

Taking the natural logarithm of ( ; )iL x  and also, let log ( ; )iL x  , the total log-likelihood 

function is given by: 

1 1

1

1 1 1

11

1 1 1

log( ) log log 2 log log(1 exp( ))

      ( 1) log( ) ( 1) log( ) 2 log(1 ( ) ).                  (4.34)

i i

n n n

i x x

i i i

n n n

i i i

i i i

n n n x

z z z 







    

 

  



  

        

    

  

  

 

Taking partial derivative of equation (4.34) with respect to the parameters , ,    and  , the 

score functions are; 

 
1

1 1

exp( )
,                                                       (4.35)

1 exp( )

i

i

i

n n
x

x

i i ix

n

x



   


  

  
   

1 1

1

1
1 1

( ) ( )
log

log log( ) 2 ,                                 (4.36)

( )
1

i i

n n

i

i i
i

z z

n
n z

z

 









 


 



 

  
  
        

  
  
 
 

   
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1

1

1

1

1

1

2 2
1 1

2

( )
log ( )

log log(log ) log( )
( 1) 2 ,(4.37)

( )
1

i
i in

n n
ii i i

i i

i

z
z z

z z zn

z

















   








 

 
 
          

   
   

  
  


   

  and 

1

1

1

1

1
2

( )
( )

2 ,                                                         (4.38)

( )
1

i
i

n

i

i

z
z

n

z














 








 
 
     

   
   

  
  

  

  respectively. 

The estimates of the parameters are obtained by equating the score functions to zero and solving 

the system of equations simultaneously. It can be observed however that, the resulting system of 

equations are not tractable and have to be solved numerically to obtain the estimates of the 

parameters.  

To determine the confidence intervals for the parameters of LLIEW distribution, we use the 

observed information matrix ( )    given by 

2 2 2 2

2

2 2 2

2

2 2

2

2

2

( )

l l l l

l l l

l l

l

     

   

 



   
     

  
   

 
 





 
 
 

     
 
 
 

, 

  The elements of ( )   are given in appendix A1. The multivariate normal 1

4 (0, ( ))N I   , where 

( )I  is the expected information matrix can be employed to construct approximate confidence 
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interval for the parameters under the regularity conditions. When ( )I   is replaced by the 

observed information matrix evaluated at ˆ( )  , the asymptotic behaviour remains the same. The 

100(1 )%  asymptotic confidence interval (CI) for each parameter   is given by: 

2 2( , ),CI z z
              

where 



is the standard error of the estimated parameter and 

2z  is the upper quantile of the 

standard normal distribution. 

4.5.3 Parameter Estimation of the LLIEW Distribution for Incomplete Sample 

Suppose we observed the first r  failed items 1 2, ,..., rx x x  and ( , , , )T     . Then, the 

likelihood function is given by 

1

,

1

( ; ) [ ( ; )] [ ( )] .                              (4.39)i i

r
r r

i X

i

L x g x S x




     

Substituting the CDF and the survival functions of LLIEW distribution into (4.39) and let 

log(1 exp( ))i x
z     , then the total log-likelihood function for LLIEW distribution in case of 

censored samples becomes  

1 1 1

1

1 1 1

1 11

1 1 1 1

[ log( ) log log 2 log log(1 exp( ))

      ( 1) log( ) ( 1) log( ) 2 log(1 ( ) ] (1 ) log[1 ( ) ] .  (4.40)

i i

n n n

i i x x

i i i

n n n n

i i i i i

i i i i

r n n n x

z z z r z  



 



    

  

  

 

   

        

       

  

   

 

Taking partial derivative of  with respect to the parameters  ,  ,   and  , the score 

functions are;   
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 

 
1 1

'

1 1 1 1

11 1

1 1 1 1

exp( )1
r [- log - log log( )- log[1 exp( )] 2 log

1 exp( )

        ( -1) log ( 1) log( ) 2 log 1 ( ) - ],           

i

i

i

i

n n n n
x

i ix

i i i ii ix

n n n n

i i i x

i i i i

n
n n n x

x x

z z z 











   
 

  

   



   


       

  

 
    

 

   

                         (4.41)

 

  
 

 

1 1

1

1

1 1

1 1

'

11 1

11

1 1 1 1 1

log ( ) ( )
log log( ) 2 [ log log log

1 ( )

log[1 exp( )] 2 log ( 1) log ( 1) log( ) 2 log[1 ( ) ]
i

n n i i
n

i i

i i
i

n n n n n

i i i ix

i i i i i

z z
n z r n n n

z

x z z z

 





 



 






 
    




 



 

 



    

 
 

       
  

 

         



 

    

   
 

1 1

1

1 1

1

11 1

log ( ) (1 ) ( )
] ,                                                           (4.42)

1 ( )
i

n n i i i
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i

z r z

z

 







 



 

 





 

 

 
 

1 1
1

1

1

1
1

1

2 2
2 1

1 1

' 1

1

log ( ) (( ) )log log(log ) log( )
( 1) 2

1 ( (( ) )

r [- log log log( )- log(1 exp( )) 2 log ( 1) log ( 1) log( )
i

n
n n i i i

ii i i

i i
i

n

i i i ix

i i

z z zz z zn

z

n n n x z z

 













 


     

    







 



 
 

         
  

 

        


 



 
 

1 1

1

1

1 1 1

1
1

1

2 1
1 1 1

log (1 )( ) (( )1
2 log[1 ( ( ) ) ]- ]- ,                                       (4.43)
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 
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
 
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 
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'

2 11 1
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1 1 1 1
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
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 



   

 
 
           

   
  

  
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 

   

 
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1 1

1

1

1
1

2 11

(1 )( ) ( )
         ,                                                                         (4.44)

1 ( )

n

n i i

i
i

r z z

z

 







 

 













 
 

 





 

  respectively.  
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Equating




,




, 




and 




 to zero and solving the system of equations simultaneously for the 

parameters will give the maximum likelihood estimates.  

4.5.4 Ordinary and Weighted Least-square Estimators of LLIEW Distribution 

The ordinary least squares (OLS) estimators and weighted least squares (WLS) estimators were 

proposed by Swain et al. (1988) to estimate the parameters of beta distribution. Given the 

ordered statistics 
(1) (2) ( ), ,..., nx x x  of the random sample of size n  from LLIEW distribution. The 

OLS estimates , ,LSE LSE LSE    and LSE for the parameters ( , , , )T      of LLIEW 

distribution can be obtained by minimizing  

1

( )

1 1 2

( ) 1

1

( | ) [{1 ( ( log(1 exp( ))) ) } ] ,           (4.45)
i

n

i
i x n

i

L x    





        

with respect to , ,   and  . Also, they can be obtained by solving the following nonlinear 

equations: 

1

( )

1 1

1 ( )1

1

[{1 ( ( log(1 exp( ))) ) } ] ( | , , , ) 0,     (4.46)
i

n

i
ix n

i

x      





        

1

( )

1 1

2 ( )1

1

[{1 ( ( log(1 exp( ))) ) } ] ( | , , , ) 0,     (4.47)
i

n

i
ix n

i

x      





        

1

( )

1 1

3 ( )1

1

[{1 ( ( log(1 exp( ))) ) } ] ( | , , , ) 0,     (4.48)
i

n

i
ix n

i

x      





        

and 

1

( )

1 1

4 ( )1

1

[{1 ( ( log(1 exp( ))) ) } ] ( | , , , ) 0,        (4.49)
i

n

i
ix n

i

x      





        
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where 

1 1

( ) ( )

1

( )

1 1

1 ( ) ( )
2 1 2

log(1 exp( )) ( (log(1 exp( )) ))
( | , , , ) ( ) , (4.50)

(1 ( (log(1 exp( )) )) )

i i

i

x x

i X i

x

x G x

 



 



 
   

  

 



  
  

   
 

1 1

( ) ( )

1

( )

1 1

2 ( ) ( )
1 2

( log(1 exp( )) ) log( log(1 exp( ))
( | , , , ) ( ) , (4.51)

(1 ( log(1 exp( )) ) )

i i

i

x x

i X i

x

x G x

 



 



 
   

 

 



   
  

   
 

1 1

( ) ( ) ( )

1

( ) ( )

1 1 1

3 ( ) ( )
1 2

( )

(exp( )) log(1 exp( )) ( log(1 exp( )) )
( | , , , ) ( ) , (4.52)

(1 exp( )(1 ( log(1 exp( )) ) )

i i i

i i

x x x

i X i

i x x

x G x
x

 



  

 

 
   

  

  



  
  

    

 

and 

1 1

( ) ( ) ( )

1

( )

1 1

4 ( ) ( )
2 1 2

log(1 exp( )) ( log(1 exp( )) ) log(log(1 exp( )))
( | , , , ) ( ) .(4.53)

(1 ( log(1 exp( )) ) )

i i i

i

x x x

i X i

x

x G x

 



  



 
   

  

 



   
  

   

 

The WLS estimates , ,LSE LSE LSE    and LSE of the LLIEW distribution parameters are obtained 

by minimizing the function: 

 
1

( )

2
12

1

( )

1

( 1) ( 2)
( | ) 1 log(1 exp( )) ,              (4.54)

( 1) 1i

n

i x

i

n n i
L x

i n i n












    
        

     
  

with respect to , ,   and  . The estimates can also be obtained by solving the nonlinear 

equations  

1

( )

2
1 1

1 ( )

1

( 1) ( 2)
{1 ( log(1 exp( )) ) } ( | , , , ) 0,      (4.55)

( 1) 1i

n

ix

i

n n i
x

i n i n

      



   
          

  
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1

( )

2
1 1

2 ( )

1

( 1) ( 2)
{1 ( log(1 exp( )) ) } ( | , , , ) 0,       (4.56)

( 1) 1i

n

ix

i

n n i
x

i n i n

      



   
          

  

1

( )

2
1 1

3 ( )

1

( 1) ( 2)
{1 ( log(1 exp( )) ) } ( | , , , ) 0,      (4.57)

( 1) 1i

n

ix

i

n n i
x

i n i n

      



   
          

  

 and 

1

( )

2
1 1

4 ( )

1

( 1) ( 2)
{1 ( log(1 exp( )) ) } ( | , , , ) 0,        (4.58)

( 1) 1i

n

ix

i

n n i
x

i n i n

      



   
          

  

 where 1 2 3(.), (.), (.)    and 4 (.) are given from equation (4.50)-(4.53). 

4.5.5 Estimators Based on Percentiles of LLIEW Distribution 

The percentile based estimators (PCE) was introduced by Kao (1958). The PCE are mainly 

obtained by minimizing the Euclidean distance between the sample percentile and population 

percentile points. Let 
(1) ( ),..., nx x  be a sample ordered statistics and 

( 1)
i

i n
u


  be unbiased 

estimator of 
( )( | , , , ).iG x      Then, the PCE of the LLIEW distribution are obtained by 

minimizing the function: 

1

2

( ) ( ) 1
1

( | ) ,     (4.59)
log[1 exp( [(1 ) 1] ) ]

n

i i

i i

p x x
u  



 


  
     
      

  

with respect to , ,    and  . Minimizing equation (4.59) with respect to the parameters gives 

the following functions: 

( )

2
( | ) =0,                                                                            (4.60)i

n
p x

 


 


 

www.udsspace.uds.edu.gh 

 

 

 

 



51 
 

     

   

1 1 1

1 1

1

1 1 1
1 1 1

( )

1 1 1
1 1

exp 1 1 1

( | ) 2 0, (4.61)

1 exp 1 log 1 exp 1

i i i

i i

n u u u

i

i

u u

p x

  

 

 

 

  


 



  



 

               
                

      

  

1 1 1

1 1

1

( )

1

2

1 1 1 1
exp 1 log 1 1 1

1 1 1 1
( | ) 2 0,  (4.6

1 1
1 exp 1 log 1 exp 1

1 1

n i i i i

i

i

i i

u u u u
p x

u u

  

 

 

 

  



  





         
            
                  

                                         

 2)

 

and 

1 1 1

1 1
( )

1

1 1 1
exp 1 log 1 1

1 1 1
( | ) 2 =0. (4.63)

1 1
1 exp 1 log 1 exp 1

1 1

n i i i

i

i

i i

u u u
p x

u u

  

 

 

 

  



 


         
           
                  

                                         

   

Equating 
( ) ( ) ( )( | ), ( | ), ( | )i i ip x p x p x

  

  
  

  
 and ( )( | )ip x







to zero and solving the 

system of equations simultaneously gives the estimates.   

 4.5.6 The Cramér-von Mises Minimum Distance Estimators of LLIEW Distribution 

The Cramér- von Mises estimator (CVM) is a method that is based on the difference between the 

estimate of the CDF and the empirical distribution function (Louzada et al., 2016). The Cramér-

von Mises estimates , ,CME CME CME    and CME  of LLIEW distribution are obtained by 

minimizing the function: 
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1

( )

1 1 22 1
2

1

1
( , , , ) [{1 ( ( log(1 exp( ))) ) } ] ,   (4.64)

12 i

n

i
x n

i

c
n

        



        

 with respect to , ,    and  or equivalently solving the following nonlinear equations 

1

( )

1 1 2 1
1 ( )2

1

[{1 ( ( log(1 exp( ))) ) } ] ( | , , , ) 0,      (4.65)
i

n

i
ix n

i

x       



        

1

( )

1 1 2 1
2 ( )2

1

[{1 ( ( log(1 exp( ))) ) } ] ( | , , , ) 0,       (4.66)
i

n

i
ix n

i

x       



        

1

( )

1 1 2 1
3 ( )2

1

[{1 ( ( log(1 exp( ))) ) } ] ( | , , , ) 0,      (4.67)
i

n

i
ix n

i

x       



        

 and 

1

( )

1 1 2 1
4 ( )2

1

[{1 ( ( log(1 exp( ))) ) } ] ( | , , , ) 0,      (4.68)
i

n

i
ix n

i

x       



        

where 1 2 3(.), (.), (.)    and 4 (.) are provided from equation (4.50)-(4.53). 

4.6 The Gumbel-IE{Logistic}(GIEL) Distribution 

In this section, detailed results of GIEL distribution are provided. 

If  Gumbel 0,1T  with CDF ( ) exp( exp( ))TG x x    and PDF ( ) exp[ exp( )]Tg x x x    , then 

using the CDF of T-IE{Logistic} family of distributions, the CDF of the GIEL distribution is 

given as  

1

G ( )=exp[ (exp( ) 1) ], 0,            (4.69)xX x x    
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where 0   is the shape parameter and 0  is the scale parameter. A random variable in 

equation (4.69) is denoted by X ~GIEL ( , )  . 

The plots of CDF of GIEL distribution are presented in Figure 4.5. When the values of both the 

shape and the scale parameters are less than or equal to one, the curve approaches maximum 

faster than when both values are more than one. 

 

Figure 4.5: CDF of GIEL distribution 

The corresponding PDF of GIEL distribution can be expressed as: 

1 11

2

exp( )
( ) (exp( ) 1) exp[ (exp( ) 1) ], 0, 0, 0. (4.70)x

x xXg x x
x

 


 


 




        

At chosen parameter values, the PDF is presented in Figure 4.6. The PDF can be positively 

skewed and reverse J-shaped. Also, the GIEL distribution is unimodal. When the value of the 

shape parameter is more than the value of the scale parameter, the distribution has reversed-J 

shape. However, when the value of the shape parameter is less than the value of the scale 

parameter, the distribution is positively skewed shape. 
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Figure 4.6: PDF of GIEL distribution 

The survival function for GIEL distribution can be expressed as 

1

( )=1-exp[ (exp( ) 1) ], 0.                                 (4.71)xXS x x    

The survival function of GIEL distribution is graphically shown in Figure 4.7 at selected 

parameter values. When the values of both the shape and scale parameters are less than or equal 

to one, the curve sharply approaches zero. When the values of both are more than one, the curve 

slowly approaches zero.  
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Figure 4.7: Survival function of GIEL distribution 

The hazard rate function of GIEL distribution can be expressed as 

1
1

1

1

2

exp( ){exp( ) 1} exp{ [exp( ) 1] }
( ) , 0.      (4.72)

(1 (exp{ {exp( ) 1} }))

x x x

X

x

h x x

x

   








  

 

  

 

The shape of hazard rate function of GIEL distribution was determined graphically at a selected 

parameter values. For brevity purpose, some values were selected and the plots presented in 

Figure 4.8. The hazard rate function of the GIEL distribution shows decreasing, increasing and 

inverted bathtub shape. When 1    and 1   , the hazard rate function is monotonically 

decreasing. Also, when value of the scale parameter is more than one and the shape parameter is 

less than or equal to one, the hazard rate function increases for some time and either remains 

constant or decreases.  
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Figure 4.8: Hazard rate function of GIEL distribution. 

In order to simulate random samples from GIEL distribution, it is necessary to develop its 

quantile function. The quantile function of GIEL distribution is given by 

( ) , (0,1).                                    (4.73)
log[1 log ]

XQ u u
u




 


 

The median, lower quartile and upper quartiles can be obtained by substituting 0.5, 0.25u u   

and 0.75u   respectively. 

4.6.1 Methods of Parameter Estimation of GIEL Distribution 

This section presents five (5) parameter estimation procedures for estimating the parameters of 

GIEL distribution. These estimators are: Maximum Likelihood estimators, Ordinary Least 

Square estimators, Weighted Least Square estimators, Percentile based estimators and Cramér-

von Mises. 
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4.6.1.1 Maximum Likelihood Estimation of GIEL Distribution for Complete Sample 

In this section, we estimated the parameters ( , )T   , using the method of maximum 

likelihood estimation. Let 1 2, ,..., nx x x  be a random sample of size n  from a GIEL distribution. 

The total log-likelihood function is given by 

1
1

1 1
1 1

log( ) 2 log ( 1) log(exp( ) 1) (exp( ) 1) .  (4.74)
i i i

n n
n n

ix x xi i
i i

n x    
  

 

            

Differentiating equation (4.74) with respect to the parameters   and  respectively gives; 

1 1

1

1 1 1

exp( ) exp( )(exp( ) 1)1
( 1) ,               (4.75)

(exp( ) 1)

i i i

i

n n n
x x x

i i ii i ix

n

x x x

  

   



  


    

 
    

and 

1

2 2
1 1

log(exp( ) 1) (exp( ) 1) log(exp( ) 1)
+ .                          (4.76)i i i

n n
x x x

i i

n
  

    

  
  


   

Equating 




 and 




 to zero and solving for the parameters   and  in the system of equations 

yields the maximum likelihood estimates of the parameters. 

To determine the confidence intervals for the parameters of GIEL distribution, we use the 

observed information matrix ( )    given by 

2 2

2

2

2

( )

l l

l

 



 
 





 
    

  

. 

  The elements of ( )   are given in appendix A2. The multivariate normal 1

2 (0, ( ))N I   , where 

( )I  is the expected information matrix can be employed to construct approximate confidence 
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interval for the parameters under the regularity conditions. When ( )I   is replaced by the 

observed information matrix evaluated at ˆ( )  , the asymptotic behaviour remains the valid. The 

100(1 )%  asymptotic confidence interval (CI) for each parameter   is given by: 

2 2( , ),CI z z
              

where 



is the standard error of the estimated parameter and 

2z  is the upper quantile of the 

standard normal distribution. 

4.6.1.2 Maximum likelihood Estimation of the GIEL Distribution for Incomplete Samples 

Suppose we observed the first r  failed items 1 2, ,..., .rx x x  Let exp( ) 1
ii x

z   , then, the total log-

likelihood function for GIEL distribution with right censored data is given by 

 
1 1 11

2
1 1

exp( )
log ( ) exp( ) (1 ) log(1 exp( ) ).    (4.77)i

n n
x

i i i i i

i ii

r z z r z
x

  







 

 
          

 
   

Differentiating  with respect to  and   gives 

 

 

 

1 1
1 1 1

1

1

1 1

1

1

11

2 22
1 1

1

11

3 2
1

( ) exp( ) ( )exp( ) ( ) log( ) (1 )
( )            (4.78)

(1 exp( ) )

log( )( ) exp( ) ( )
      ( )

i

i

n n
i ix

i i i i
i i

i i ii

n
i i ix

i i

i i

z zz z z r
r z

xz

z z z
r z

x

 
  





 








 

 


 







 







       
   

    
 

 
 

 


 

1 1 11

3 2

log( )( ) ( ) exp( ) ( )
,

ii i i ix

i

z z z z

x

  



     
 
 
 

  

and 
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  
   

1 1

1 1

1 1
1 1

11 2

2 2
1

( ) exp ( ) ( ) ( ) exp ( ) ( )
( ) exp ( ) ( ) . (4.79)

i i

i

n
i i i ix x

i i i ix

i i i

z z z z
r x z z

x x

 

 

  




 
  

 





 
    

     
  

 



Equating equations (4.77), (4.78) and (4.79) to zero and solving simultaneously results in the 

estimates. 

4.6.1.3 Ordinary and Weighted Least Square Estimators of GIEL Distribution 

The OLS estimates OLS and OLS , can be obtained by minimizing the function: 

1

( )

2

( ) 1

1

( | ) [exp[ (exp( ) 1) ] ] ,                                                         (4.80)
i

n

i
xi n

i

L x 




      

with respect to  and  . Where 
( )ix  is the ordered statistics of the random sample of size n . 

Also,   the estimates can be obtained by solving the following non-linear equations  

1

( ) 1 ( )1

1

[exp[ (exp( ) 1) ] ] ( | , ) 0,                                          (4.81)
i

n

i
x in

i

x  




      

and 

1

( ) 2 ( )1

1

[exp[ (exp( ) 1) ] ] ( | , ) 0,                                (4.82)
i

n

i
x in

i

x  




      

 

where 
 

1

1( ) ( )

( )

1

1 ( ) ( ) 2

( )

exp( ) exp( ) 1
( | , ) ( ) exp( (exp( ) 1) ), (4.83)

i i

i

x x

i X i x

i

x G x
x





 

 
 




     


 

and  

1 1

( ) ( ) ( )2 ( ) ( )( | , ) ( ) (exp( ) 1) log(exp( ) 1)exp( (exp( ) 1) ).(4.84)
i i ii X i x x x

x G x     



       


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The WLS estimates can be obtained by minimizing the following function 

1

( )

22

( )

1

( 1) ( 2)
( | ) exp[ (exp( ) 1) ,  (4.85)

( 1) 1i

n

xi

i

n n i
L x

i n i n




   
        

  

with respect to   and  . Equivalently, the estimates can be obtained by solving the following 

non-linear functions 

1

( )

2

1 ( )

1

( 1) ( 2)
exp[ (exp( ) 1) ( | ) 0,   (4.86)

( 1) 1i

n

x i

i

n n i
x

i n i n




   
         

  

And 

1

( )

2

2 ( )

1

( 1) ( 2)
exp[ (exp( ) 1) ( | ) 0,  (4.87)

( 1) 1i

n

x i

i

n n i
x

i n i n




   
         

  

where, 
1 ( )( | )ix   and 

2 ( )( | )ix   are defined in equation (4.83) and (4.84) respectively. 

4.6.1.4 Percentile Based Estimators of GIEL Distribution 

As stated earlier, PCE was introduced by Kao (1958) and is mainly obtained by minimizing the 

Euclidean distance between the sample percentile and population percentile points. Again, 

assume
(1) ( ),..., nx x  to be a sample ordered statistics and 

( 1)
i

i n
u


  to be unbiased estimator of 

( )( | , ).iG x    Then, the PCE of the parameters of GIEL distribution are obtained by minimizing 

the function: 

2

( )

1

( , ) ,                       (4.88)
log[1 log ]

n

i

i i

p x
u


 



  
      
  

with respect to   and  . Minimizing equation (4.88) with respect to    and   gives  
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2
( , ) =0,                                            (4.89)

n
p  

 


 


 

and 

1

log
( , ) 2 0, (4.90)

log[1 log ](1 log )

n
i

i i i

u
p

u u
 

  


  

  
  

respectively. 

4.6.1.5 Cramér-von Mises Estimators of GIEL Distribution 

The Cramer-von Mises estimators CME and CME  of GIEL distribution are obtained by 

minimizing the function: 

1

( )

22 11
12 2

1

( , ) [exp[ (exp( ) 1) ] ] ,             (4.91)
i

n

i
xn n

i

c   



      

 with respect to   and   or equivalently solving the following nonlinear equations 

1

( )

2 1
1 ( )2

1

[exp (exp( ) 1) ] ( | , ) 0,                  (4.92)
i

n

i
x in

i

x  



      

and 

1

( )

2 1
2 ( )2

1

[exp (exp( ) 1) ] ( | , ) 0,                (4.93)
i

n

i
x in

i

x  



      

where 
1 ( )( | , ),ix   and 

2 ( )( | , )ix   are given in equations (4.83) and (4.84). 
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4.7 Weibull-IE{Lomax} Distribution 

LetT  distributed as Weibull ( , )  distribution with CDF ( ) 1 exp( )TG x x   and PDF 

1( ) exp( )Tg x x x    . Using the CDF of T-IE{Lomax} family of distributions, then the 

CDF  of WIEL distribution is given as 

1

( ) 1 exp{ [(1 exp( )) 1] }, 0,                        (4.94)xXG x x 


        

where 0, 0, 0, 0.       The shape parameters are   and   while the scale parameters 

are   and  . Figure 4.9 shows the plots of the CDF of WIEL distribution with varying 

parameter values. When the values of all the parameters are less than or equal to one, the curve 

approaches the maximum faster than when the values are more than one. Also, when the value of 

alpha is less than or equal to one and the other three values are more than one, the curve takes 

longer time to reach maximum. 
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Figure 4.9: CDF of WIEL distribution 

The corresponding PDF is given by 

 
1 1

1

1
1

2

exp( )
[{1 exp( )} 1] exp[ {(1 exp( ) 1} ], 0.(4.95)

[1 exp( )]

x
x xX

x

g x x

x


   








 





        

 

 

The PDF of WIEL distribution can be positively skewed, approximately symmetric and 

unimodal with varying degree of kurtosis. Figure 4.10 displays the various shapes of the PDF of 

WIEL distribution. When the values of alpha and gamma are less than or equal to one, the 

distribution is approximately symmetric with varying degree of kurtosis. Also, when the value of 

alpha is less than or equal to one and the rest are more than one, the distribution is positively 

skewed. 
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Figure 4.10: PDF of WIEL distribution 

The Survival function is given by 

1

( ) exp{ [[1 exp( )] ] 1} , 0.                  (4.96)X x
S x x 


       

Figure 4.11 shows the survival function of WIEL distribution. When the values of alpha is less 

than or equal to one and the others are more than one, the survival curve takes longer time to get 

to zero. Also, when all the values are more than one, the curve approaches zero faster.  

 

Figure 4.11: Survival function of WIEL distribution 

 The hazard rate function is given by 

   
1

1

1
1

2

exp( )
( 1 exp( ) 1) , 0.       (4.97)

(1 exp( )) )

x
xX

x

h x x

x


 







 




    

 

 

Figure 4.12 shows the graphical presentation of the hazard rate function of WIEL distribution. It 

can be observed that, with varying parameter values, the hazard rate function has inverted 

bathtub and decreasing shape. When lambda value is less than one, the hazard rate function is 
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decreasing and when all the parameter values are equal to or more than one, the distribution has 

an inverted hazard rate function. 

 

Figure 4.12: Hazard rate function of WIEL distribution 

It is important to develop the quantile function in order to simulate random samples from WIEL 

distribution. The quantile function of WIEL distribution is given as  

 
1

1

( ) , (0,1).                          (4.98)

log(1 { (1 log 1 )} )
XQ u u

u 




 

  

  

 

Substituting 0.5, 0.25u u   and 0.75u  gives median, first quartile and upper quartile of 

WIEL distribution respectively. 

4.7.1 Methods of Parameter Estimation for WIEL Distribution 

This section presents five (5) parameter estimation procedures for estimating the parameters of 

WIEL distribution. These estimators are: Maximum Likelihood estimators, Ordinary Least 

Square estimators, Weighted Least Square estimators, Percentile based estimators and Crame
’
r-

von Mises. 
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4.7.1.1 Maximum Likelihood Estimation Method for Complete Sample 

In this section, we estimated the parameters ( , , , )T     , using the method of maximum 

likelihood estimation. Let 1 2, ,... nx x x  be a random sample of size n  independently and 

identically random variables each distributed according to WIEL distribution. Let 

 1 exp
ii x

z    . The total log-likelihood function is given by 

1 1

1 1

1 1 1

1 1

log log log log 2 (1- ) log( )

      ( 1) log(( ) 1) ( ( ) 1) .                              (4.99)

i

n n n

i ixi i i

n n

i ii i

n n n n x z

z z 





    

 

  

 

 

       

    

  

 
 

Differentiating  with respect to the parameters  ,  ,  ,  and  gives the following score 

functions; 

1

1
,                                                                               (4.100)

n

i
i

n

x  


 


  

1 1
1

1

( ) ( ( ) 1) ,                                            (4.101)
n

i i

i

n
z z   

 

  




    


   

1 1 1

1 1
log(( ) 1) log( ( ) 1)( ( ) 1) , (4.102)

n n

i i ii i

n
z z z    

 

  

 


       


    

and 

1 1 1

1

1

1

2 22
1

log( ) log( )( ) log( )( ) ( ( ) 1)
( 1) log . (4.103)

(( ) 1)

n
n

ii i i i i i

i
i

z z z z z z
n

z

  



 
 

  

   






 
    

 


   
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Equating , ,
  

  

  
  and 






to zero and solving the system of equations numerically for the 

parameters will give the maximum likelihood estimates. Determining the confidence intervals for 

the parameters of WIEL distribution, the following observed information matrix ( )   was used; 

2 2 2 2

2

2 2 2

2

2 2

2

2

2

( )

l l l l

l l l

l l

l

     

   

 



   
     

  
   

 
 





 
 
 

     
 
 
  

. 

  The elements of ( )   are given in appendix A3. The multivariate normal 1

4 (0, ( ))N I   , where 

( )I  is the expected information matrix can be employed to construct approximate confidence 

interval for the parameters under the regularity conditions. When ( )I   is replaced by the 

observed information matrix evaluated at ˆ( )  , the asymptotic behaviour remains the same. The 

100(1 )%  asymptotic confidence interval (CI) for each parameter   is given by: 

2 2( , ),CI z z
              

where 



is the standard error of the estimated parameter and 

2z  is the upper quantile of the 

standard normal distribution. 

4.7.1.2 Maximum Likelihood Estimation Method for Censored Data 

Suppose we observed the first r  failed items 1 2, ,..., .rx x x  Then, the likelihood function for GIEL 

distribution with right censored data is given by 

1 1

1 1

exp( )
log {( ) 1} (1 ) log[exp{ {( ) 1} ].(4.104)i

n n
x

i i i i

i ii

r z r z
x

 


 






 

 

 
      

 
   
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Differentiating  with respect to the parameters give the following functions: 

   
1 1

1

2

exp(- ) ( ) 1 exp(- ) ( ) 1
( ) r exp( ) ,(4.105)

i i

i

i ix x

i i x

i i

z z
x

x x

 

 
 



 
 

  

 



 
  

   
  

 

 

  
1 1

1

1 1

(1 )( ) 1 ( ) ,                                     (4.106)
n n

i
i i i

i i

r
r z z 



 
 


 

 


     


   

     

    

1 1 1

1 1 1

1

1 1

log 1 ( ) (1-r ) 1 ( ) ( ) exp( ) 1 ( )

exp(- ) 1 ( ) exp(- )log 1 ( ) 1 ( )
        ,(4.107)

i

i i

n n

i i i i i ix

i i

i i ix x

i i

z z r x z

z z z

x x

  

  

 


 
 

    


    

 


  

 

  


       



 
      

  
 
 

 

 

and 

   

   
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1 1 1

1
2 1

1 1
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2

3 2

log( )(1 )( ) 1 ( ) ( ) 1 ( )
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.  (4.108)
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 
 

 

 

Equating the functions to zero and solving yields the desired results. 

4.7.1.3 Ordinary Least Square Estimators and Weighted Least Square Estimators  

The OLS estimates , ,OLS OLS OLS   and OLS , can be obtained by minimizing the function: 

1

( )

2

( ) 1

1

( | ) [1 exp{ [(1 exp( )) 1] } ] .          (4.109)
i

n

i
i x n

i

L x  






         
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With respect to , ,   and   where 
( )ix  is the ordered statistics of a random sample of size n . 

Also,   the estimates can be obtained by solving the following non-linear equations  

1

( ) 1 ( )1

1

[1 exp{ [(1 exp( )) 1] } ] ( | , , , ) 0,           (4.110)
i

n

i
ix n

i

x     






         

1

( ) 2 ( )1

1

[1 exp{ [(1 exp( )) 1] } ] ( | , , , ) 0,           (4.111)
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1

( ) 3 ( )1

1

[1 exp{ [(1 exp( )) 1] } ] ( | , , , ) 0,           (4.112)
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

         

and 

1

( ) 4 ( )1

1

[1 exp{ [(1 exp( )) 1] } ] ( | , , , ) 0,           (4.113)
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i

x     





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where 
. (.) ( )( | ) ( )X ix G x


  


 and 

1 1

( ) ( )( )( ) 1 exp{ [(1 exp( )) 1] }[(1 exp( )) 1] ,                        (4.114)
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   
1 1

( ) ( ) ( ) 1

( )

1
1

( )

exp( ) 1 exp( ) 1 exp( ) 1

( ) exp{- [(1 exp( )) ] }.(4.117)
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The WLS estimates (Swain et al., 1988), , ,WLS WLS WLS   and WLS , can be obtained by 

minimizing the function: 

1
2

2

( ) 1

1

( 1) ( 2)
( | ) [1 exp{ [(1 exp( )) 1] } ] .            (4.118)
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Equivalently, the estimates can be obtained by solving the following non-linear equations 

1
2

1 ( )1

1

( 1) ( 2)
[1 exp{ [(1 exp( )) 1] } ] ( | , , , ) 0, (4.119)
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[1 exp{ [(1 exp( )) 1] } ] ( | , , , ) 0, (4.121)
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and 
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[1 exp{ [(1 exp( )) 1] } ] ( | , , , ) 0. (4.122)
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where
1 ( )( | , , , ),ix      

2 ( )( | , , , ),ix     3 ( )( | , , , )ix      and 
3 ( )( | , , , )ix      are 

from equation (4.114)-(4.117). 
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4.7.1.4 Percentile Based Estimators  

Let 
(1) ( ),..., nx x  be a sample ordered statistics, ( , , , )T     and  

( 1)
i

i n
u


  be unbiased 

estimator of 
( )( | , , , ).iG x      Then, the PCE of the parameters of WIEL distribution are 

obtained by minimizing the function: 

 

2

( ) 1
11

( ) ,               (4.123)
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with respect to , ,   and  . Minimizing equation (4.116) gives the following functions: 
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and 

2
( ) 0.                                                                                       (4.127)
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Equating ( ), ( ), ( )p p p
  

  
  

  
 and ( )p







 to zero and solving simultaneously gives 

the estimates. 

4.7.1.5 The Cramér-von Mises Estimators 

The Cramér-von Mises estimators , ,CME CME CME    and CME  of WIEL distribution are obtained 

by minimizing the function: 

1
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22 11
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 with respect to , ,    and  or equivalently solving the following nonlinear equations 
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where 
1 ( )( | , , , ),ix      

2 ( )( | , , , ),ix     3 ( )( | , , , )ix      and 
3 ( )( | , , , )ix      are 

from equation (4.114)-(4.117). 
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CHAPTER FIVE 

SIMULATION AND EMPIRICAL RESULTS 

5.0 Introduction  

This chapter presents the simulation results and applications of the newly developed distributions 

(GIEL, WIEL and LLIEW distribution) to real life data. As an illustration, GIEL distribution was 

chosen for the simulation. 

5.1 Simulation 

In this section, the properties of the five methods of parameter estimations (MLE, OLS, WLS, 

PCE and CVM) for the parameters of the GIEL distribution were examined using Monte Carlo 

simulation. The average bias (ABias) and mean square error (MSE) of the parameters were 

obtained. The quantile function of GIEL distribution was used to generate random samples. The 

simulation experiment was replicated for N=1500  each with sample sizes, 20,50,100,300n 

and 600 and parameter values ( , ) (0.4,4.4),(1.5,1.2),    (2.3,0.5)  and (1.2,1.5) . The ABias 

and MSE of all the five estimation procedures are recorded in Table 5.1 and Table 5.2. 

The simulation study indicates that MLE, CVM, OLS and WLS methods of estimation are all 

consistent except PCE. The MSEs and ABias of MLE, CVM and OLS decreases as the sample 

size increases. Also, the MSEs and ABias of WLS decreased for some time as the sample size 

increase. The values of the PCE however fluctuate as the sample size increases. It can also be 

observed that, MLE has the minimum values of MSEs and ABias compare to the other methods 

with different combination of the parameter values. It can be concluded that, MLE is the best 

methods in estimating GIEL distribution.
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Table 5.1 Simulation results for (α=0.4, λ=4.4) and (α=1.5, λ=1.2) 

Parameter n MLE OLS WLS CVM PCE 

0.4    ABias MSE ABias MSE ABias MSE ABias MSE ABias MSE 

20 0.122 0.023 0.190 0.050 0.194 0.050 0.224 0.065 0.717 0.535 

50 0.078 0.009 0.183 0.041 0.204 0.054 0.200 0.047 0.729 0.545 

100 0.054 0.004 0.188 0.039 0.203 0.046 0.197 0.043 0.740 0.559 

300 0.032 0.002 0.194 0.039 0.206 0.044 0.197 0.040 0.748 0.566 

600 0.022 8E-04 0.194 0.038 0.206 0.043 0.196 0.039 0.755 0.577 

4.4    20 0.464 0.362 13.310 183.820 13.533 189.700 13.540 190.400 8.2784 499.000 

50 0.300 0.148 13.260 178.447 13.490 184.770 13.340 180.800 10.352 1487.000 

100 0.199 0.063 13.200 175.560 13.456 182.310 13.250 176.700 10.786 5147.000 

300 0.122 0.023 13.120 172.497 13.369 179.150 13.130 172.900 9.618 291.700 

600 0.083 0.011 13.140 172.743 13.388 179.440 13.140 172.900 10.533 1501.000 

1.5    20 0.248 0.095 0.350 0.171 0.364 0.178 0.408 0.219 1.386 1.971 

50 0.156 0.039 0.325 0.133 0.363 0.156 0.356 0.155 1.389 1.962 

100 0.108 0.018 0.332 0.125 0.379 0.155 0.349 0.137 1.401 1.992 

300 0.064 0.006 0.344 0.124 0.397 0.161 0.350 0.128 1.409 2.004 

600 0.045 0.003 0.344 0.121 0.401 0.162 0.347 0.123 1.403 1.993 

1.2    20 0.226 0.092 3.982 18.124 4.171 19.689 4.105 19.370 246.070 22342181 

50 0.141 0.034 3.889 15.951 4.109 17.756 3.935 16.330 162.890 1255784 

100 0.094 0.014 3.835 15.064 4.065 16.907 3.857 15.240 310.920 7520487 

300 0.056 0.005 3.775 14.376 4.016 16.258 3.782 14.430 181.270 379135 

600 0.038 0.002 3.782 14.358 4.027 16.282 3.785 14.390 181.900 212972 
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Table 5.2 Simulation results for (α=2.3, λ=0.5) and (α=1.2, λ=1.5)  

Parameter n MLE OLS WLS CVM PCE 

2.3    ABias MSE ABias MSE ABias MSE ABias MSE ABias MSE 

20 0.408 0.256 0.539 0.411 0.572 0.441 0.623 0.519 2.158 4.742 

50 0.268 0.109 0.491 0.309 0.579 0.396 0.537 0.358 2.155 4.713 

100 0.175 0.049 0.498 0.287 0.613 0.405 0.524 0.313 2.162 4.732 

300 0.103 0.017 0.517 0.281 0.653 0.435 0.526 0.290 2.160 4.705 

600 0.074 0.009 0.518 0.275 0.663 0.445 0.522 0.279 2.141 4.641 

0.5    20 0.130 0.034 1.960 5.389 2.140 6.116 2.051 6.076 5557 17038217571 

50 0.081 0.011 1.841 3.822 2.057 4.737 1.872 3.954 15321 239952526233 

100 0.052 0.005 1.784 3.359 2.013 4.263 1.799 3.415 5467 6249850669 

300 0.030 0.001 1.733 3.062 1.975 3.972 1.738 3.078 15597 50889455990 

600 0.020 0.0007 1.735 3.038 1.985 3.973 1.737 3.046 12291 12385927330 

1.2    20 0.192 0.057 0.281 0.110 0.290 0.113 0.329 0.142 1.095 1.244 

50 0.122 0.023 0.264 0.087 0.289 0.098 0.289 0.101 1.104 1.246 

100 0.084 0.011 0.271 0.083 0.300 0.097 0.284 0.090 1.117 1.278 

300 0.049 0.004 0.28 0.082 0.311 0.099 0.285 0.084 1.122 1.275 

600 0.035 0.002 0.281 0.080 0.319 0.108 0.283 0.082 1.120 1.269 

1.5    20 0.232 0.094 4.753 24.569 4.901 26.091 4.872 25.890 27.218 36488 

50 0.147 0.037 4.689 22.750 4.867 24.481 4.734 23.190 62.480 656083 

100 0.098 0.015 4.647 21.926 4.832 23.693 4.669 22.140 38.704 44234 

300 0.059 0.005 4.594 21.217 4.786 23.028 4.601 21.280 48.754 61105 

600 0.040 0.003 4.601 21.224 4.799 23.093 4.605 21.260 48.088 37785 
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5.2 Applications  

In this section applications of the special distributions to real data sets were done. In these 

applications, the MLE was used to estimate the parameters of the special distributions.  The AIC, 

AICc, BIC, Cramér-Von Mises minimum distance (W
*
), K-S value and the P-value of the K-S 

statistics were computed to compare the fitted models.  Generally, the smaller the values of these 

statistics, the better the fit to the data.  Also included are the plots of the CDFs, PDFs of both the 

empirical and the fitted distributions and their probability plots. 

5.2.1 Application of Gumbel-IE{Logistic} distribution to real data set 

The GIEL distribution was applied to three (3) real life data sets of which one (1) data set is 

censored. This application is to demonstrate how the GIEL distribution can be applied in real life 

and also to demonstrate its superiority over other competitive distributions.  

5.2.1.1 Analgesic Data  

This data set represent relief times of 20 patients receiving an analgesic. The data set was 

retrieved from Oguntunde et al. (2017) and is shown in Table 1, Appendix B.  The GIEL 

distribution was compared with Kumaraswamy inverse exponential (KIE) distribution, IE 

distribution, Burr type XII (BXII) distribution and generalized inverse exponential (GIE) 

distribution using the analgesic data set. The descriptive statistics of the data set are given in 

Table 12, Appendix B. It can be observed that, the distribution of the data is positively skewed 

and platykurtic (skewness= 1.592 and kurtosis=2.347). The average relief time for patients 

receiving the medication is 1.700 minutes. The minimum and the maximum relief time are 1.100 

minutes and 1.475 minutes respectively. 
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The data set has an increasing failure rate since the TTT-transform curve is concaved above the

045  line as shown in Figure 5.1. 

 

Figure 5.1: TTT-transform plot for analgesic data set 

The maximum likelihood estimates for the parameters and the standard errors are given in Table 

5.3. All the parameters of the fitted distributions except the parameters of Burr type XII 

distribution were significant at 5% level of significance. 
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Table 5.3: Maximum likelihood estimates for relief time of analgesic data  

Model Estimates Standard error z-value P-value 

GIEL 0.3418    

1.0728    

26.0361 10   

26.1835 10   

05.6557 10   

11.73500 10   

81.552 10 *
  

162.2 10  *
  

KIE 96.8838a    

20.7664b    

0.0637    

34.2346 10   

11.0919 10   

21.1193 10   

42.2879 10   

01.9018 10   

05.6913 10   

162.2 10  *
  

25.719 10 *
  

162.2 10  * 

GIE 20.8142a    

6.1757    

11.0964 10   

01.0865 10   

01.8985 10   

05.6839 10   

25.763 10 *
  

81.316 10 * 

BXII 25.1031    

0.0676    

12.7244 10   

27.4788 10   

19.2140 10   

19.0360 10   

13.568 10   

13.6620 10   

IE 1.7248    13.8567 10   
04.4721 10   

67.744 10 *
  

*: means significant at 5%  level of significance 

 The log-likelihood values and the goodness of fit values are reported in Table 5.4. The results 

indicate that, GIEL distribution gives a better fit to this data set than KIE, IE, BXII and GIE 

distributions. This is because, for all the model selection criteria and goodness of fit statistics, 

GIEL distribution has the highest log-likelihood value and least goodness-of-fit values. 

Table 5.4: Model selection criteria for analgesic data  

Model Log-likelihood AIC AICc BIC W
* 

K-S P-value 

GIEL 

GIE 

KIE 

BXII 

IE 

-15.5400 

-17.1000 

-17.1050 

-21.3100 

-32.6690 

35.0856 

38.2091 

40.2091 

46.6269 

67.337 

35.7915 

38.9150 

41.7091 

47.3328 

67.5596 

37.0770 

40.2006 

43.1963 

48.6183 

68.3331 

0.0327 

0.0806 

0.0805 

0.0373 

0.0490 

0.1164 

0.1543 

0.1543 

0.2850 

0.3872 

0.9491 

0.7278 

0.7280 

0.0776 

0.0050 
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Figure 5.2 presents the plots of the CDFs and the PDFs of both the empirical and the fitted 

distributions. The empirical density and the fitted densities are shown on the left of Figure 5.2. 

Also, the empirical CDF and the fitted CDFs are shown on the right of figure 5.2. The graph of 

GIE super impose KIE graph. The GIEL distribution mimics the shapes of the data set better 

than KIE, GIE, BXII and IE distributions.  

 

Figure 5.2: PDFs and CDFs for analgesic 

Figure 5.3 presents the probability plots of the fitted distributions. It can be observed that, GIEL 

distribution provide a better fit to the data set than KIE, GIE and IE distributions. This is 

because, the plot of GIEL observed probability against the expected cluster closely along the 

diagonal as compare to the competing models. 
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Figure 5.3: P-P plots for analgesic data 

The asymptotic variance-covariance matrix for the estimated parameters of GIEL distribution is 

given by 

3 3

1

3 3

3.6434 10 1.5095 10

1.5095 10 3.8236 10
v

 



 

  
  

  

  

Thus, the approximate 95% CI for the parameters   and   are [0.2235,  0.4601] and 

[0.9516,  1.1940] respectively. From the estimated CI, it is clear that none of them contain zero. 

Hence, the estimated parameters of GIEL distribution were all significant at the 5% CI.  

www.udsspace.uds.edu.gh 

 

 

 

 



81 
 

5.2.1.2 Roofing Sheet Data 

This uncensored data set represent coating weight by chemical method on top center side (TCS) 

of roofing sheets. The data set was retrieved from Rao and Mbwambo (2019) and shown in 

Table 2, Appendix B. The performance of the GIEL distribution was compare to inverse 

Rayleigh (IRD) distribution, Weibull (WD) distribution, BXII and Rayleigh (RD) distributions.  

The descriptive statistics of this data set is presented in Table 13, Appendix B. It can be observed 

that, the minimum and maximum coating weigt are 28.7000gm/m
2
 and 61.2000gm/m

2
 

respectively. The average coating weight for the TCS procedure is 43.0900gm/m
2
. The data set is 

positively skewed and platykurtic (coefficient of skewness=0.4150 and kurtosis=-0.6827). 

The exploratory analysis indicates that, the data set has an increasing failure rate since the TTT-

transform curve is concaved above the 
045  line as shown in Figure 5.4. 

 

Figure 5.4: TTT-transform plot for the roofing sheet data set 

The estimates for the parameters of the GIEL, IRD, WD, BXII and RD distributions are given in 

Table 5.5. All the parameters of the fitted distributions were significant at 5%  level of 

significance. 
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Table 5.5: Maximum likelihood estimates for roofing sheet data  

Model Estimate Standard error z-value P-value 

GIEL 0.2421    

26.5815    

22.1787 10   

15.7754 10   

11.1114 10   

14.6025 10   

162.2 10  *
  

162.2 10  * 

WD 0.9825    

43.0989    

11.1579 10   

05.1252 10   

08.4853 10   

08.4092 10   

162.2 10  *
 

162.2 10  *
 

BXII 2.7783    

0.0961    

04.9440 10   

11.7131 10   

15.619 10   

15.608 10   

15.742 10   

15.749 10   

IRD 40.8748    02.4086 10   
11.697 10   

162.2 10  *
  

RD 31.0159    01.8276 10   
11.6971 10   

162.2 10  *
  

*: means significant at 5%  level of significance 

The log-likelihood values and the goodness of fit values are reported in Table 5.6. The results 

indicate that, GIEL distribution gives a better fit to this data set than IRD, WD, BXII and RD 

distributions as it has the highest log-likelihood value and the lowest goodness of fit statistics. 

Table 5.6: Model selection criteria for the roofing sheet data 

Model Log- 

likelihood 

AIC AICc BIC W
* 

K-S P-value 

(K-S) 

GIEL 

IRD 

RD 

WD 

BXII 

-255.7300 

-296.8000 

-296.8900 

-342.9500 

-436.7600 

515.4634 

595.6036 

595.7888 

689.8968 

877.5170 

515.6373 

595.6607 

595.8459 

690.0708 

877.6909 

520.0160 

597.8803 

598.0655 

694.4502 

882.0703 

0.1378 

0.0363 

0.0704 

0.0496 

0.0335 

0.1030 

0.3653 

0.3632 

0.4802 

0.5918 

0.4296 

9.035x10
-9 

1.122 x10
-8 

7.661 x10
-15 

2.2 x10
-16
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Figure 5.5 presents the plots of the CDFs and the PDFs of both the empirical and the fitted 

distributions. The empirical density and the fitted densities are shown on the left of Figure 5.5. 

Also, the empirical CDF and the fitted CDFs are shown on the right of figure 5.5. The GIEL 

distribution provides a better fit to the data set as compare to IRD, WD, BXII and RD.  

 

Figure 5.5: PDFs and CDFs for roofing sheet data 

Figure 5.6 displays the probability plots of the fitted distributions. It can be observed that, GIEL 

distribution provide a better fit to the data set than IRD, WD, BXII and RD. This is because, the 

plot of GIEL observed probability against the expected cluster closely along the diagonal as 

compare to the competing models. 
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Figure 5.6: P-P plots for the roofing sheet data 

The asymptotic variance-covariance matrix for the estimated parameters of the GIEL distribution 

for the TCS data is given by 

4 3

1

3 1

4.7467 10 4.9598 10

4.9598 10 3.3356 10
v

 



 

  
  

  

. 

The estimated 95% CI for the parameters   and   of the GIEL distribution are respectively 

given as [0.1994,  0.2851]  and [25.4495,  27.7135] . It can be seen that, none of the CI for the 

estimated parameters contain zero. This implies that, the estimated parameters of the GIEL 

distribution were all significant at the 5% significance level.  
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5.2.1.3 Dialysis Data 

This data set represents lifetime data relating to recurrent times to infection at the point of 

inserting of a catheter for patients undergoing kidney dialysis. The data was retrieved from 

Lawless (2003) and is shown in Table 3, Appendix B. 

In this section, an application of the GIEL distribution to censored data set has been provided. 

The AIC, AICc and BIC statistics were used to compare the performance of GIEL distribution to 

IRD, RD, and BXII. The data set consist of 38 persons undergoing kidney dialysis.  

The data set has a decreasing failure rate since the TTT-transform curve is convex below the 
045  

line as shown in Figure 5.7. 

 

Figure 5.7: TTT-transform plot for dialysis data 

The maximum likelihood estimates for the parameters and the standard errors are given in Table 

5.7. All the parameters of the fitted distributions were significant at 5% level of significance. 
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Table 5.7: Maximum likelihood estimates for the dialysis data 

Model Estimate Standard error z-value p-value 

GIEL α=1.7009 

λ=22.5010 

2.8971x10
-1 

4.1303x10
0
 

5.8711x10
0 

5.4478x10
0
 

4.3290x10
-9* 

5.0990x10
-8

 

BXII α=3.3910 

β=0.0545 

7.5129x10
0 

1.2474x10
-1

 

4.3800x10
-1 

4.3670x10
-1

 

6.6140x10
-1 

6.6240x10
-1

 

RD σ=139.8074 1.3731x10
1
 1.0182x10

1
 <2.2x10

-16*
 

IRD σ=25.1519 2.1962 x10
0
 1.1452 x10

1
 2.2 x10

-16*
 

*: means significant at 5%  level of significance 

The log-likelihood values and the goodness of fit values are reported in Table 5.8. The results 

indicate that, GIEL distribution gives a better fit to this data set than IRD, BXII and RD 

distributions as it has the highest log-likelihood value and the lowest information criteria 

statistics. 

Table 5.8: Model selection criteria statistics for the dialysis data 

Model Log-likelihood AIC AICc BIC 

GIEL 

RD 

BXII 

IRD 

-152.2300 

-175.6100 

-177.91 

-180.3600 

316.4553 

353.2284 

359.8266 

362.7103 

316.7981 

353.3395 

360.1695 

362.8214 

319.7304 

354.8659 

363.1018 

364.3479 

 

The asymptotic variance-covariance matrix for the estimated parameters for GIEL distribution is 

given by 

2 1

1

1 1

8.3881 10 7.6179 10

7.6179 10 1.7047 10
v

 





  
  

  

 

Thus, the estimated 95% confidence interval for the parameters   and   of the GIEL 

distribution are respectively given as [1.1331,  2.2687]  and [14.4052,  30.5964]. It can be 
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observed that, none of the CI for the estimated parameters contain zero. This implies that, the 

estimated parameters of the GIEL distribution were all significant at the 5% significance level.  

5.2.2 Application of Weibull-IE{Lomax} distribution to real data set 

The WIEL distribution was applied to three (3) data sets. This is to demonstrate the application 

of the distribution to real life data sets. 

5.2.2.1 Bank data 

The data set is an uncensored data on the waiting time of customers of a bank. This data set has 

100 observations and was retrieved from  Oguntunde et al. (2017). The data set is shown in 

Table 4, Appendix B. It was used to compare the performance of WIEL distribution to 

exponentiated inverse Rayleigh (EIRD) distribution, inverse Rayleigh (IRD) distribution and 

Rayleigh (RD) distribution. Table 14, Appendix B presents the descriptive statistics for the data 

set. The mean waiting time was 13.02 minutes and the minimum and maximum waiting time 

were 0.8000 minutes and 38.5000 minute respectively. This data set is positively skewed and 

platykurtic.  

The data set has an increasing failure rate since the TTT-transform curve is concaved above the 

045  line as shown in Figure 5.8. 
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Figure 5.8: TTT-transform plot for the bank data 

The maximum likelihood estimates for the parameters and the corresponding standard errors are 

given in Table 5.9. All the parameters of the fitted distributions were significant at 5%  level of 

significance. 

Table 5.9: Maximum likelihood estimates for Bank data set 

Model Estimate Standard error z-value p-value 

WIEL α=0.8905 

λ=26.0955 

β=0.2684 

γ=0.0964 

1.8550x10
-1 

1.4496 x10
0 

4.1409 x10
-2 

3.0082 x10
-2

 

4.8004 x10
0 

1.8002 x10
1 

6.4820 x10
0 

3.2054 x10
0
 

1.58 x10
-6* 

<2.2 x10
-16* 

9.051 x10
-11* 

1.349 x10
-3*

 

EIRD σ=2.5796 

α=0.4298 

2.2843 x10
-1 

5.1423 x10
-2

 

1.1393 x10
1 

8.3585 x10
0
 

<2.2 x10
-16* 

<2.2 x10
-16* 

IRD σ=3.6190 1.8095x10
-1

 2.0000x10
1
 <2.2 x10

-16* 

*: means significant at 5%  level of significance 

Table 5.10 presents the model selection criteria and the values of the goodness of fit statistics. 

From Table 5.10, it can be observed that, WIEL distribution has the highest log-likelihood value 
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and the least values of the goodness of fit statitics. This implies that, WIEL distribution better fit 

this data set than the competing models. 

Table 5.10: Model selection criteria for the bank data set 

Model Log-

likelihood 

AIC AICc BIC W
* 

K-S P-value 

 (K-S) 

WIEL 

EIRD 

IRD 

-334.0500 

-350.0900 

-379.7800 

696.0942 

704.1704 

761.5627 

696.5153 

704.2941 

761.6035 

706.5149 

709.3808 

764.1679 

0.1888 

0.8029 

0.7796 

0.0920 

0.2120 

0.3533 

0.3664 

0.0003 

2.880x10
-11 

 

Figure 5.9 presents the plots of the CDFs and the PDFs of both the empirical and the fitted 

distributions for the bank data. The empirical density and the fitted densities are shown on the 

left of Figure 5.9. Also, the empirical CDF and the fitted CDFs are shown on the right of figure 

5.9. The WIEL distribution provides a better fit to the data set as compare to the other 

distributions as the graphs of the WIEL distribution mimic the empirical CDF and the empirical 

density. 

 

Figure 5.9: PDFs and CDFs for Bank data 
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The probability plots for the fitted distributions are shown in Figure 5.10. It can be observed that, 

WIEL distribution provide a better fit to the data set than EIRD and IRD. This is because, the 

plot of WIEL observed probability against the expected cluster closely along the diagonal as 

compare to the competing models. 

 

Figure 5.10: P-P plots of the fitted distributions for Bank data 

The variance-covariance matrix for the estimated parameters of WIEL distribution is given by 

2 2 3 3

2 0 2 3

1

3 2 3 3

3 3 3 4

3.4411 10 4.9896 10 4.2647 10 4.3063 10

4.9896 10 2.1014 10 1.4368 10 9.9860 10

4.2647 10 1.4368 10 1.7147 10 1.0750 10

4.3063 10 9.9860 10 1.0750 10 9.049 10

v

   

  



   

   

    
 

     
     
 

    

. 

 Hence, the approximate 95% CI for the parameters  ,  ,   and   are respectively given as 

[0.5269,  1.2541], [23.2543,  28.9367] , [0.1872,  0.3496]  and [0.0374,  0.1554] . From the 

estimates, it can be observed that, none of them contain zero. This means that, the estimated 

parameters of WIEL distribution were all significant at 5% CI.       
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5.2.2.2 Skin Folds Data 

The uncensored data is on the sum of skin folds among 202 athletes. The data set has 202 

observations and was retrieved from Alzaatreh et al. (2016) and it is presented in Table 5, 

Appendix B. The data set was fitted to WIEL, IRD, modified Burr III (MBIII) distribution and 

Weibull Lomax (WLx) distributions. Table 15, Appendix B presents the descriptive statistics for 

the skin folds data set. The data set is positively skewed and platykurtic (skewness=1.171952 

and kurtosis=1.3228). Also, the variance (1067) is far more than the mean (69.07). Thus, the data 

is over-dispersed. 

The data set has an increasing failure rate since the TTT-transform curve is concaved above the 

045  line as shown in Figure 5.11. 

 

Figure 5.11: TTT-transform plot for skin folds data 
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The maximum likelihood estimates of the parameters, the corresponding standard errors, z-

values and the P-values of the distributions are given in Table 5.11. All the parameters of the 

fitted distributions were significant at 5% significance level. 

Table 5.11: Maximum likelihood estimates for skin folds data set 

Model Estimate Standard error z-value p-value 

WIEL α=39.8855 

λ=544.4251 

β=0.3089 

γ=71.3602 

7.6318x10
0 

7.7988x10
-1 

1.7239x10
-2 

1.4655x10
0
 

5.2262x10
0 

6.8152x10
2 

1.7920x10
1 

4.8694x10
1
 

1.73x10
-7* 

<2.2x10
-16* 

<2.2x10
-16* 

<2.2x10
-16* 

WLx a=0.0038 

b=0.6206 

α=3.9101 

β=8.7555 

1.2188x10
-3 

1.3030x10
-1 

8.2553x10
-1 

7.1524x10
-4

 

3.0944x10
0 

4.7633x10
0 

4.7365x10
0 

1.2241x10
4
 

1.9720x10
-3* 

1.9050x10
-6* 

2.1740x10
-6* 

<2.2x10
-16*

 

MBIII α=5100.6646 

β=2.1530 

γ=650.5115 

1.0494x10
-6 

2.0116x10
-2 

4.2941x10
-7

 

4.8607x10
9 

1.0703x10
2 

1.51494x10
9
 

<2.2x10
-16* 

<2.2x10
-16* 

<2.2x10
-16*

 

IRD σ=52.6076 1.8507x10
0
 2.8425 x10

1
 <2.2x10

-16*
 

*: means significant at 5%  level of significance 

Table 5.12 presents the statistics of the goodness of fit and the total log-likelihood values. From 

the Table 5.12, the WIEL distribution has the highest log-likelihood value of -958.2900 and the 

lowest goodness of fit values. This implies that, WIEL distribution provides a better fit to the 

data set than IRD, WLx and MBIII distributions. 
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Table 5.12: Model selection criteria for the skin fold data 

Model Log-

likelihood 

AIC AICc BIC W
* 

K-S P-value  

  (K-S) 

WIEL 

IRD 

MBIII 

WLx 

-958.2900 

-966.6600 

-966.3300 

-981.2900 

1924.5760 

1935.3100 

1938.6670 

1970.5890 

1924.7790 

1935.3300 

1938.7880 

1970.7920 

1937.8090 

1938.6190 

1948.5910 

1983.8220 

0.2475 

0.1791 

0.1876 

0.7432 

0.0775 

0.1145 

0.0954 

0.1226 

0.1762 

0.0100 

0.0506 

0.0046 

 

Figure 5.12 presents the histogram, the empirical CDFs, fitted densities and fitted CDFs of the 

distributions for the bank data. From the plots, the WIEL distribution provides a better fit to the 

data set as compared to the other distributions as the WIEL distribution mimic the shapes of the 

data set well than IRD, WLx and MBIII distributions. 

 

 

Figure 5.12: PDFs and CDFs for skin folds data 

 

The probability plots for the fitted distributions are shown in Figure 5.13. It can be observed that, 

WIEL distribution provide a better fit to the data set than IRD, WLx and MBIII distribution. This 
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is because, the plot of WIEL observed probability against the expected cluster closely along the 

diagonal as compare to the competing distributions. 

 

 

Figure 5.13: P-P plots of the fitted distributions for skin folds data 

The variance-covariance matrix for the estimated parameters of WIEL distribution is given by 

1

1 2

1 2 4 2

2

58.2441 6.0966 1.2269 10 11.1844

6.0966 6.3814 10 1.2843 10 1.1707

1.2269 10 1.2843 10 2.9719 10 2.3560 10

11.1844 1.1707 2.3560 10 2.1477



 

   



  
 

   
     
 
    

. 
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 Thus, the approximate 95% CI for the parameters  ,  ,   and   are respectively given as 

[24.9271,  54.8438], [542.8965,  545.9537] , [0.2751,  0.3427]  and [68.4878,74.2326]. From the 

estimates, it is clear that none of them contain zero. This implies that, the estimated parameters 

of WIEL distribution were all significant at 5% CI.      

5.2.2.3 Height data 

This section presents an application of WIEL distribution to a bimodal data. The data set consist 

of height of 126 students. It was retrieved from Cruz-Medina (2001) and it is presented in Table 

6, Appendix B. The data set was fitted to WIEL, MBIII and WLx distributions.  Table 16, 

Appendix B presents the descriptive statistics for the data set. It can be observed that, the average 

height of a student was 68.55 inches and the maximum height was 78.5 inches. The data is 

negatively skewed and platykurtic. 

The data set has an increasing failure rate since the TTT-transform curve is concaved above the 

045  line as shown in Figure 5.14. 

 

Figure 5.14: TTT-transform plot for the height data 
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The maximum likelihood estimates of the parameters, the corresponding standard errors, z-

values and the P-values of the distributions are given in Table 5.13. All the parameters of the 

WIEL distribution were significant at 5% significance level. 

Table 5.13: Maximum likelihood estimates for height data 

Model Estimate Standard error z-value p-value 

WIEL α=107.2042 

λ=335.7372 

β=3.2730 

γ=0.0398 

1.4912x10
-4 

1.6411x10
-3 

1.9421x10
-1 

2.8177x10
-3

 

7.1889x10
5 

2.0446x10
5 

1.6853x10
1 

1.4112x10
1
 

<2.2x10
-16* 

<2.2x10
-16* 

<2.2x10
-16* 

<2.2x10
-16* 

WLx a=0.0011 

b=1.4633 

α=5.0566 

β=45.3160 

8.5441x10
-4 

1.7384x10
-1 

3.2570x10
-2 

2.4297x10
-3

 

1.2736x10
0 

8.4173x10
0 

1.5525x10
2 

1.8651x10
4
 

2.028x10
-1 

<2.2x10
-16* 

<2.2x10
-16* 

<2.2x10
-16*

 

MBIII α=5100.6740 

β=2.0510 

γ=65.3810 

1.0235x10
-6 

2.2391x10
-2 

1.0381x10
-7

 

4.9834x10
9 

9.1601x10
1 

6.2984x10
8
 

<2.2x10
-16* 

<2.2x10
-16* 

<2.2x10
-16*

 

*: means significant at 5%  level of significance 

Table 5.14 presents the model selection criteria. From the Table 5.14, the WIEL distribution has 

the highest log-likelihood value of -364.1400 and the lowest goodness of fit values. This implies 

that, WIEL distribution provides a better fit to the data set than WLx and MBIII distributions. 
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Table 5.14: Model selection criteria for the height data 

Model Log-

likelihood 

AIC AICc BIC W
* 

K-S P-value 

(K-S) 

WIEL 

WLx 

MBIII 

-364.1400 

-473.7400 

-570.6000 

736.2822 

955.4857 

1147.1920 

736.6128 

955.4857 

1147.3910 

747.6273 

966.8308 

1155.7040 

0.1700 

0.0810 

0.0688 

0.0807 

0.4332 

0.4841 

0.3852 

2.2x10
-16 

2.2x10
-16 

 

Figure 5.15 presents the histogram, empirical density, the empirical CDFs, fitted densities and 

fitted CDFs of the distributions for the height data. From the plots, the WIEL distribution 

provides a better fit to the data set as compare to the competing distributions as the WIEL 

distribution mimic the shapes of the data set well than WLx and MBIII distributions. 

 

Figure 5.15: PDFs and CDFs for the height data 

The probability plots for the fitted distributions are shown in Figure 5.16. It can be observed that, 

WIEL distribution provide a better fit to the data set than WLx and MBIII distribution. This is 

because, the plot of WIEL observed probability against the expected cluster closely along the 

diagonal as compare to the other distributions. 
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Figure 5.16: P-P plots of the fitted distributions for the height data 

The variance-covariance matrix for the estimated parameters of WIEL distribution is given by 

8 7 5 7

7 6 4 6

1

5 4 2 4

7 6 4 6

2.2238 10 2.4473 10 2.8961 10 3.9510 10

2.4473 10 2.6933 10 3.1872 10 4.3486 10

2.8961 10 3.1872 10 3.7716 10 5.1465 10

3.9510 10 4.3486 10 5.1465 10 7.9395 10

v

   

   



   

   

      
 
      
      
 

      

. 

Hence, the approximate 95% CI for the parameters  ,  ,   and   are respectively given as 

[107.2039,  107.2045], [335.7340,  335.7404] , [2.8923,  3.6537] and [0.0343,  0.0453] . From the 

estimates, it is clear that none of them contain zero. This implies that, the estimated parameters 

of WIEL distribution were all significant at 5% CI.      
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5.2.3 Applications of Log-logistic –IE{Weibull} Distribution  

The LLIEW distribution was applied to two real life data sets. This application was to 

demonstrate how the LLIEW distribution can be applied in real life and also to demonstrate its 

superiority over other competitive distributions.  

5.2.3.1 Kevlar 373/Epoxy Data 

This complete data set on the life of the fatigue fracture of Kevlar 373/epoxy strands exposed to 

a persistent pressure of 90% stress level until all failed was used to compare the performance of 

LLIEW distribution to inverse Weibull (IW), GIE and IE distributions. The data set can be found 

in  Oguntunde (2017) and shown in Table 7, Appendix B. Table 17, Appendix B presents the 

descriptive statistics of the data set. The data set is positively skewed and leptokurtic 

(skewness=1.9401 and kurtosis=4.94643). From the value of the kurtosis, it implies that, this 

data set might have heavy tails. 

The exploratory analysis indicates that, the data set has an increasing failure rate since the TTT-

transform curve is concaved above the 
045  line as shown in Figure 5.17. 
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Figure 5.17: TTT-transform plot for Kevlar 373/epoxy data set 

The MLEs of the parameters, standard errors, z-values and the P-values of the LLIEW, IW, GIE, 

IE and KIE distributions are shown in Table 5.15. All the parameters of the fitted distributions 

were significant at 5% significance.  

Table 5.15: Maximum likelihood estimates of the Kevlar 373/epoxy data set 

Model Estimate Standard error z-value p-value 

LLIEW α=24.5161 

λ=0.00425 

θ=6.0826 

γ=0.5519 

8.4248x10
-5 

1.4705 x10
-3

 

5.6462 x10
-4

 

1.8415 x10
-2

 

2.9100 x10
5 

2.8932 x10
0 

1.0773 x10
4 

2.9971 x10
1
 

<2.2 x10
-16* 

3.813 x10
-3* 

<2.2 x10
-16* 

<2.2 x10
-16*

 

IW α=0.8211 

β=0.7588 

1.3232 x10
-1 

5.4084 x10
-2

 

6.2052 x10
0 

1.4029 x10
1
 

5.4630 x10
-10* 

<2.2x10
-16*

 

GIE a=0.7902 

θ=0.5226 

1.2507 x10
-1 

9.2317 x10
-2

 

6.3184 x10
0 

5.6611 x10
0
 

2.643 x10
-10* 

1.504 x10
-8*

 

IE λ=0.6249 7.1683 x10
-2

 8.7178 x10
0
 <2.2 x10

-16*
 

*: means significant at 5%  level of significance 

Table 5.16 presents the statistics of the goodness of fit and the total log-likelihood values. From 

Table 5.16, the LLIEW distribution has the highest log-likelihood value of -131.92 and the 

lowest goodness of fit values. This implies that, LLIEW distribution provides a better fit to the 

data set than IW, GIE and IE distributions. 
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Table 5.16: Model selection criteria for Kevlar 373/epoxy data set 

Model Log-

likelihood 

AIC AICc BIC W
* 

K-S P-value  

(K-S) 

LLIEW 

IW 

GIE 

IE 

-131.8700 

-153.5600 

-161.9900 

-163.1300 

271.7367 

311.1235 

327.9897 

328.2586 

272.2998 

311.2879 

328.1541 

328.3126 

281.0596 

315.7850 

332.6511 

330.5893 

0.3352 

0.9173 

1.2380 

1.2063 

0.0965 

0.1892 

0.2706 

0.2900 

0.4505 

0.0074 

2.091x10
-5 

3.731x10
-6 

 

The empirical density and the fitted densities are shown on the left of Figure 5.18. Also, the 

empirical CDF and the fitted CDFs are shown on the right of the graph. The LLIEW distribution 

provide a better fit to the data set as compare to the other distributions. 

 

Figure 5.18: PDFs and CDFs for the Kevlar 373/epoxy data 

 

Figure 5.19 presents the probability plots for the fitted distributions. It can be seen that, LLIEW 

distribution provide a better fit to the data set than the other distributions. This is because, the 

plot of LLIEW observed probability against the expected cluster closely along the diagonal as 

compare to the GIE and IE distributions. 
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Figure 5.19: P-P plots of the fitted distributions for Kevlar 373/epoxy data  

The variance-covariance matrix for the estimated parameters of the LLIEW distribution is given 

by 

2 4 1 3

4 5 3 4

1

1 3 0 2

3 4 2 3

1.8101 10 6.3767 10 2.1582 10 7.4258 10

6.3767 10 1.9685 10 7.6061 10 2.3007 10

2.1582 10 7.6061 10 2.5734 10 8.8577 10

7.4258 10 2.3007 10 8.8577 10 2.6584 10

v

   

   



  

   

       
 

     
       

       



. 

Thus, the estimated 95% CI for the parameters  ,  ,   and   are respectively given as 

[24.5159,  24.5163] , [0.0014,  0.00715], [6.0815,  6.0837]  and [0.5158,  0.5880]. From the 

approximates, it can be observed that, none of them contain zero. This implies that, the estimated 

parameters of LLIEW distribution were all significant at 5% CI.       
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 5.2.3.2 Air Condition System Data 

This uncensored data set on the failure and running time of air-conditioning system of an 

airplane was used to compare the performance of LLIEW distribution to KIE, exponentiated-

exponential Fréchet distribution (EEFr) and IE distributions. The data set was retrieved from 

Nasiru (2018) and shown in Table 8, Appendix B. 

Table 18, Appendix B presents the descriptive statistics of the failure time of air conditioning 

system of an aircraft. This data is positively skewed and leptokurtic (coefficient of 

skewness=1.609 and kurtosis=4.967). This implies that, the data set has fat tail. Also, the data set 

is over-dispersed as the variance is far more than the mean (this might be due to outliers in the 

data set).  

The failure rate of the data set is bathtub shape since the TTT-transform curve is first convex 

below the  
045  line and then concave above the 

045  line as shown in Figure 5.20. 

 

Figure 5.20: TTT-transform plot for air condition data 
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The maximum likelihood estimates for the parameters and their corresponding standard errors, z-

values and P-values are given in Table 5.17. All the parameters of LLIEW distribution except   

were significant at 5% significance level. The parameters of both KIE and IE were significant at 

5% significance level. 

Table 5.17: Maximum likelihood estimates for air condition data 

Model Estimate Standard error z-value p-value 

LLIEW α=31.3160 

λ=0.0076 

θ=6.6646 

γ=0.6110 

1.129x10
-4 

6.316 x10
-3

 

9.637 x10
-4

 

2.988 x10
-2

 

2.774 x10
5 

1.206x10
0 

6.573 x10
3 

2.045 x10
1
 

<2.2 x10
-16* 

2.277 x10
-1 

<2.2 x10
-16* 

<2.2 x10
-16*

 

EEFr a=0.7902 

β=2.9295 

σ=31.6321 

θ=0.3525 

2.6548x10
0 

4.8322x10
0 

4.8284 x10
1 

2.0132 x10
-1

 

1.4183x10
0 

6.0620x10
-1 

6.5510x10
-1 

1.7510 x10
0
 

1.5611x10
-1 

5.4436x10
-1 

5.1239 x10
-1 

7.9940x10
-2

 

KIE a=0.2161 

b=0.6490 

θ =37.5810 

6.1072x10
-2 

1.5051x10
-1 

3.5087x10
-4

 

3.5379x10
0 

4.3120x10
0 

1.0711x10
0
 

4.033x10
-4* 

1.618x10
-5* 

<2.2 x10
-16*

 

IE λ=11.1800 2.0412x10
0
 5.4772x10

0
 4.320x10

-8*
 

*: means significant at 5%  level of significance 

Table 5.18 presents the statistics of the goodness of fit and the log-likelihood. The LLIEW 

distribution has the highest log-likelihood value and lowest goodness of fit values. This implies 

that, the LLIEW distribution provides a better fit to the data set than KIE, EEFr and IE 

distributions. 
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Table 5.18: Model selection criteria for the air condition data 

Model Log-

likelihood 

AIC AICc BIC W
* 

K-S P-value 

LLIEW 

EEFr 

KIE 

IE 

-152.7700 

-152.95 

-157.1900 

-159.0600 

313.5482 

313.89 

320.3859 

320.1239 

315.1482 

315.4951 

321.3089 

320.2668 

319.1530 

319.4999 

324.5895 

321.5251 

0.0819 

0.0754 

0.1497 

0.1436 

0.1079 

0.1299 

0.2108 

0.2330 

0.8763 

0.6924 

0.1389 

0.0771 

 

The empirical density and the fitted densities are shown on the left of Figure 5.21. Also, the 

empirical CDF and the fitted CDFs are shown on the right of the graph. The LLIEW distribution 

provide a better fit to the data set as compare to the other distributions. 

 

 

Figure 5.21: PDF and CDF for the air condition data 

The probability plots for the fitted distributions are shown in Figure 5.22. It can be observed that, 

LLIEW distribution provide a better fit to the data set than the other distributions. This is 
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because, the plot of LLIEW observed probability against the expected cluster closely along the 

diagonal as compare to the competing models. 

 

Figure 5.22: P-P plot for air condition data 

The asymptotic variance-covariance matrix for the estimated parameters of the LLIEW 

distribution is given by 

8 7 7 6

7 5 6 4

1

7 6 7 5

6 4 5 4

1.2770 10 6.7776 10 1.0860 10 3.3744 10

6.7776 10 3.9609 10 5.7990 10 1.7946 10

1.0860 10 5.7990 10 9.2391 10 2.8701 10

3.3744 10 1.7946 10 2.8701 10 8.9172 10

v

   

   



   

   

      
 
      
      
 

      

.  
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Therefore, the estimated 95% CI for the parameters  ,  ,   and   are respectively given as 

[31.3158,  31.3162] , [0,  0.0200] , [6.3324,  6.3362]  and [0.5524,  0.6696] . From the estimates 

it can be observed that,   contains zero. This implies that, the estimated parameters of LLIEW 

distribution were significant at 5% CI except  .   

5.2.3.3 Endurance deep-groove ball bearing data 

The uncensored data set on the endurance deep-groove ball bearing data was used to compare the 

performance of LLIEW distribution to Weibull Burr XII (WBXII) and Weibull Lomax (WLx) 

distributions. The data set was retrieved from Ghosh (2013) and it is Presented in Table 9, 

Appendix B. 

Table 19, Appendix B presents the descriptive statistics of the data set. From Table 5.26, the data 

set is positively skewed and platykurtic (skewness=0.9424 and kurtosis=0.3514). Also, the 

minimum and the maximum revolutions before fatigue failure are 17.8800 and 173.4000.  

The data set has an increasing failure rate since the TTT-transform curve is concaved above the 

045  line as shown in Figure 5.23.  

 

Figure 5.23: TTT-transform plot for endurance deep-groove ball bearing data 
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Table 5.19 presents the MLEs of the parameters, standard errors, z-values and the P-values of the 

LLIEW, WBXII and WLx distributions. All the parameters of LLIEW distribution were 

significant at 5% significance level except  .  Three out of four parameters of WLx distribution 

were significant at 5% level of significance. For, WBXII distribution, only the parameter b  was 

significant at the 5% level of significance. 

Table 5.19: Maximum likelihood estimates for endurance deep-groove ball bearing data 

Model Estimate Standard error z-value p-value 

LLIEW α=29.2697 

λ=0.0437 

θ=14.6307 

γ=0.5876 

6.2432x10
-5 

3.5618x10
-2

 

9.5570x10
-4

 

3.3328x10
-2

 

4.6883x10
5 

1.2263x10
0 

1.5309x10
4 

1.7629x10
1
 

<2.2 x10
-16* 

2.201x10
-1 

<2.2 x10
-16* 

<2.2 x10
-16*

 

WBXII α =0.7445 

β=0.3896 

a=0.0061 

b=5.3096 

5.6715x10
-1 

3.9601x10
-1 

2.3361x10
-2 

4.4503x10
-2

 

1.3127x10
0 

9.8380x10
-1 

2.6040x10
-1 

1.1791x10
2
 

1.893x10
-1 

3.252x10
-1 

7.945x10
-1 

<2.2 x10
-16*

 

WLx a=0.0037 

b=0.2550 

α =8.6024 

β=6.8251 

4.410x10
-3 

4.8320x10
-2 

1.4465x10
-3 

5.9428x10
-5

 

8.4590x10
-1 

5.2783x10
0 

5.9473x10
3 

1.1485x10
5
 

3.9760x10
-1 

1.3040x10
-7* 

<2.2 x10
-16* 

<2.2 x10
-16*

 

*: means significant at 5%  level of significance 

Table 5.20 presents the goodness of fit statistics and the log-likelihood values for the endurance 

deep-groove ball data. The LLIEW distribution has the highest log-likelihood value and lowest 

www.udsspace.uds.edu.gh 

 

 

 

 



109 
 

goodness of fit values. This implies that, the LLIEW distribution provides a better fit to the data 

set than WBXII and WLx distributions. 

Table 5.20: Model selection criteria for endurance deep-groove ball bearing data 

Model Log-

likelihood 

AIC AICc BIC W
* 

K-S P-value 

(K-S) 

LLIEW 

WBXII 

WLx 

-117.7300 

-117.96 

-118.71 

243.4557 

243.9139 

245.4268 

245.5609 

246.0191 

247.5321 

248.1679 

248.6261 

250.1390 

0.0362 

0.0699 

0.0881 

0.1041 

0.1434 

0.1459 

0.9573 

0.7075 

0.6864 

 

The empirical density and the fitted densities are shown on the left of Figure 5.24. Also, the 

empirical CDF and the fitted CDFs are shown on the right of the graph. The LLIEW distribution 

provide a better fit to the data set as compare to the other distributions. 

 

Figure 5.24: PDF and CDF for endurance deep-groove ball bearing data 

 

Figure 5.25 presents the probability plots for the fitted distributions. It can be seen that, LLIEW 

distribution provide a better fit to the data set than the WBXII and WLx distributions. 
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Figure 5.25: P-P plots for the fitted distributions 

 

Hence, the approximate 95% CI for the parameters  ,  ,   and   are [29.2696,  29.2698] , 

[0,  0.1135] , [14.6288,  14.6326]  and [0.5224,  0.6528] respectively. From the estimates it can be 

observed that,   contains zero. This implies that, the estimated parameters of LLIEW 

distribution were all significant at 5% CI except  .   
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5.2.3.4 6061-T6 aluminum data 

The uncensored data set on the fatigue life of 6061-T6 aluminum coupons data was used to 

compare the performance of LLIEW distribution to Lomax-Weibull {Log-logistic} (LWLL) 

distribution, WBXII, exponentiated-exponential Fréchet (EEFr) and WLx distributions. The data 

set was retrieved from Jamal (2017) and shown in Table 10, Appendix B. 

Table 20, Appendix B presents the descriptive statistics of the data set. The data set is positively 

skewed and platykurtic (skewness=0.3256 and kurtosis=0.9730).  

The data set has an increasing failure rate since the TTT-transform curve is concaved above the 

045  line as shown in Figure 5.26. 

 

 

Figure 5.26: TTT-transform plot for fatigue life of 6061-T6 aluminum data 

Table 5.21 presents the MLEs of the parameters, standard errors, z-values and the P-values of the 

LLIEW, LWLL, EEFr, WBXII and WLx distributions. All the parameters of LLIEW, LWLL, 

and WBXII distributions were significant at 5% significance.  Most of the parameters for WBXII 

and EEFr were significant at the 5% level of significance. 
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Table 5.21: Maximum likelihood estimates for fatigue life of 6061-T6 aluminum data 

Model Estimate Standard error z-value p-value 

LLIEW α=0.9848 

λ=464.9026 

θ=672.4969 

γ=229.5022 

3.1506x10
-4 

6.9009x10
-9

 

5.2453x10
-11

 

1.4183x10
-8

 

3.1258x10
3 

6.7369x10
10 

1.2821x10
13 

1.6182x10
10

 

<2.2 x10
-16* 

<2.2 x10
-16* 

<2.2 x10
-16* 

<2.2 x10
-16* 

LWLL k=60.9704 

β=0.1626 

c=0.8203 

γ =419.3146 

3.5191 x10
-4 

2.2701 x10
-2 

7.0713 x10
-2 

3.1412 x10
-4

 

1.7325 x10
5 

7.1611 x10
0 

1.1601 x10
1 

1.2249 x10
6
 

<2.2 x10
-16* 

8.002 x10
-13* 

<2.2 x10
-16* 

<2.2 x10
-16* 

EEFr α=0.2262 

β=46.5429 

σ=54.1631 

θ=21.3447 

1.806 x10
-1 

2.3511 x10
1 

4.9520 x10
0 

1.6971 x10
1
 

1.2525 x10
0 

1.9796 x10
0 

1.0938 x10
1 

1.2577 x10
0
 

2.1039 x10
-1 

4.7750 x10
-2* 

2.0 x10
-16* 

2.0849 x10
-1

 

WBXII α=0.6063 

β=0.3316 

a=0.0024 

b=10.8948 

1.0585 x10
-1 

1.4337 x10
-1 

2.1884 x10
-2 

1.5840 x10
0
 

5.7274 x10
0 

2.3121 x10
0 

1.1180 x10
-1 

6.8779 x10
0
 

1.020 x10
-8* 

2.071 x10
-2* 

9.1095 x10
-1 

6.074 x10
-12*

 

WLx a=0.0015 

b=0.2796 

α=12.5070 

β=25.1074 

1.1836 x10
-3 

3.3180x10
-2 

1.9273 x10
-5 

6.8153 x10
-5

 

1.2420 x10
0 

8.4255 x10
0 

6.4893 x10
5 

3.6307 x10
5
 

<2.142 x10
-1 

<2.2 x10
-16* 

<2.2 x10
-16* 

<2.2 x10
-16* 

*: means significant at 5%  level of significance 

Table 5.22 presents the goodness of fit statistics and the log-likelihood values for fatigue life of 

6061-T6 aluminum coupons data. The LLIEW distribution has the highest log-likelihood value 

and lowest goodness of fit values. This implies that, the LLIEW distribution provides a better fit 

to the data set than the competing distributions. 
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Table 5.22: Model selection criteria for the fatigue life of 6061-T6 aluminum coupons 

Model Log-

likelihood 

AIC AICc BIC W* K-S P-value 

(K-S) 

LLIEW 

LWLL 

EEFr 

WBXII 

WLx 

-458.9600 

-462.9800 

-477.1600 

-488.4800 

-497.4500 

925.9163 

933.9587 

962.3133 

984.9532 

1002.8920 

926.3330 

934.3754 

962.7299 

985.3698 

1003.3080 

936.3768 

944.4192 

972.7738 

995.4137 

1013.3520 

0.1470 

0.1571 

0.4533 

0.0580 

0.0623 

0.0796 

0.0997 

0.1403 

0.2567 

0.2956 

0.5437 

0.2674 

0.0375 

3.305x10
-6 

4.312x10
-8 

 

From figure 5.27, it can be seen that both the PDF and the CDF of LLIEW distribution mimic the 

empirical PDF and the empirical CDF. Hence, LLIEW fit the data set well.  

 

 

Figure 5.27: PDFs and CDFs of the fitted distributions 

 

Figure 5.28 presents the probability plots for the fitted distributions. It can be seen that, LLIEW 

distribution provide a better fit to the data set than the competing distributions. This is because, 
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the plot of expected probability against the observed probability indicates that, the data cluster 

closely along the diagonal than the competing distributions. 

 

Figure 5.28: P-P plots of the fitted distributions 

 

The variance-covariance matrix for the estimated parameters of LLIEW distribution is given by 

 

8 12 14 12

12 17 19 17

1

14 19 21 19

12 17 19

9.9262 10 2.1742 10 1.6526 10 4.4683 10

2.1742 10 4.7622 10 3.6197 10 9.7872 10

1.6526 10 3.6197 10 2.7513 10 7.4392 10

4.4683 10 9.7872 10 7.4392 10 2.0115 10

v

   

   



   

  

    

    


    

       16

 
 
 
 
 
 

. 

 Hence, the approximate 95% CI for the parameters  ,  ,   and   are [0.9842,  0.9854] , 

[464.9026,  464.9026] , [672.4969,  672.4969]  and [229.5022,  229.5022]  respectively. From 
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the estimates, it can be observed that, none of them contain zero. This means that, the estimated 

parameters of LLIEW distribution were all significant at 5% CI.       

5.2.3.5 New treatment data 

An application of LLIEW distribution on censored data set is given. The AIC, AICc and BIC 

were used to compare LLIEW distribution with WBXII, WLx, MBIII and EEFr distributions. 

The data represent 30 people who were administered a new treatment and compare with another 

set who were given an old treatment. This was to compare the efficacy and safety of the new 

treatment. The event of interest for the study was death. The data was retrieved from Peat and 

Barton (2005) and shown in Table 11, Appendix B. 

The data set has an increasing failure rate since the TTT-transform curve is concaved above the 

045  line as shown in Figure 5.29. 

 

Figure 5.29: TTT-transform plot for the new treatment data 

 

 

www.udsspace.uds.edu.gh 

 

 

 

 



116 
 

Table 5.23 presents the MLEs of the parameters, standard errors, z-values and the P-values of the 

LLIEW, EEFr, WBXII, WLx and MBIII distributions. All the parameters of LLIEW 

distributions were significant at 5% significance.  

Table 5.23: Maximum likelihood estimates for new treatment data 

Model Estimate Standard error z-value P-value 

LLIEW 1.0042    

51.9041    

73.9547    

122.1440    

38.9483 10   

11.1184 10   

08.8072 10   

05.2675 10   

21.1223 10   

04.6410 10   

08.3971 10   

12.3188 10   

162.2 10  *
  

63.468 10 *
  

162.2 10  * 

162.2 10  * 

EEFr 6.7559    

13.2263   

102.1598    

0.2090    

11.3282 10   

18.3600 10   

05.3650 10   

14.1738 10   

15.086 10   

11.582 10   

11.9042 10   

15.008 10   

16.110 10   

18.743 10   

162.2 10  * 

16.165 10  
 

WBXII 1.8978    

0.8840    

0.0029a    

0.7513b    

01.8583 10   

01.0890 10   

35.3721 10   

19.6251 10   

01.0213 10   

18.1180 10   

15.341 10   

17.805 10   

13.071 10   

14.169 10   

15.933 10   

14.351 10   

WLx 0.0030a   

0.0395b    

36.2046    

1.6803     

34.9069 10   

21.3901 10   

51.4301 10   

51.1109 10   

16.1960 10   

02.8402 10   

62.5315 10   

51.5125 10   

15.355 10   

34.509 10 *
  

162.2 10  * 

162.2 10  * 

MBIII 638.6739    

1.5098    

559.3717    

21.2456 10   

11.8543 10   

21.1292 10   

05.1276 10   

08.1421 10   

04.9536 10   

72.934 10 *
  

163.886 10 *
  

77.286 10 *
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Table 5.24 presents the goodness of fit statistics and the log-likelihood values for the new 

treatment data. The LLIEW distribution has the highest log-likelihood value and lowest 

information criteria statistics. This implies that, the LLIEW distribution provides a better fit to 

the data set than the EEFr, MBIII, WBXII and WLx distributions. 

Table 5.24: Model selection criteria for the new treatment data 

Model Log-likelihood AIC AICc BIC 

LLIEW 

EEFr 

MBIII 

WBXII 

WLx 

-34.0300 

-34.5300 

-35.0600 

-35.2900 

-35.4400 

76.0513 

77.0567 

76.1148 

78.5791 

78.8760 

77.6513 

78.6567 

77.0379 

80.1791 

80.4760 

81.6560 

82.6615 

80.3184 

84.1839 

84.4808 

 

The variance covariance matrix for the estimated parameters is given by 

5 2 2 2

2 2 1 1

1

2 1 1 1

2 1 1 1

8.0072 10 7.0861 10 5.5803 10 3.3375 10

7.0861 10 1.2508 10 9.8498 10 5.8911 10

5.5803 10 9.8498 10 7.7567 10 4.6392 10

3.3375 10 5.8911 10 4.6392 10 2.7747 10

v

   









      
 
      
      
 

      

. 

Hence, the estimated 95% CI for the parameters  ,  ,   and   are [0.9867,  1.0217] , 

[29.9835,  73.8247] , [56.6926,  91.2168]  and [111.8197,  132.4683]  respectively. From the 

estimates, it can be observed that, none of them contain zero. This implies that, the estimated 

parameters of LLIEW distribution were all significant at 5% CI.     
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CHAPTER SIX 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

 

6.0 Introduction 

This chapter presents summary, conclusions and recommendations. 

6.1 Summary 

In this study, a new statistical family of distributions called T-IE{ }Y  family of distributions was 

proposed and studied using T-X{Y} frame work. Three sub-families of T-IE{ }Y family 

distributions were developed. These were T-IE{Weibull}, T-IE{Logistic} and T-IE{Lomax} 

family of distributions. The three sub-families of distributions were used to develop three special 

distributions. These distributions were LLIEW, GIEL and WIEL distribution. Both LLIEW 

distribution and WIEL distribution have four parameters each while GIEL distribution have two 

parameters. 

 Plots for the CDFs, PDFs and hazard rate functions of these distributions have been provided. It 

is evident from Figure 4.2 that the density function of LLIEW can be positively skewed, 

negatively skewed, J-shape and reverse-J shape and unimodal.  Also, the hazard rate function of 

LLIEW distribution could be increasing, decreasing or inverted bathtub.  

Furthermore, the density function of GIEL distribution is unimodal, positively skewed and 

reverse-J with the hazard rate function being increasing, decreasing and inverted bathtub shape. 

Also, the density of WIEL distribution is positively skewed and symmetric with the hazard rate 

function being decreasing and inverted bathtub shape. 
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The statistical properties of the T-IE{ }Y family of distributions such as quantile function, mode, 

moments and Shannon entropy were derived and five methods of parameter estimating 

procedures were discussed. These methods are Maximum likelihood estimation, Ordinary Least 

squares estimators, Weighted least square estimators, Percentile based estimators and Cramér-

von Mises estimators.   

In addition, the results of simulation and real data application of the special distributions were 

developed. Simulation was done to compare the performance of the estimators using GIEL 

distribution. The MLE emerged as the best method in estimating the parameters of GIEL 

distribution. 

Applications of the special distributions were illustrated using eleven (11) lifetime data sets of 

which two (2) data set are censored and one (1) is bimodal. The special distributions were 

compare with existing distributions. With these data sets, the special distributions performed 

generally better than the other distributions.   

 

6.2 Conclusions 

The T-IE{Y} family of distributions are improvement of the IE distribution. This new family of 

distributions was used to develop three special cases namely, LLIEW, WIEL and GIEL 

distributions. The PDFs and the hazard rate functions of these special cases have various shapes. 

For instance, the density function of LLIEW distribution assume various shapes such as 

positively skewed, negatively skewed, J-shape and reversed-J shape by different combinations of 

parameter values. The hazard rate function on the other hand may take both monotonic and non-

monotonic shapes namely increasing, decreasing, increasing then decreasing and inverted 

bathtub shapes.  
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The density function of WIEL distribution can be approximately symmetric, positively skewed 

and unimodal with varying degree of kurtosis. The hazard rate function for the WIEL 

distribution could be decreasing, increasing then decreasing and inverted bathtub. This implies 

that, WIEL distribution can be used to modal both monotonic and non-monotonic failure rates. 

The density function of GIEL distribution can be positively skewed or reversed-J with varying 

combination of parameter values. The hazard rate function on the other hand could be increasing, 

decreasing and inverted bathtub. This implies that, GIEL distribution can be used to modal both 

monotonic and non-monotonic failure rates. 

The statistical properties of the T-IE{Y} family of distributions were derived. Five estimation 

procedures were developed and Monte Carlo simulation performed to examine the performance 

of the estimators. Among the estimation procedures, the MLE was seen as the best method in 

estimating the parameters of GIEL distribution.   

The GIEL distribution was applied to two (2) complete data sets and one censored data set. In all 

these application, in can be concluded that, the GIEL distribution can applied to both censored 

and uncensored data sets. This is because, it performed better in both type of data sets than the 

competing distributions such as GIE, KIE, BXII and WD.  

The WIEL distribution was applied to three complete data set of which one is a bimodal data set. 

It can be concluded from the application that, the WIEL distribution can be applied to data sets 

that are unimodal, bimodal, over-dispersed, extremely skewed and data sets with heavy tails. 

The LLIEW distribution was applied to five (5) data sets of which one is a censored data set. The 

distributions of these data sets varied in degree of skewness and kurtosis. From these 

applications, it can be concluded that, LLIEW distribution can be applied favorably to data sets 
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that are extremely skewed, heavily tailed, over-dispersed and data sets that have bathtub failure 

rate.  

6.2 Recommendations 

The PDFs of the special distributions are positively skewed, negatively skewed, reverse j-shape 

and j-shape. Also, the hazard rate functions are increasing, decreasing, inverted bathtub and 

bathtub failure rates. Hence, it is recommended that, any data set that exhibit any of the above 

characteristics can be modeled using the T-IE{Y} family of distributions.  

The data sets used in this study were both complete and censored data sets with varying degree 

of skewness and kurtosis. These data sets were either unimodal or bimodal. However, 

multimodal samples may arise in different fields of study. For example, the covid-19 cases have 

had multi-waves with different peaks across the globe. Hence, further demonstration of the 

application of the developed distributions should consider the use of multimodal data sets. 

Events are influenced by a number of different factors. For instance, maternal mortality maybe 

caused by a number of factors including, age of the expectant mother, environmental factors, and 

socioeconomic factors. It is necessary to investigate the contribution of each factor to the 

mortality rate for better policy decision. Thus, parametric regression models for the special 

distributions can be developed to examine the relationship between the dependent and the 

independent variables of the distributions.  
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APPENDIX A1 

 

Second derivative of the total log-likelihood function of LLIEW distribution with respect to the 

various parameters. 
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Second derivative of the total log-likelihood function of GIEL distribution with respect to the 

various parameters. 
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Second derivative of the total log-likelihood function of WIEL distribution with respect to the 

various parameters. 
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APPENDIX B 

 

DATA 

The following are the data used to test the performance of the new family of distributions 

developed. 

 

1: Relief times of patients receiving Analgesic 
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1.1 1.4 1.3 1.7 1.9 1.8 1.6 2.2 1.7 2.7 

4.1 1.8 1.5 1.2 1.4 3 1.7 2.3 1.6 2 

 

2: Roofing sheet data 

36.8 47.2 35.6 36.7 55.8 58.7 42.3 37.8 55.4 45.2 

31.8 48.3 45.3 48.5 52.8 45.4 49.8 48.2 54.5 50.1 

48.4 44.2 41.2 47.2 39.1 40.7 40.3 41.2 30.4 42.8 

38.9 34 33.2 56.8 52.6 40.5 40.6 45.8 58.9 28.7 

37.3 36.8 40.2 58.2 59.2 42.8 46.3 61.2 58.4 38.5 

34.2 41.3 42.6 43.1 42.3 54.2 44.9 42.8 47.1 38.9 

42.8 29.4 32.7 40.1 33.2 31.6 36.2 33.6 32.9 34.5 

33.7 39.9                 

 

3: Dialysis 

16 13
* 

28 318 12 245 9 30 196 

154 333 8
* 

38 70
*
 25

*
 4

*
 177 114 

459
*
 108

*
 562 24

*
 66 46

*
 40 201 156 

30 25 26 58 43 30 5
*
 8 16

*
 

78 8
*
               

*
 = means censored

  

 

4: Waiting time of bank customers 

23 261 87 7 120 14 62 47 225 71 

246 21 42 20 5 12 120 11 3 14 

71 11 14 11 16 90 1 16 52 95 

 

 

5: Skin folds 
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28 98 89 68.9 69.9 109 52.3 52.8 46.7 82.7 

42.3 109.1 96.8 98.3 103.6 110.2 98.1 57 43.1 71.1 

29.7 96.3 102.8 80.3 122.1 71.3 200.8 80.6 65.3 78 

65.9 38.9 56.5 104.6 74.9 90.4 54.6 131.9 68.3 52 

40.8 34.3 44.8 105.7 126.4 83 106.9 88.2 33.8 47.6 

42.7 41.5 34.6 30.9 100.7 80.3 91 156.6 95.4 43.5 

61.9 35.2 50.9 31.8 44 56.8 75.2 76.2 101.1 47.5 

46.2 38.2 49.2 49.6 34.5 37.5 75.9 87.2 52.6 126.4 

55.6 73.9 43.5 61.8 88.9 31 37.6 52.8 97.9 111.1 

114 62.9 36.8 56.8 46.5 48.3 32.6 31.7 47.8 75.1 

110.7 70 52.5 67 41.6 34.8 61.8 31.5 36.6 76 

65.1 74.7 77 62.6 41.1 58.9 60.2 43 32.6 48 

61.2 171.1 113.5 148.9 49.9 59.4 44.5 48.1 61.1 31 

41.9 75.6 76.8 99.8 80.1 57.9 48.4 41.8 44.5 43.8 

33.7 30.9 43.3 117.8 80.3 156.6 109.6 50 33.7 54 

54.2 30.3 52.8 49.5 90.2 109.5 115.9 98.5 54.6 50.9 

44.7 41.8 38 43.2 70 97.2 123.6 181.7 146.3 42.3 

40.5 64.9 34.1 55.7 113.5 75.7 99.9 91.2 71.6 103.6 

46.1 51.2 43.8 30.5 37.5 96.9 57.7 125.9 49 143.5 

102.8 46.3 54.4 58.3 34 112.5 49.3 67.2 56.5 47.6 

60.4 34.9                 

 

 

 

 

 

 

 

 

 

6: Height data 
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55.00 

65.50 

70.38 

65.13 

69.00 

64.25 

69.88 

72.00 

69.13 

76.00 

72.25 

70.00 

78.50 

63.25 

66.75 

61.00 

66.00 

71.25 

65.25 

63.00 

72.50 

71.00 

66.75 

73.25 

71.75 

68.13 

64.75 

67.75 

63.25 

67.13 

62.25 

66.25 

64.75 

75.00 

72.00 

69.25 

77.13 

72.25 

70.50 

65.25 

70.25 

65.13 

69.00 

64.25 

67.50 

65.25 

65.75 

73.00 

71.50 

67.13 

73.63 

72.00 

66.75 

60.25 

66.00 

71.00 

65.25 

69.50 

66.75 

68.75 

75.50 

72.00 

69.75 

77.50 

72.500 

67.75 

63.25 

67.00 

62.25 

66.25 

62.75 

67.75 

70.75 

66.25 

73.00 

71.63 

68.00 

74.63 

70.00 

65.00 

68.75 

64.00 

67.38 

64.50 

70.00 

72.00 

69.25 

77.00 

72.25 

70.13 

60.00 

65.75 

71.00 

65.17 

69.25 

65.25 

65.50 

72.88 

71.00 

67.00 

73.25 

71.75 

63.25 

66.75 

61.75 

66.25 

71.75 

66.50 

68.50 

75.00 

72.00 

69.38 

77.50 

72.38 

65.00 

68.13 

63.38 

67.25 

62.63 

67.50 

70.75 

66.00 

73.00 

71.50 

67.5 

74.00 

 

7: Failure times of Kevlar 373/epoxy strands data set 

0.0251 

0.6748 

0.9120 

1.3503 

1.7746 

2.0408 

2.4951 

4.8073 

0.0886 

0.6751 

0.9836 

1.3551 

1.8275 

2.0903 

2.5260 

5.4005 

0.0891 

0.6753 

1.0483 

1.4595 

1.8375 

2.1093 

2.9911 

5.4435 

0.2501 

0.7696 

1.0596 

1.4880 

1.8503 

2.1330 

3.0256 

5.5295 

0.3113 

0.8375 

1.0773 

1.5728 

1.8808 

2.2100 

3.2678 

6.5541 

0.3451 

0.8391 

1.1733 

1.5733 

1.8878 

2.2460 

3.4045 

9.0960 

0.4763 

0.8425 

1.2570 

1.7083 

1.8881 

2.2878 

3.4846 

0.5650 

0.8645 

1.2766 

1.7263 

1.9316 

2.3203 

3.7433 

0.5671 

0.8851 

1.2985 

1.7460 

1.9558 

2.3470 

3.7455 

0.6566 

0.9113 

1.3211 

1.7630 

2.0048 

2.3513 

3.9143 
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8: Failure times of air conditioning system data 

23 

246 

71 

261 

21 

11 

87 

42 

14 

7 

20 

11 

120 

5 

16 

14 

12 

90 

62 

120 

1 

47 

11 

16 

225 

3 

52 

71 

14 

95 

 

9: endurance deep-groove ball bearing data 

 

17.88 45.6 54.12 68.88 105.84 28.92 48.4 55.56 

84.12 127.92 33 51.84 67.8 93.12 128.04 41.52 

51.96 68.64 98.64 173.4 42.12 54.12 68.64 105.12 

 

10: 6061-T6 Aluminum data 

70 

107 

114 

124 

130 

133 

138 

142 

151 

162 

212 

90 

108 

114 

124 

130 

134 

138 

142 

152 

163 

96 

108 

116 

124 

131 

134 

139 

144 

155 

163 

97 

108 

119 

124 

131 

134 

139 

144 

156 

164 

99 

109 

120 

124 

131 

134 

141 

145 

157 

166 

100 

109 

120 

128 

131 

134 

141 

146 

157 

166 

103 

112 

120 

128 

131 

136 

142 

148 

157 

168 

104 

112 

121 

129 

132 

136 

142 

148 

157 

170 

104 

113 

121 

129 

132 

137 

142 

149 

158 

174 

105 

114 

123 

130 

132 

138 

142 

151 

159 

196 
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11: New treatment data 

5
*
 

19
*
 

38
* 

7
* 

20
*
 

40
*
 

8
* 

23
*
 

41
*
 

9 

24
*
 

41
*
 

9
*
 

25
*
 

42
*
 

12 

29
*
 

43
*
 

15 

31
*
 

48
*
 

16 

32 

49
*
 

16
*
 

32
*
 

58
*
 

16
*
 

36 

59
*
 

*
: means censored

  

Table 12: Summary of relief times of analgesic data  

N Min. Max. Med. Mean Var. Skewness Kurtosis 

20 1.100 1.475 1.700 1.900 0.496 1.592 2.347 

 

Table 13: summary of TCS procedure for roofing sheet data 

N Min. Max. Med. Mean Var. Skewness Kurtosis 

72 28.7000 61.2000 42.3000 43.0900 68.0859 0.4150 -0.6827 

 

Table 14: Summary of Bank data 

N Min. Max. Med. Mean Var. Skewness kurtosis 

100 0.8000 38.5000 4.6750 13.0200 52.3741 1.4728 2.4300 

 

Table 15: Summary of skinfolds data 

N Min. Max. Med. Mean Var. Skewness Kurtosis 

202 28.0000 200.0000 58.6000 69.0700 1067.0000 1.1720 1.3228 

 

Table 16: Summary of height data 

N Min. Max. Med. Mean Var. Skewness Kurtosis 

126 55.0000 78.5000 68.4400 68.5500 17.2870 -0.0491 0.0045 

 

 

 

Table 17: Summary of life of fatigue fracture of Kevlar 373/epoxy data 

N Min. Max. Med. Mean Var. Skewness kurtosis 
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76 0.0251 9.0960 1.7360 1.9590 2.4774 1.9401 4.94643 

 

Table 18: Summary of air condition data 

N Min. Max. Med. Mean Var. Skewness Kurtosis 

30 1.0 261.0 22.0 59.6 5,167.4 1.609 4.967 

 

Table 19: Summary of endurance deep-groove ball bearing data 

N Min. Max. Med. Mean Var. Skewness Kurtosis 

24 17.8800 173.4000 61.6800 71.4700 1358.1150 0.9424 0.3514 

 

Table 20: Summary of fatigue life of 6061-T6 aluminum data  

N Min. Max. Med. Mean Var. Skewness Kurtosis 

101 70.000 212.000 133.000 133.700 499.778 0.3256 0.9730 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX C 

 

R CODES 

www.udsspace.uds.edu.gh 

 

 

 

 



139 
 

#### LLIEW Distribution PDF #### 

LLIEW_PDF<-function(x, alpha, lambda, theta, gamma){ 

  A<-lambda*theta*exp(-(lambda/x)) 

  B<-(alpha^theta)*gamma*(x^2)*(1-exp(-(lambda/x))) 

  C<-(-log(1-exp(-(lambda/x))))^((1/gamma)-1) 

  D<-((-log(1-exp(-(lambda/x))))^(1/gamma))^(theta-1) 

  E<-(1+(((-log(1-exp(-lambda/x)))^(1/gamma))/alpha)^theta)^2 

  PDF<-(A/B)*((C*D)/E) 

  return(PDF)} 

#### LLIEW Distribution Hazard rate function #### 

LLIEW_HRF<-function(x,alpha,lambda,theta,gamma){ 

  A<-lambda*theta*exp(-(lambda/x)) 

  B<-(alpha^theta)*gamma*(x^2)*(1-exp(-(lambda/x))) 

  C<-(-log(1-exp(-(lambda/x))))^((1/gamma)-1) 

  D<-((-log(1-exp(-(lambda/x))))^(1/gamma))^(theta-1) 

  E<-1+((-log(1-exp(-(lambda/x))))/alpha)^(theta/gamma) 

  HRF<-(A/B)*((C*D)/E) 

  return(HRF) 
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} 

#### LLIEW Distribution Log-likelihood #### 

LL_LLIEW<-function(alpha,lambda,theta,gamma){ 

  A<-(-(lambda/x)) 

  B<-(-log(1-exp(A))) 

  C<-(B)^(1/gamma) 

  D<-((alpha^(-1))*C)^theta 

  E<-(lambda*theta*exp(A)*(B^((1/gamma)-1))*((B)^(1/gamma))^(theta-1)) 

  G<-((alpha^theta)*gamma*(x^2)*(1-exp(A))*(1+((alpha^(-1))*C)^theta)^2) 

  PDF<-E/G 

  LL<--sum(log(PDF)) 

  return(LL) 

} 

#### LLIEW Distribution quantile function #### 

quantile<-function(alpha,lambda,u){ 

  A<-(-log(u))^alpha  

  quant<-lambda/log(A+1) 

  return(quant) 
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} 

#### LLIEW Distribution Optimization #### 

Library(bbmle) ## calling R package bbmle### 

Fit<-mle2(LL_LLIEW, start=list(alpha=alpha, lambda=lambda, theta=theta, gamma=gamma), 

data=list(x), method=”BFGS”) 

Summary(fit) #### summary of results #### 

 

#### GIEL Distribution PDF #### 

GIEL_PDF<-function(x,alpha,lambda){ 

  A<-lambda*(exp(lambda/x)) 

  B<-alpha*(x)^(2) 

  C<-((exp(lambda/x))-1)^((1/alpha)-1) 

  D<-exp(-(exp((lambda/x))-1)^(1/alpha)) 

  PDF<-(A/B)*(C)*(D) 

  return(PDF) 

} 

#### GIEL Distribution Hazard rate function #### 

GIEL_HF<-function(x, alpha, lambda){ 

  A<-exp(lambda/x) 
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  B<-alpha*(x^2) 

  C<-((lambda*A)/B)*((A-1)^((1/alpha)-1))*exp(-(A-1)^(1/alpha)) 

  D<-1-exp(-(A-1)^(1/alpha)) 

  HF<-(C/D) 

  return(HF) 

} 

#### GIEL Distribution Log-likelihood #### 

LL_GIEL<-function(alpha,lambda){ 

  A<-lambda*(exp(lambda/x)) 

  B<-alpha*(x)^(2) 

  C<-((exp(lambda/x))-1)^((1/alpha)-1) 

  D<-exp(-(exp((lambda/x))-1)^(-1/alpha)) 

  PDF<-(A/B)*(C)*(D) 

  LL<--sum(log(PDF)) 

  return(LL) 

} 

#### GIEL Distribution quantile function #### 

quantile<-function(alpha, lambda, u){ 
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  A<-(-log(u))^alpha  

  quant<-lambda/log(A+1) 

  return(quant) 

} 

#### GIEL Distribution Optimization #### 

Library(bbmle) ## calling R package bbmle### 

Fit<-mle2(LL_LLIEW, start=list(alpha=alpha, lambda=lambda), data=list(x), method=”BFGS”) 

Summary(fit) #### summary of results #### 

 

#### WIEL Distribution PDF #### 

wl_pdf<-function(x,alpha,beta,lambda,gamma){ 

  A<-exp(-(lambda/x)) 

  B<-alpha*beta*lambda*A 

  C<-gamma*(x^2)*(1-A)^((1/gamma)-1) 

  D<-(((1-A)^(-1/gamma))-1)^(beta-1) 

  E<-exp(((-alpha*(1-A)^(-1/gamma)))-1)^(beta) 

  pdf<-(B/C)*D*E 

  return(pdf) 
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}} 

#### WIEL Distribution Hazard rate function #### 

wl_HR<-function(x,alpha,beta,lambda,gamma){ 

  A<-exp(-(lambda/x)) 

  B<-alpha*beta*lambda*A 

  C<-gamma*(x^2)*(1-A)^((-1/gamma)-1) 

  D<-(((1-A)^(1/gamma))-1)^(beta-1) 

  HR<-(B/C)*D 

  return(HR) 

} 

#### WIEL Distribution Log-likelihood #### 

LL_WIEL<-function(alpha,lambda,beta,gamma){ 

  A<-exp(-lambda/x) 

  B<-(alpha*beta*lambda)*(A) 

  C<-(gamma*(x^2)) 

  D<-((1/gamma)-1) 

  E<-(1-A) 

  H<-(-1/gamma) 
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  G<-((E)^(H)) 

  I<-(G-1)^(beta-1) 

  J<-E^D 

  K<-(alpha*(G-1)^beta) 

  PDF<-(B/(C*J))*I*exp(-K) 

  LL<--sum(log(PDF)) 

  return(LL) 

} 

#### WIEL Distribution Optimization #### 

Library(bbmle) ## calling R package bbmle### 

Fit<-mle2(LL_LLIEW, start=list(alpha=alpha, lambda=lambda, theta=theta, gamma=gamma), 

data=list(x), method=”BFGS”) 

Summary(fit) #### summary of results #### 

APPENDIX D 

The PDFs of the various distributions used to compare with the special cases of the T-IE{Y} 

family of distributions: 

1. Generalized inverse exponential distribution 

2

1( ) exp( )(1 exp( )) , 0, 0, 0.a

X x xx
g x a x a           
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2. Kumaraswamy inverse exponential distribution 

2

1 1( ) exp( ){exp( )} [1 {exp( )} ]a a b

X x x xx
g x ab           

3. Burr type XII distribution 

1 1( ) [1 ]Xg x x x        

4. Weibull distribution 

1( ) ( ) exp( )x x
Xg x

 

  

   

5. Weibull Burr XII distribution 

1
1

1
( ) { log(1 )}

c

c

ckx c

X x
g x k x

 



   

6. Exponentiated inverse Rayleigh distribution 

2

3

2 2 12( ) exp( ) [1 exp( ) ]X x xx
g x         

7. Inverse Rayleigh distribution  

2

3

22( ) exp( )X xx
g x     

8. Weibull Lomax distribution 

1 1(1 ) {1 [1 ] } exp{ {[1 ] 1} }b b bab x x xa  
   

         

9. Modified Burr III 

( 1)( 1)( ) [1 ]Xg x x x

  

      

10. Inverse Weibull 

( 1)( ) exp( )X x
g x x       

11. Exponentiated exponential Fréchet distribution 

( 1) 1 1( ) exp( ) [1 exp( ) ] [1 {1 exp( ) } ]X x x x
g x x                     

12. Lomax-Weibull {Log-logistic} distribution 
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1 111 1( ) ( ) exp( ) [exp( ) 1] [1 (exp( ) 1) ]c c c c kkc x x x x

Xg x  

    

       
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