
 
 

UNIVERSITY FOR DEVELOPMENT STUDIES, TAMALE 

 

 

 

 

 

 

 

MODELLING PRICE VOLATILITY OF THREE MAJOR CEREALS IN THE 

NORTHERN REGION OF GHANA 

 

 

 

AMADU YAKUBU 

 

 

 

2016

www.udsspace.uds.edu.gh 

 

 



 
 

UNIVERSITY FOR DEVELOPMENT STUDIES, TAMALE 

 

 

MODELLING PRICE VOLATILITY OF THREE MAJOR CEREALS IN THE 

NORTHERN REGION OF GHANA 

 

 

BY 

 

AMADU YAKUBU (B.Sc. AGRICULTURE TECHNOLOGY (Horticulture Option)) 

(UDS/MBM/0017/14) 

 

THESIS SUBMITTED TO THE DEPARTMENT OF STATISTICS, FACULTY OF 

MATHEMATICAL SCIENCES, UNIVERSITY FOR DEVELOPMENT STUDIES IN 

PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF 

MASTER OF SCIENCE DEGREE IN BIOMETRY 

 

JULY, 2016

www.udsspace.uds.edu.gh 

 

 



i 
 

DECLARATION 

Student 

I hereby declare that this thesis is the result of my own work and to the best of my 

knowledge, it contains no material previously presented for the award of any other degree in 

this university or elsewhere except where due acknowledgement has been made in the text. 

 

Candidate‟s Signature:……………………………..                   Date:…………….  

Name: Amadu Yakubu 

Supervisor 

I hereby declare that the preparation and presentation of the thesis was duly supervised in 

accordance with the guidelines on supervision of thesis laid down by the University for 

Development Studies: 

Supervisor‟s Signature:…………………………..                      Date:……………. 

Name: Dr. Albert Luguterah 

 

 

 

  

www.udsspace.uds.edu.gh 

 

 



ii 
 

ABSTRACT 

Cereals are important crops that feed over billions of households worldwide. They have been 

used extensively for both human consumption and feeding of livestock. In Ghana, cereals 

such as rice, maize and millet are staple food of great socio-economic importance and they 

contribute significantly to agriculture Gross Domestic Product (GDP) and the economy of the 

country. In this study, we developed an ARIMA (p, q)-GARCH (m, s) model to model the 

volatility of the returns of rice, maize and millet in the Northern region of Ghana. Data on 

monthly returns of rice, maize and millet from the Ministry of Food and Agriculture were 

used for the modeling. The results revealed that ARIMA (0, 1)-GARCH (1, 0) was the best 

model for modeling the volatility of rice returns. Also, ARIMA (0, 1)-GARCH (1, 0) 

emerged as the best model for modeling the volatility of millet returns. Furthermore, ARIMA 

(1, 1)-GARCH (1, 0) was the best model for modeling the volatility of maize returns. 

Diagnostic checks of the three models with the Ljung-Box test and ARCH-LM test revealed 

that all the models were free from higher-order serial correlation and conditional 

heteroscedasticity respectively. The dynamic relationship between the returns of the cereals 

was also investigated using Vector Autoregressive model. VAR (2) and VAR (3) models 

were fitted to the data. Base on the Likelihood Ratio Test, VAR (3) model was the best for 

modeling the dynamic relationship between the returns of the cereals. The diagnostic checks 

revealed that VAR (3) model was adequate. The VAR (3) model was then used to make 

inference about the relationship between the returns of these cereals. The Granger causality 

test revealed a bilateral relationship between the returns of rice and that of millet whiles the 

returns of maize was independent of the returns of rice and millet. The IRF and FEVD 

analysis both affirm that there exists a dynamic relationship between the returns of the three 

cereals. 
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CHAPTER ONE 

INTRODUCTION 

1.0 Background of the Study 

Cereals are important crops that feed over billions of households worldwide. They have been 

used extensively for both human consumption and feeding of livestock. For instance, the 

consumption of maize worldwide is more than 116 million tons with Africa consuming 30% 

and Sub-Saharan Africa (SSA), 21% (IITA, 2009). Also, Khush (2009) inferred that rice 

feeds more than a third of the world‟s population. In Ghana, cereals such as rice, maize and 

millet are staple food of great socio-economic importance and they contribute significantly to 

agriculture Gross Domestic Product (GDP) and the economy of the country. Specifically, 

they are used in the preparation of local dishes and drinks for human consumption.  

Uncertainties in prices of cereals are therefore major issues of concern for both producers 

and consumers. In Ghana for instance, food prices for rice, maize and other cereals increased 

from 20% to 30% between the last few months of 2007 and the beginning of 2008 (Wodonet 

al., 2008). This is an important concern regarding the future of cereal prices and their likely 

effect on food security in Ghana. The Food and Agriculture Organization (FAO) special 

report shows that, prices of grains in Ghana are subject to very strong seasonal fluctuation, 

particularly in Northern Ghana (FAO, 2002). That is, they fall sharply during the harvest 

period (August- October) and start rising from November until the end of the lean season 

(June-August). These uncertainties, characterised by unexpected price changes, may compel 

farmers to react by reducing output supply and investment in productive inputs 

(SealandShonkwiler,1987;Rezitisand Stavropoulos,2009;SckokaiandMoro,2009;Piot-

Lepetit,2011;Tangermann,2011;Taya, 2012).  
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The effect of this price instability is that food production may decrease leading to food 

insecurity. According to the FAO (1996), food security requires that at all times, each 

individual has physical, social and economic access to sufficient, safe and nutritious food to 

meet their dietary needs and food preferences for an active and healthy life. In this definition, 

the FAO recognised among others, the importance of price in ensuring food security. It was 

also evident in the World Bank report (2008) that food security has become a major global 

concern since the mid-1970s due to rapidly increasing prices that led to global food 

insecurity.  

Although the World Bank recognises that the world has enough food to feed everyone, they 

noted that about 852 million people are chronically hungry due to extreme poverty while up 

to 2 billion people are food insecure intermittently due to varying degrees of poverty. The 

highest incidence of food insecurity or undernourishment is in SSA where one in every three 

persons suffers from chronic hunger (World Bank, 2008). The situation in Ghana is however 

not that different. Although the country has made considerable progress in terms of poverty 

reduction over the past fifteen years, about 1.2 million people, representing 5% of the 

population are still food insecure and an additional 2 million people are vulnerable to become 

food insecure following any natural or man-made shock (World Food Programme, 2009). 

One important factor that can quickly affect the food security status of the poor is the price of 

food commodities needed by them. Knowing the dangers associated with price instability of 

food commodities all over the world, it is imperative to investigate the uncertainties in these 

prices in order to help make policies to curb this problem. This study therefore models the 

volatility in the prices of three major cereals (corn, rice and millet) in the Northern region of 

Ghana. 

1.1 Problem Statement 
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Commodity prices in general are volatile and in particular agricultural commodity prices are 

renowned for their continuously volatile nature (Newbery,1989). However, the degree of 

commodity price fluctuations or volatility is generally the concern that has attracted 

increasing attention in recent economic and financial literature and has been recognized asone 

of the most important economic phenomena (Engle, 1982). It has been argued that price 

volatility reduces welfare and competition by increasing consumer costs (Zhenget al., 

2008).Similarly price volatility increases risk and uncertainties associated with both 

production and consumption (Apergis and Rezitis, 2011).  

Though cereal market policies in Ghana may have undergone dramatic changesover the 

years, desirable outcomes in terms of intervention and prevention of market price volatility 

are still less satisfactory. For instance, in Ethiopia, pricevolatility in the markets of major 

cereal crops remains unsatisfactorily high in despite dramatic change in policies (Rashid and 

Meron, 2007). Hence, it is important that measures including research efforts are triggered to 

offset any such occurrence. This is important for cereals such as rice, maize and millet 

markets which form the major staple food in the Northern region which is also the mainstay 

of agriculture in Ghana (GSS, 2012). However, it is the second poorest region (50.4%) in the 

country (GSS, 2014). This means that any occurrence of price volatility may not only affect 

food production, but also the demand for food by the people. 

Ironically, only little attention has been given to agriculturalfood price volatility in the 

Northern region and Ghana at large. Thus this study seeks to investigate the uncertainties in 

the prices of three major cereals in the Northern region. 

1.2 Research Questions 

i  What is the domestic market price volatility on the selected cereals? 

ii  Which of the selected commodity is highly volatile in price? 

iii  What model best fits the domestic price volatility in the region? 
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iv  Which model is appropriate for describing the short run relationship between the prices of 

the selected cereals? 

 

1.3 General Objective 

The main objective of this study is to model the price volatility of the three major cereals in 

the Northern region of Ghana. 

1.4 Specific Objectives 

i. To develop appropriate models for domestic price volatility for the cereals. 

ii. To investigate the half-life volatility of each cereal. 

iii. To determine the volatility associated with each cereal. 

iv. To fit Vector Autoregressive (VAR) model for describing the short run relationship 

between the returns of these cereals. 

1.5 Significance of the Study 

The findings of this study could be used by the Ministry of Food and Agriculture (MoFA) to 

make policies to curb the problems of food price volatility in the region. In addition, this 

study could provide basis for further researches on price volatility of food commodities in 

Ghana. 

1.6 Structure of the Thesis 

The thesis is organised into five chapters. Chapter one contains the introduction of the 

research work. Chapter two comprises of literature review. Chapter three outlines the 

methodology employed in this research while chapter four presents the analysis and 

discussion of results. Chapter five is devoted to conclusion and recommendations. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.0 Introduction 

This chapter reviews related works done on price volatility of cereals and some relevant time 

series methods that have been used in modelling price volatility. The chapter is divided into 

five main headings namely; empirical researches on cereals, empirical researches on 

volatility, review of time series methods, review of GARCH models and conclusion. 

2.1 Empirical Researches on Cereals 

A lot of researches have been carried out on cereals all over the world. Badmus 

andAriyo(2011)usedARIMAmodeltoforecastareaandproduction ofmaizeinNigeria.They 

estimatedARIMA (1, 1, and 1)andARIMA (2, 1, 2)forcultivatedareaandproduction 

respectively. Theresultshowed that maizeproduction forecastfortheyear2020 will 

beabout9952.72tonswithupper andlowerlimits of 

6479.8and13425.64thousandtonsrespectively.Themodelalsoshowsthatthemaizearea wouldbe 

9229.74thousandhectareswithlowerand 

upperlimitof7087.67and11371.81thousandhectaresrespectivelyby2020. 

Next, Suleman et al. (2013) used Vector Autoregressive (VAR) model to investigate the 

relationship between the production growth rates of three major cereals in Ghana. The  VAR  

model  favoured  VAR  at  lag  1  which  indicated  that,  in  addition  to  the  bivariate  
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unidirectional production growth rate causalities; there is also a bilateral causality between 

production growth rate in Millet and production growth rate in Milled Rice and a Rice to 

Corn unidirectional production growth rate causality. 

Also, Suleman andSarpong(2012a)employedtheBox-Jenkins approachtomodelmilledrice 

production inGhanausingtimeseriesdatafrom1960to2010.TheanalysisrevealedthatARIMA (2, 

1, 0)wasthebestmodelforforecasting milledriceproduction. 

Again, Najeebetal.(2005)employedBox-Jenkinsmodeltoforecastwheatareaandproduction in 

Pakistan.TheirstudyshowedthatARIMA (1, 1, 1)andARIMA (2, 1, 2)weretheappropriate 

modelsforwheatareaandproductionrespectively. 

Further, Anokye and Oduro (2014) studied the price dynamics of maize in Ghana using 

cobweb models derived from linear demand and nonlinear supply function and then compare 

with that from linear demand and supply functions which are constructed from real economic 

price and production data of maize. The results from the linear cobweb model provided 

unstable equilibrium state of prices towards the zero equilibrium price as well as the supply. 

Thus the system is unstable and no equilibrium price is achieved towards the equilibrium 

point, Pe = 0 which is also not realistic because of producers‟ sensitivity to price. However, 

the nonlinear cobweb model provided two equilibria of which one is also stable at the zero 

equilibrium price and the other unstable at non-zero equilibrium price which is realistic and a 

reflection of maize price system due to inflation and insufficiency of food supply at the 

markets in Ghana. 

Again, Kuwornu et al. (2011) used the Generalised Autoregressive Conditional 

Heteroscedasticity (GARCH) regression model to forecast foodstuff prices in Ghana over the 

period 1970 to 2006. The data that were used were monthly wholesale prices for maize, 

millet, and rice obtained from the Ghana Ministry of Food and Agriculture. The empirical 

results revealed that foodstuff prices exhibit high volatility with continual increasing prices 
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over the studied period. The results of the out-sample forecast reveal that maize, millet and 

rice prices would increase by 23%, 11% and 10% respectively in the next month.
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Next, FalakandEatzaz(2008)analysedfutureprospects ofwheatproduction inPakistan.They 

obtainedtheparametersoftheirforecastingmodelusingCobb-Douglas productionfunctionfor 

wheat,whilefuturevalues ofvarious inputs were obtainedasdynamicforecasts onthebasisof 

separateARIMAestimatesforeachinputandforeachProvince. 

Further, KirttiandGoyari(2013)used 

kinkexponentialgrowthratemodeltoanalysegrowthratesofarea,production andyieldofmajor 

cropsinOdishaforpre-liberalizationandpost-liberalizationperiods. Theresultsshowed that allcrops, 

exceptriceexperienceddecelerationinareaduringpost-liberalizationperiod.Amongthosecrops, 

bajra,jowar,wheat,ragiandsmallmilletexperiencedahigherdeceleration. Eventhepositive 

growthrateofricearea wasverytrivial. 

Again, Suleman and Sarpong (2012b) modeledandforecastproductionandconsumption 

ofcorninGhanausingARIMAmodels.ThestudyrevealedthatARIMA(2, 1, 1)andARIMA(1, 1, 

0)were theappropriatemodelsforforecastingproductionandconsumption respectively. The 

forecastshowedan increasingpatterninconsumptionandproductionofcorn. 

Moreover, Qureshietal.(1992)analyzedthe relativecontributionof areaandyieldtototalproduction 

ofwheatandmaizein Pakistanandconcluded thattherewasmorethan100% 

increaseintotalwheatproductionthatcanbe attributed to yield enhancement. 

Also, Karim etal.(2005)appliedregressionmodeling to forecastwheat production of 

Bangladeshdistricts. They usedsevenmodel selectioncriteriaandfoundthat 

differentmodelswereidentifiedfordifferent districtsfor wheatproduction forecasts. 

Theyfoundthatwheat production inBangladeshdistricts, that is Dinajpur,Rajshahi andRangpur, 

wouldbe1.54,0.35,0.31,and0.58milliontons,respectively,in2009/10. 

Again, Iqbaletal.(2000)used ARIMA model forforecasting wheat areaandproduction 
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inPakistan.TheyusedARIMA (1, 1, 1)modelforwheat areaforecasting andARIMA(2, 1, 

2)modelforwheat productionforecasting.Theyfoundthatfor year 2000-2001, forecasts for 

wheatareawasabout8451.5thousand hectares.Wheatareaforecastfortheyear2022was 

8475.1thousandhectares. The wheatproduction forecast showedanincreasing trend.Forthe year 

2000-2001, aforecastof wheat production was about20670.8thousand tons 

whilewheatproductionforecastfortheyear2022 was about 29774.8thousandtons.  

Also, Boken(2000)applieddifferenttimeseries models onwheatyieldtoforecast 

springwheatyield.He used Mean Square Error asdeterministic criteria 

toselectthebestmodelandfound thatquadratic modelisbestforwheat 

yieldforecasting.Whileonthebasisofstochasticcriteria, hefoundthatsimple averagemodel isbest. 

Saeedetal. (2000)alsoappliedtimeseriesmodel toforecasts wheatproduction inPakistan. 

Theyusedthewheat production dataseriesfrom1947-48to1998-99. They suggested ARIMA (2, 2, 

1)modelforwheatforecastofPakistan. They furtherforecasted wheat production for15years. 

Next,SchmitzandWatts(1970)usedtimeseriesmodelingtopredictwheatyieldof fourcountries: 

Canada,UnitedStates,Australia and Argentinafortheperiod1950to1966.They compare 

parametrictimeseriesmodels with smoothing techniques and conclude thattrendmodels 

arebestforyieldforecasting. 

Next, SabirandTahir(2012)forecasted wheatproduction, areaandpopulation fortheyear2011-

12byusing exponentialsmoothing.Theyfoundthatthedemand for wheat was 

12.70milliontonsforthepopulationof97.67 millionfortheyear2011-12. 

Again, NehruandRajaram(2009)studiedwheatproductioninIndia using ARIMA technique. 

ARIMA(1, 1, 0)wasselectedasbestfittedmodelbasedonAkaike Information criterion (AIC) 

andShwartz Bayes Criterion (SBC).Thepredicted values for 
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wheatproductionshowedthattherewillbesteadyincreasefrom 2008-09to2014-15. 

Also, Singhetal.(2008)analysedthe effectofrainfallandtemperature effecton wheatyieldin 

southwesternregionof Punjab.Maximumtemperature, 

minimumtemperatureandrainfallfromDecemberto Marchforeach period offiveyears(1977-

81to1997-2001) wereanalysed.Theresultsrevealed that temperaturesduringFebruary andMarch 

showedsignificanteffect on wheatyield.Thegrainyield 

revealedpositivecorrelationwithminimumtemperaturebutnotrends observedforotherparameters. 

Further, Rahman (2010) modeled and forecasted the production of boro rice in Bangladesh by 

ARIMA approach. It was foundfromthestudythattheARIMA (0, 1, 0), ARIMA(0, 1, 3) and 

ARIMA(0, 1, 2) were thebestfor local,modern andtotalboro riceproduction respectively. Itwas 

observedfromthe analysisthatshorttermforecastsaremoreefficientforARIMAmodels. 

Also, Hamjah (2014), modeled and forecasted the production of three varieties of rice in 

Bangladesh using ARIMA models. ThebestselectedARIMAmodelforAusproductionswas 

ARIMA(2,1,2),forAmanit was ARIMA(2,1,2)andforBoroit was 

ARIMA(1,1,3).Inthisstudy,comparisonbetweenthe originalseriesandforecastedseries were made 

which revealed that the fittedmodels were statistically 

wellbehavedtoforecastriceproductionsinBangladesh. 

Again, Govardhanaet al. (2014)analysedtrends and seasonalvariationsinmarketpricesof 

riceinGunturdistrictand Andhra Pradesh. 

ThemodelsselectedforforecastingforwholesalepriceofricewasARIMA(2,2,0)and ARIMA 

(0,1,1)inAndhraPradeshandGunturdistrictrespectively basedontheShwartz Bayes 

Criterion(SBC)andAkaikeInformationCriterion(AIC).Theforecastsof ricewholesale prices 

werefoundtobefairly accurateandshowedincreasedtrendsinbothAndhra PradeshandGuntur district. 
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Further, Bogahawatte(1998)employed theBoxJenkinsAutoregressive Integrated 

MovingAverage(ARIMA)approach tostudytheseasonalvariationsinretailandwholesalepricesof 

riceinmarkets ofColombo andfoundthat,seasonality inretailpriceswasmoreprominent 

thanthewholesaleprices.He alsoreportedthattheinteractionbetweenretail andwholesale prices 

andtheinfluence ofcurrent retailpriceonwholesale pricesofperiods t+1,t+2,t+3 weresignificant. 

Findingsofthestudy impliedthatanyincreaseinthesupplyofricedueto 

retailpriceinperiod„t‟willarrive inthemarket atperiod t+3,thus,  preventing anyfurther 

increaseinprice. 

Also, Mishra(1986)evaluated protection versesunder- pricingofagricultureinIndiafortwo major 

cereals, wheat and ricefrom 1955 to1980. Normal protection(NRD and NPC) 

wereestimatedforsixpointsateachquinaunnium.Besides showing changesovertimeinthelevels 

ofprotectionofexploitation, theaimwastoseewhethersomecomparative statementsvisa-a- 

visindustrializedandindustrializingcountriescouldalsobemade. 

Again, Gilati et al. (1990) studied the effective incentives for wheat cultivars in India by 

selectingfourwheatgrowing states(Haryana, MadhyaPradesh,PunjabandUttarPradesh) under 

important hypothesis. The National Product Classification for services (NPCS) of four states 

averaged for the period1980-81 through1986-87werefoundto be0.84,0.75,0.85and0.77in 

thecaseofHaryana,Madhya Pradesh, Punjab and Uttar Pradesh respectively.  These results 

indicated that wheat cultivatorsinIndiahadbeentaxedonpricingfrontcompared 

withimports.Butunderexport competition 

hypothesisonlyonestatenamelyPunjabwastakenforcalculation ofNPCs.It 

averaged1.34,whichimpliesthatcultivatorsinPunjabstatewereprotected. 
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2.2 Empirical Researches on volatility 

Several researchers have worked on volatility using different approaches. Ghosh et al. (2010) 

employed Generalised Autoregressive Conditional Heteroscedastisity (GARCH), GARCH-

dummy, Exponential GARCH in mean (EGARCH-M) and Ordinary Least Square (OLS) models 

to examine the price volatility and supply response for rice, jowar, bajra, maize, groundnut and 

cotton. Using annual prices, they check whether trade liberalization indeed exacerbates volatility 

of agricultural products in India. The results showed that prices of major agricultural products 

become more unstable in India after the signing of the World Trade Organisation (WTO) 

agreement. 

Also, Swaray (2007) uses an Exponential GARCH (EGARCH) and a Threshold GARCH 

(TGARCH) model to assess the impact of the suspension of international commodity agreements 

on the asymmetry and persistency of the volatility. They employ monthly prices for cocoa, 

coffee, rubber, sugar and tin. The results demonstrate a rise in the asymmetry but a decrease in 

the persistence of the shocks. 

Next, Oleg (2011) used Bivariate GARCH to model the conditional correlations between 

commodity futures and traditional asset classes in periods of high equity and bond volatility. The 

dataset consists of Shanghai Stock Index (SSI), China 10 year government bond index, and a set 

of commodities such as corn, cotton, oats, soybean meal, soybean oil, soybeans, sugar, copper 

and aluminium, and heating oil for the period 2006 to 2010. The conditional correlation between 

commodity futures and the Shanghai Stock Index (SSI) rises in period of recession when market 

risk rises. The negative correlation between treasury bonds and commodity futures rises with the 

bond volatility, suggesting that a bond and commodity portfolio should not be tilted more 

towards commodity futures in periods of high bond volatility. 
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Further, Busseet al. (2011) analysed the behaviour of price volatility of the European Union 

(EU) biofuel markets during and after the 2006 - 2008 event and investigated the correlation in 

price volatility of different commodities and their evolution over time. They use ARMA-

GARCH(1,1) and dynamic conditional correlation Model (DCC) (categorised as MGARCH 

model) with rapeseed future price of “Marché à Terme International de France (MATIF)” in 

Paris, soybean spot price from Brazil, rapeseed oil prices and soybean oil prices from Rotterdam 

in Netherlands, and Brent crude oil one month forward prices. The results show a relatively high 

persistency in volatility in all series. They mention that the model neither allows for conclusions 

about causal mechanisms of volatility spillovers nor is it able to capture the magnitude of 

influence of one market on the other. They found a non-stable and increasing correlation 

between the returns of rapeseed in MATIF and crude oil prices. They concluded that the 

correlations of rapeseed price returns with vegetable oil and soybean price returns on the spot 

market are much lower than these with crude oil. 

Again, Apergis and Rezitis (2003) employ a multivariate GARCH model including the Greece 

food price index. Macroeconomic variables such as money supply, income per capita, real ex- 

change rate, budget deficit/surplus during 1985–1999 were used in order to investigate the 

volatility spillovers effects between food and macroeconomic fundamentals. They found that 

additional to the effect of the volatility of food prices on its own volatility, significant and 

positive effects of macroeconomic volatility on food prices volatility can be recognised. 

In addition, Khalighet al. (2012) used Error Correction Vector Autoregressive (ECVAR) and 

Multivariable Generalised Autoregressive Conditional Heteroscedastisity (MVGARCH) to 

examine the relative uncertainty of prices in the agricultural input, agricultural output, and retail 

food markets, as well as the degree by which price uncertainty in one market affects price 
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uncertainty in the others for poultry market in Iran. They have used agricultural input prices 

index, producer prices index, and retail prices index of poultry market during 1997 – 2010. They 

find that information generated by both agricultural input and retail food prices could lead to 

changes in the volatility of agricultural output prices. 

Next, Apergis and Rezitis (2003b) also used ECVAR and MVGARCH to investigate the 

volatility spillover effects between agricultural inputs, output and retail food prices in Greece. 

They used Greece agricultural input price index, agricultural output prices index, retail food 

price index (1990=100) for the period 1985 - 1999. They conclude that the volatility of retail 

food prices had a larger impact than volatility of input prices on the volatility of output prices, 

indicating that demand-specific factors are stronger than cost factors in affecting the volatility of 

output prices. 

Also, Serra (2011) used the smooth transition conditional correlation GARCH to assess the 

linkage between price volatility at different levels of the Spanish beef marketing chain. She used 

the farm-gate and consumer beef prices in Spain for the period 1996-2005. She concluded that 

during turbulent times, price volatilities can be negatively correlated and one cannot expect that, 

stabilizing one market will lead to stability in other related markets. 

Moreover, Alomet al. (2011) use Multivariate Threshold GARCH (MTGARCH) to analyse the 

relationship of inter-country food price returns. The MTGARCH consists of mean and variance 

equations (two stage model). Therefore, the spillover effect of food price returns is analysed at 

the mean level of the returns and for the volatility of the returns separately. 

A GARCH (1,1)-X model with the addition of lagged position variables to the normal GARCH 

(1,1) model has been used by Gilbert (2012) to model the impact of speculative trading on grain 

price volatilities. He uses the cash prices, four front futures contracts on the Chicago Board of 
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Trade (CBOT) for soft wheat, corn, soybeans and soybean oil. Additionally, he also used 

position data which are taken from CBOT Commitments of Traders report for the period on 

2006-2011. The results do not present any statistical significant effects of financialisation on 

cash and future returns of Chicago grains and vegetable oil markets. 

Next, Kang et al. (2009) investigated the efficacy of a volatility model for three crude oil 

markets; Brent, Dubai and West Texas Intermediate (WTI). They  employed different 

competitive GARCH volatility models such as Component GARCH  (CGARCH), Fractional 

Integrated GARCH (FIGARCH), Integrated GARCH (IGARCH) and GARCH  to  assess  

persistence  in   the volatility  of   the  three  crude  oil   prices.  They  find  that  the persistence  

coefficients are   quite  close to  one in  the standard GARCH(1,1)  model, a fact  that favours the 

IGARCH(1,1)  specification. As the IGARCH(1,1)  model nests the GARCH(1,1) models, the 

estimates of the IGARCH(1,1)  model are  quite similar to  those of the GARCH(1,1)  model. In 

the case of CGARCH (1, 1) and FIGARCH models, the estimated coefficients are smaller than 

that of the GARCH model, thereby indicating that the short-run volatility component is weaker. 

Hence, unlike the GARCH and IGARCH models, the CGARCH and FIGARCH models are able 

to capture volatility persistence due to the insignificance of diagnostic tests. 

Also, Karaliet al. (2011) use weekly data for soybean, corn and wheat in the US future market to 

apply a Stochastic Volatility (SV) and Bayesian Seemingly Unrelated Regression (SUR) method 

to prove whether modeling volatility as a stochastic instead of a deterministic variable leads to 

improved inference about its relationship with seasonality, storage, and time to delivery. The 

results revealed that as volatility decreases the closer the time to delivery for soybeans and for 

wheat and increases for corn. This study provides limited support for the theory of storage and 

for Samuelson's maturity hypothesis. 
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Again, Smith (2005) develops a Partially Overlapping Time Series (POTS) framework to model 

jointly volatility dynamics of traded futures contracts with different delivery dates. This model 

incorporates time-to-delivery, storability, seasonality and GARCH effects. Using United States 

corn futures, the author shows the dynamic structure of the data and reveals substantial 

inefficiency on the contract delivery. His results also provided evidence in favour of both the 

theory of storage and the relevance of the Samuelson effect. 

Further, Lence and Hayes (2002) consider a „Rational Expectations Storage model‟ to uncover 

the potential effects of the Federal Agriculture Improvement and Reform (FAIR) Act on the US 

markets for corn and soybeans. The results suggest that the price volatility that has been evident 

in the grain markets since the FAIR Act enactment was due to an unusual sequence of events that 

took place in the 1995 crop year. 

Also, Yang et al. (2001) investigate the effects of the market-oriented US FAIR act 1996 on 

agricultural price volatility, using GARCH models for corn, oat, soybeans, wheat and cotton 

daily future prices. The results showed that agricultural liberalization policy causes: an increase 

in price volatility for the three major commodities (corn, soybean and wheat); a little change for 

oats; and a decrease for cotton. 

Next, Onour and Sergi (2011) compare the performance of models, when considering a normal 

in- stead of a t-distribution to capture volatility in food commodity prices. They use monthly 

prices for wheat, rice, sugar, beef, coffee, and groundnut and conclude that the t-distribution 

model is superior to the normal distribution. This implies that the normality assumption of the 

residuals may lead to unreliable volatility results. 

Long memory or long dependence processes in agricultural future prices is considered by Jin and 

Frechette (2004). They found out that a Fractional Integrated Generalised Autoregressive 
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Conditional Heteroscedastisity (FIGARCH) approach can be a better way to model long 

dependence inside the volatility by allowing for fractional integration in the variance equation. 

However, Elder and Jin (2007) argue that wavelet methodology can explain long memory 

processes in agricultural commodity futures better than the FIGARCH.  

Next, Sephton (2009) developed the fractional integration idea by considering the leverage effect 

for the same dataset as Jin and Frechette (2004). He found out that Fractional Integrated 

Asymmetric Power Autoregressive Conditional Heteroscedastisity (FIAPARCH) explains the 

long dependence in futures prices for some of the crops better than FIGARCH as some 

agricultural commodities futures display asymmetric leverage effects.  

Also, Power and Turvey (2010) assess the presence of the long- memory phenomenon in the 

volatility of energy and agricultural commodity prices using the improved Hurst coefficient 

estimator in a wavelet- based R/S analysis. He used daily future prices for coffee, cotton, sugar, 

cocoa, orange juice, wheat, live cattle, lean hogs, corn and soybeans, and found the evidence of 

long memory and non-constant Hurst parameter in most of the considered commodities. 

Next, Egelkraut and García (2006) investigated the predictive accuracy of implied forward 

volatility for agricultural commodities with different seasonality. They used daily future prices 

for corn, soybeans, soybean meal, wheat, and hogs and their results indicated that the implied 

forward volatility has better predictive power for commodities whose uncertainty resolution is 

concentrated in space and time. 

In addition, Giot (2003) evaluates the information content of the implied volatility for options on 

future contracts of cacao, coffee and sugar. It was shown that lagged squared returns slightly 

improve the information content provided by the lagged implied volatility in a GARCH 

framework. Moreover, he showed that Value at Risk models that rely on past implied volatility 
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perform as well as with ARCH type modeled conditional variance, concluding that implied 

volatility for the considered commodities has high information content. 

Also, Voituriez (2001) used the „Trader Behaviour model‟ for the palm oil market to test the 

hypothesis that the overlapping of the operators‟ expectations (short versus long term expectation 

horizon) is triggering volatility changes. He used  monthly prices and founds that volatility can 

increase as long as operators with a short term expectations horizon superimposes on the long 

term expectations trade, precluding the argument that larger markets reduce volatility. 

Also, Taylor (2004) compares the performance of the Period GARCH (PGARCH) with 

alternative Periodic Conditional Volatility (PCV) models using 5-minute high frequency data of 

cocoa futures. When considering high-frequency commodity future returns, the periodicity in 

conditional return volatility is a key issue. He argues that not considering adequately the 

periodicities in high frequency data could lead to poor forecasts of future return volatility. 

Moreover he concluded that return volatility forecasts, obtained by the spline PGARCH model, 

are shown to be less accurate than those generated by PCV models, but if used in a Value at Risk 

framework, the spline model produces accurate and consistent VaR measures. 

Again, Pietolaet al. (2010) assess the empirical relationship between US weekly wheat prices, 

inventories, and volatility. They use a „Co-integrated vector- autoregressive‟ model, and add 

price volatility in the form of the estimated variance to the basic model. The price movements 

and inventories have a significant negative relationship in the very short run, but this relation 

levels off over time. Thus, in the short run, increasing wheat prices coincide with decreasing 

inventories. Decreasing prices imply either inventory build-ups or postponement of inventory 

withdrawals. 

Again, Fong and See (2002) employ a Markov regime-switching approach allowing for 
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GARCH-dynamics and sudden changes in both mean and variance in order to model the 

conditional volatility of daily returns on crude-oil futures prices. They documented that the 

regime-switching model performs better than non-switching models regardless of   evaluation 

criterion out-of- sample forecast analysis.  

Next, Vo (2009) also employs the concept of regime-switching stochastic volatility and 

explains the behaviour of crude oil   prices of West Texas Intermediate (WTI) market in order 

to forecast their volatility. More specifically, the paper models the volatility of oil return as a 

stochastic volatility process whose mean is subject to shifts in regime. 

In addition, Narayan and Narayan (2007) use the Exponential Generalized Conditional 

Heteroscedasticity (EGARCH) model with daily data for   the period 1991–2006 with the 

intention of checking for evidence of asymmetry and persistence of shocks. In their work, 

volatility was characterised in various sub-samples to judge the robustness of their results. 

Across the various sub-samples, they show an inconsistent evidence of asymmetry and 

persistence of shocks and also across full sample period. Their evidence also suggests that 

shocks have permanent effects and asymmetric effects on volatility. 

Again, Houand Suardi (2011) in their work consider an alternative approach involving 

nonparametric GARCH framework to model and forecast oil price return volatility. They focus 

on two crude oil markets, Brents and West Texas Intermediate (WTI) and their out-of-sample 

volatility forecast of the nonparametric GARCH model yields superior performance relative to 

an extensive class of parametric GARCH models. 

Also, Hayat and Narayan (2010) employed the exponential smoothing time series model which 

they referred to as Additive error, Additive trend, Additive seasonality (AAA) in class one of 

Hyndman et al. (2005) to examine whether the volatility of the growth in the US oil stocks has 
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changed overtime. They found that the growth in volatility of oil stocks had declined overtime. 

They also conducted a Monte Carlo simulation exercise to investigate whether the decline was 

real or an artefact of the growth definition.  Their findings support the fact that the decline in 

growth volatility of oil stocks is anartefact of the growth definition. Hayat and Narayan (2011) 

however consider univariate time series models to examine whether supply and demand shocks 

explain the apparent decline in the volatility of the growth of the U.S. oil stocks since about the 

mid-1980s. They found that nearly 70% of the variation in the U.S. oil stock growth is 

explained by its supply and demand factors, each sharing about half of this variation. 

Next, Singh et al. (2010) studied the price and volatility spillovers across North American, 

European and Asian stock markets by utilizing the VAR (15) and AR-GARCH models. By 

studying the stock markets of fifteen countries in these regions, they found that both return and 

volatility of one market is affected by the performance of those indices that either   open   or   

close before that respective index. 

In addition, Korkmaz et al. (2012) studied the return and volatility spillovers among CIVETS 

countries (Colombia, Indonesia, Vietnam, Egypt, Turkey and South Africa). In this paper, by 

applying the causality-in- mean andcausality-in-variance tests, the authors found out that the 

contemporaneous spillover effect among these countries are generally low. However, the 

structure of the causal relationship suggests that there are some intra-regional and inter-

regional interdependence in return and volatility.   

 Another paper by Poshakwale and Aquino (2008) studied the issue of volatility transmission 

between ADRs and their underlying stocks. By using the GARCH model, they investigated 

how changes in the volatility of ADR markets affected the volatility in the markets of the 

underlying stocks and vice-versa. They found out that there is a bi-directional volatility 
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transmission between the ADR markets and the underlying stock markets. 

Again, Fong and See (2001) examine issues in modelling the conditional variance of future 

returns considering regime switches in volatility. Using daily settlement prices of the Goldman 

Sachs Commodity spot Index and futures, they find that the simple GARCH model is not 

adequate in the presence of regime shifts since this characteristic dominates the GARCH 

effects. 

Next, Black and Tonks (2000) use a multi-period futures model to test whether price volatility 

increases or decreases as the maturity date of the futures contract approaches. They found that 

if output uncertainty is resolved before the maturity of the contract, and if the retrade market is 

informationally efficient, then the Samuelson hypothesis of increasing volatility before 

maturity will not occur.  

2.3 Review of Time Series Methods 

2.3.1 Unit Root Tests 

Time series data requires stationarity when modeling. This is very important for estimation and 

forecasting in time series analysis (Diebold and Kilian, 2001). Unfortunately, most time series 

data are found to be non-stationary. As a result of this, many researchers have developed 

models that are used to test for the stationarity of time series data.  

 Dickey and Fuller (1979) developed the Augmented Dickey-Fuller (ADF) test in which a null 

hypothesis is a non-stationary process with a unit root and an alternative hypothesis is a trend 

stationary process. Several methods for testing unit root have been developed; Nelson and 

Plosser (1982) used the tests developed by Dickey and Fuller to test the economic indicators of 

the American economy. They found that almost all economic time series such as the Gross 

National Product have unit root.  
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Also, Phillips and Perron (1988) weakened a strong assumption on the error term and extended 

the Dickey-Fuller test to a more general test (Philips-Perron (PP) test). However, the PP-test 

did not alter the result of Nelson and Plosser (1982), even using the same data as Nelson and 

Plosser(1982). 

Another important contribution on unit root test was made by Kwiatkowski et al. (1992). They 

came out with a unit root test that reversed the null hypothesis and alternative hypothesis 

(KPSS test) and verified that only half of the economic time series had unit root using the same 

data set as Nelson and Plosser‟s (1982). 

Moreover, Christiano (1992) criticized Perron‟s exogenous treatment of a structural change 

and devised a method with which structural changes with a drift term and a trend can be 

detected endogenously and proposed a test whose null hypothesis is a unit root process without 

a structural change and whose opposing hypothesis is a stationary process with a structural 

change. 

In addition, Zivot and Andrews (1992) proposed   another test whose null hypothesis is a unit 

root process without any change in a drift term and whose alternative hypothesis is trend 

stationary process with a structural break. This proposed test can detect a time point of a 

structural change endogenously and its asymptotic distribution is constant regardless of the 

time points of structural changes. 

Again Dickey et al. (1984) after the methodology proposed by Dickey and Fuller (1979) for 

the zero-frequency unit-root case, suggested the Dickey, Hasza and Fuller (DHF) test to test 

for seasonal unit root. The DHF test can only work for unit roots at all of the seasonal 

frequencies and has an alternative hypothesis which is restrictive, namely that, all the roots 

have the same modulus. In an attempt to solve these problem, Hylleberget al., (1990) propose a 
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more general testing (HEGY‟s test) strategy that allows for unit roots at some (or even all) of 

the seasonal frequencies as well as the zero frequency. HEGY‟s methodology allows testing 

for unit roots at some seasonal frequencies without maintaining that unit roots are present at all 

seasonal frequencies.  

Finally, Banerjee et al. (1992) also tested the null hypothesis of the presence of a unit root in 

the stochastic process governing Argentina‟s real gross domestic product (GDP). They 

developed three testing procedures that included; recursive, rolling and sequential by using 

annual and quarterly data. In all these testing procedures, they considered the possibility of a 

break in the deterministic trend as a possible characterization.   

2.3.2 Traditional Time Series Methods 

Time series as a stochastic process started in the mid-1920s (Gottman, 1981).Yule (1927) first 

developed an Autoregressive (AR) model when working on sunspot data and revealed that an 

AR process of order two (2) could reproduce intriguing patterns in a time series. Yule‟s 1927 

work was consequently supplemented by Sluztky (1927 and 1937) who first constructed 

moving average (MA) models of independent and identically distributed (iid) shocks when 

studying white noise processes. Box and Jenkins (1970) developed the Autoregressive Moving 

average (ARMA) model and gave a full account of the Integrated Autoregressive Moving 

average (ARIMA) model. 

Furthermore, Mann and Wald (1943) came out with a theorem to estimate the AR (p) 

parameters by the least squares method. Quenouille (1947) presented a simple test for AR (p) 

models and later extended to MA models. Also, Anderson (1971) developed a procedure to 

estimate the order of the AR model as well as the AR parameter. 

In addition, a non-linear least squares technique procedure that led to a technique of 
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approximated likelihood solution for ARMA (p, q) models was developed by Box and Jenkins 

(1976). Again, an exact likelihood method for estimating parameters of MA (q) models and for 

ARMA (p, q) models was developed by Newbold (1974). The Box-Pierce statistics was 

developed by Box and Pierce (1970) and modified by Ljung and Box (1978). 

Next, Akaike (1974) proposed an information criterion to assist in the selection of an ARIMA 

model. A model with the smallest Akaike Information Criterion (AIC) is the best model to 

have minimum forecast mean square errors. On the information criterion, Schwarz (1978) 

argued that AIC was not consistent when probability approaches one, and proposed a Bayesian 

Information Criterion (BIC). 

Also, an exact likelihood procedure to estimate parameters of an ARIMA model in State-Space 

form was developed by Harvey and Phillips (1979). The State-Space models are also called 

Structural Time Series (STS) models. Many researchers have pointed out the advantages of the 

State-Space form over the ARIMA models (Durbin and Koopman, 2001). A time series might 

be characterised with trend, seasonal cycle and calendar variations, together with the effects of 

explanatory variables and interventions. These components can be processed separately and for 

different purposes for a State-Space model. On the contrary, the Box-Jenkins ARIMA model is 

a black-box model, which solely depends on the data without knowledge of the system 

structure that produces the data. The second advantage is the recursive nature of the State-

Space model that obviously allows change of the system overtime, while ARIMA models are 

homogenous through time, based on the stationary assumption. 

Again, Granger and Joyeux (1980) and Hosking (1981) proposed an Autoregressive 

Fractionally Integrated Moving average (ARFIMA) model to study a long memory time series. 

The autocorrelation function in an ARFIMA (p, d, q) model decays at a hyperbolic rate for 
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non-zero d which is slower than the usual geometric rate of a stationary ARMA (p, q) model. 

Engle (1982) also made a significant contribution in the area of time series analysis by 

introducing the Autoregressive Conditional Heteroscedasticity (ARCH) model, to model 

changing volatility. The non-linear term is the variance of the disturbance. Bollerslev (1986) 

made an extension of the ARCH model to the Generalised Autoregressive Conditional 

Heteroscedasticity (GARCH) model.  

 An ARMA-ARCH model, in which an ARMA model is used to model mean behaviour and an 

ARCH model to model the residuals of the ARMA model was proposed by Weiss (1984). The 

quasi-maximum-likelihood method was used to estimate model parameters  

Furthermore, in the field of multivariate time series, Hillmer and Tiao (1979) made a 

remarkable contribution where they developed an exact likelihood technique for Vector 

Autoregressive Moving average (VARMA) model. Harvey and Peters (1984) further proposed 

a state-space method to estimate parameters of VARMA (p, q) models. 

In addition, Engle and Granger (1987) proposed a cointegrated multivariate time series and 

Error Correction Models (ECM) where the cointegrated concept captures the phenomenon of 

univariate non-stationary time series moving together. The ECM procedure involves two steps. 

The first step involves modeling the long term relationship between endogenous and 

exogenous variables. The variables involved have to comply with two constraints; non-

stationary and being stationary after first differencing. In the second step, the dynamic short 

term process is modeled and only stationary variables enter the regression equation. 

Finally, a Vector Autoregressive Fractionally Integrated Moving Average (VARFIMA) was 

proposed by Robinson and Yajima (2002) to take care of multivariate time series cointegration 

problems. 
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2.4 Conclusion 

This chapter focused on reviewing of literature that is relevant to the study. It can be observed 

that several approaches have been used to model and forecast price volatility of cereals in 

various parts of the world. However little work has been done on price volatility of cereals in the 

Northern region of Ghana. This research therefore employed the Generalized Autoregressive 

Conditional Heteroscedasticity (GARCH) regression model to forecast the price volatility of the 

three major cereals in the northern region of Ghana. 
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CHAPTER THREE 

METHODOLOGY 

3.0 Introduction 

This chapter deals with the data and statistical techniques that were employed in order to achieve 

the objectives of the study.  There are eight main headings under this chapter namely; source of 

data, unit root test, ARCH (m) model, GARCH (m, s) model, VAR (p) model, criteria for model 

selection and model diagnostics. 

3.1 Source of Data 

In order to achieve the objectives of this study, secondary data on monthly prices of Rice, Maize 

and Millet were obtained from the Ministry of Food and Agriculture, Northern Regional office. 

The data ranges from January 2000 to December 2013. The data were analysed using R, STATA, 

Minitab and Gretl statistical software. 

3.2 Unit Root Test 

Stationarity is an essential aspect of time series analysis. There are two main types of stationarity 

in time series analysis; strong stationarity and weak stationarity. A series is said to be strongly 

stationary if its mean, variance, auto covariance and all other higher moments at any lag say k, 

remain constant over time. On the other hand, a time series is said to be weakly stationary or 

second order stationary if its first and second moments (mean and auto covariance) are 

independent of time. This can be expressed mathematically as: 

                                         𝐸 𝑋𝑡 = 𝜇𝑥                                                    (3.1) 
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                            𝐶𝑜𝑣 𝑋𝑡 , 𝑋𝑡+𝑘 = 𝛾𝑦 𝑘                                             (3.2) 

Where𝜇 is constant and 𝛾𝑘  is independent of time. However for practical applications, the 

assumption of strong stationarity is not always appropriate and so weak stationarity is always 

considered for the analysis of time series data. 

Several approaches have been developed to test for the stationarity or otherwise of a time series 

data which include both graphical and quantitative approaches. The graphical approach is done 

through visual inspection of the nature of the Autocorrelation function (ACF) plots. The series 

will be stationary if the ACF decay rapidly after few lags. However if the ACF exhibits a strong 

and slow decaying pattern after several lags, then it presupposes that the series is non-stationary. 

In this study, two quantitative approaches were employed in addition to the ACF approach to test 

for unit root. These two quantitative methods include; the Augmented Dickey-Fuller (ADF) test 

and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test. The presence of a unit root indicates 

that the time series is not stationary and that differencing will make it stationarity. 

3.2.1 Augmented Dickey Fuller (ADF) Test 

The ADF test is an extension of the Dickey-Fuller (DF) test which was developed to deal with 

serial correlations in the time series. De Jong et al. (1992) recommended the ADF test as the 

overall best test for a unit root in the presence of auto correlated errors, mainly because it does 

not suffer size distortions under over parametizations, extreme autocorrelation, and increased 

sampling frequency. The ADF test assumes that the time series follows a random walk. Consider 

the first order Autoregressive AR (1) process given below 

𝑌𝑡 = 𝜙𝑌𝑡−1 + 𝜀𝑡                                                            (3.3) 
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Where 𝑌𝑡  is the variable of interest, tis time index, 𝜙 is the model coefficient and 𝜀𝑡  denotes an 

independently and identically distributed error term with a zero-mean and constant variance. A 

unit root is present if𝜙 = 1. In this case, equation (3.3) becomes a random walk model without 

drift and hence a non-stationary process. The test is based on the regression of the observed 

variable 𝑌𝑡  on its one-period lagged value𝑌𝑡−1, sometimes including an intercept and a time 

trend. 𝜙 is then estimated to see whether it would be equal to one or not. Equation (3.3) can be 

rewritten as: 

∆𝑌𝑡 = (𝜙 − 1)𝑌𝑡−1+ 𝜀𝑡 = 𝛿𝑌𝑡−1 + 𝜀𝑡                            (3.4) 

Where ∆ is the difference operator, implying that ∆𝑌𝑡 = 𝑌𝑡 − 𝑌𝑡−1 and𝛿 = 𝜙 − 1. From equation 

(3.4) we test the null hypothesis 𝛿 = 0 against the alternative 𝛿 ≠ 0. If 𝛿 = 0, it implies that 𝜙 =

1, which confirms the presence of a unit root in the series.  

The null hypothesis may be rejected or not, depending on the critical values of the DF test and 

the calculated value of the test statistic. The DF test is plagued by the presence of serial 

correlations in the residuals which often leads to biases in drawing conclusions. Due to this 

major defect, the ADF test includes enough lagged dependent variables in the Autoregressive 

(AR) model to rid the residuals of serial correlation. The model therefore becomes: 

                           ∆𝑌𝑡 = 𝛼 + 𝛽𝑡 + 𝛿𝑌𝑡−1 + 𝛾1∆𝑌𝑡−1 + ⋯ + 𝛾𝑝−1∆𝑌𝑡−𝑝+1 + 𝜀𝑡           (3.5) 

Where𝛼 is a constant, 𝛽is the coefficient on time trend series, 𝛾1∆𝑌𝑡−1 + ⋯ + 𝛾𝑝−1∆𝑌𝑡−𝑝+1 is the 

sum of the lagged values of the dependent variable  ∆𝑌𝑡  and p is the lag order of the AR process. 

Imposing the constraints 𝛼 = 0 and 𝛽 = 0 corresponds to modelling a random walk and using 

constraint 𝛽 = 0 corresponds to modelling a random walk with drift. By including lags of the 

order p, the ADF formulation allows for higher-order AR processes. The ADF test is concerned 
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with the value of the parameter 𝛿. If 𝛿 = 0, it presupposes that the series contains unit root and 

hence non-stationary.  

The test statistic for the ADF test is given by 

Fτ =
𝛿 

SE(𝛿 )
                                (3.6) 

Where𝛿  is the least square estimate andSE(𝛿 ) is the standard error estimate of 𝛿 . If the calculated 

value of the test statistic is greater than the critical value, we reject the null hypothesis of 𝛿 = 0. 

3.2.2 Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Test 

The KPSS test has a null hypothesis of stationarity of a series around either the mean or a linear 

trend; and the alternative assumes that the series is non-stationary due to the presence of a unit 

root. There are three components in the KPSS test model. These include: deterministic trend, a 

random walk, and a stationary error term. One important assumption made in the test is that, if 

there is no linear trend term, the point of departure is a data generating process of the form 

𝑌𝑡 = 𝑟𝑡 + 𝜀𝑡                                    (3.7) 

Where𝑟𝑡  denotes a random walk process, 𝑟𝑡 = 𝑟𝑡−1 + 𝑢𝑡 ,  𝜀𝑡  is an error term, and 𝑢𝑡  denotes an 

error term of the random walk equation. It is assumed that 𝑢𝑡  is a series of identically distributed 

independent random variables with expected value equal to zero and constant variance𝜍 𝑢
2. The 

null hypothesis of stationarity is equivalent to the assumption that the variance 𝜍𝑢  
2  of the random 

walk process 𝑟𝑡  equals zero while the alternative assumes that the variance is greater than zero. 

The hypotheses are therefore stated as: 

     H0: 𝜍𝑢
2 = 0  
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     HA :𝜍𝑢
2 > 0. 

If H0 is true, then 𝑌𝑡 is composed of a constant and the stationary process𝜀𝑡 ; which means 𝑌𝑡  is 

also stationary. The test statistic of the KPSS test is given by; 

                                                          𝐾𝑃𝑆𝑆 =  
𝑆𝑡

2

𝜍∞
2

𝑇

𝑡=1

                                ( 3.8) 

Where 𝑇 denotes the number of observations,𝑆𝑡 =  𝜀𝑖
𝑡
𝑖=1 , for𝑡 = 1,2, … , 𝑇, 𝜀𝑖  denotes estimated 

errors from a regression of 𝑌𝑡  on a constant and time and are computed as: 𝜀𝑡 = 𝑌𝑡 − 𝑌 and 𝜍 ∞
2  is 

an estimator of the long-run variance of the 𝜀𝑡  process given as:  

                                                                   𝜍∞
2 = lim𝑇→∞ 𝑇−1 𝑉𝑎𝑟  𝜀𝑡

𝑇
𝑡=1   3.9 or 

                                            𝜍2 = 𝑙𝑖𝑚𝑇−1𝐸 𝑆𝑇
2                                        (3.10) 

The decision rule is to reject the null hypothesis of stationarity if the computed value of the test 

statistic is greater than the critical value at a given level of significance. 

3.3 Autoregressive Integrated Moving Average (ARIMA) Model 

The ARIMA model is a generalization of the ARMA model that is defined to include an 

integrated (I) component to handle time series data that are non-stationary in nature. In practice 

many time series data show non-stationary behaviour and such data are made stationary by 

applying finite differencing of the data points. In terms of backshift operator, the ARIMA (p, d, 

q) model is given as: 

𝜙 𝐵 (1 − 𝐵)𝑑𝑌𝑡 = 𝜃 𝐵 𝜀𝑡                                                                  (3.16) 
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where p, d and q are integers greater than or equal to zero and denote the order of the 

autoregressive, integrated, and moving average parts of the model respectively.The integer 

dcontrols the level of differencing. Generally,𝑑 = 1 is enough in most cases.  

3.3.1 Autoregressive Model of Order p (AR (p)): 

A time series 𝑌𝑡 is said to be an autoregressive process of order p, if it is a weighted linear sum of 

the past p values plus a random shock. The general AR model of order p is given by:   

𝑌𝑡 = 𝜙0 + 𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2 + ⋯ + 𝜙𝑝𝑌𝑡−𝑝 + 𝜀𝑡     (3.11) 

where the Y’s and 𝜀𝑡  are respectively the original series and random error at timeperiod t, 𝜙𝑖  are 

the AR parameters to be estimated with 𝑖 = 1, 2, … , 𝑝  and p is the order of the AR model. Thus 

the value at time tdepends linearly on the last p values and the model looks like a regression 

model; hence the term autoregression. Using the backward shift operator B such that; 

𝐵𝑌𝑡−1 = 𝐵𝑌𝑡and 𝐵2𝑌𝑡 = 𝑌𝑡−2, the AR(p) model may be written more succinctly in the form 

𝜙(𝐵)𝑌𝑡 = 𝜀𝑡                                                  (3.12) 

Where 𝜙(𝐵) = 1 − 𝜙1𝐵 − 𝜙2𝐵
2 − ⋯− 𝜙𝑝𝐵

𝑝 is a polynomial in B of order 𝑝.  The AR (p) time 

series is said to be stationary if the roots of the polynomial: 

𝑚𝑝 − 𝜙1𝑚
𝑝−1 − 𝜙2𝑚

𝑝−2−. . . −𝜙𝑝are less than one in absolute terms. 

3.3.2 Moving Average Model of Order q (MA (q)): 

A time series 𝑌𝑡 is said to be a moving average process of order q if it is a weighted linear sum of 

the last q random shocks. That is, the current values of the series depend on its past shocks. The 

general MA model is given by: 
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𝑌𝑡 = 𝜀𝑡 + 𝜃1𝜀𝑡−1 + ⋯ + 𝜃𝑞𝜀𝑡−𝑞             (3.13) 

where q is the order of the model,  𝜃𝑗  are the model parameters to be estimated and 𝑗 = 1,2, … , 𝑞. 

The random shocks are assumed to be a white noise process, that is a sequence of independent 

and identically distributed (i.i.d) random variables with zero mean and a constant variance σ
2
. 

Regardless of the values of the weights, an MA process is always stationary. The MA (q) model 

can be expressed in terms of the backshift operator as: 

𝑌𝑡 = 𝜃 𝐵 𝜀𝑡                                                (3.14)     

Where𝜃 𝐵 = 1 + 𝜃1𝐵 + ⋯ + 𝜃𝑞𝐵
𝑞 is a polynomial in B of order q. Generally, the random 

shocks are assumed to follow the typical normal distribution. The MA(q) process is invertible if 

the characteristic roots of the polynomial 𝑚𝑞 + 𝜃1𝑚
𝑞−1 + 𝜃2𝑚

𝑞−2 + ⋯ + 𝜃𝑞 = 0 are less than 

one in absolute terms.  

3.3.3 Autoregressive Moving Average (ARMA) Model 

Autoregressive (AR) and Moving Average (MA) models can be effectively combined together to 

form a general and useful class of time series models, known as the ARMA (p, q) models, where 

p and q are the orders of the AR and MA processes respectively (Box et al., 1994). Generally, an 

ARMA (p, q) model is given as: 

𝑌𝑡 = 𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2+. . . +𝜙𝑝𝑌𝑡−𝑝 + 𝜀𝑡 + 𝜃1𝜀𝑡−1+. . . +𝜃𝑞𝜀𝑡−𝑞     (3.15) 

where 𝜙𝑖  and𝜃𝑗  are parameters of the autoregressive and moving average components 

respectively, i= 1, 2, …, p and j= 1, 2, …, q. 

We can also express the ARMA (p, q) model as: 𝜙(𝐵)𝑌𝑡 = 𝜃(𝐵)𝜀𝑡 , where 𝜙(𝐵) and 𝜃(𝐵) are 

polynomials in B of finite order p and q respectively. The ARMA (p, q) process is stationary if 
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the roots of the polynomial in the AR component are less than one in absolute terms. On the 

other hand, the process is invertible provided that the absolute values of the roots of the 

polynomial in the MA component are less than one. 

3.4   Autoregressive Conditional Heteroskedasticity, ARCH (𝒎) Model 

An ARCH process is a mechanism that includes past variance in the explanation of future 

variances (Engle, 2004). The ARCH model was developed by Engle (1982) and it provides a 

systematic   framework for volatility modelling. ARCH models specifically take the dependence 

of the conditional second moments in consideration when modelling. Let {𝑥𝑡} be the mean-

corrected return, 𝜀𝑡be the Gaussian white noise with zero mean and  unit  variance  and  𝐼𝑡  be  

the  information  set  at   time t given by  𝐼𝑡  = {𝑥1 ,𝑥2 , . . . , 𝑥𝑡−1}. Then the ARCH (𝑚) model is 

specified as: 

                                                       𝑥𝑡 =  𝜍𝑡𝜀𝑡                                                                                             (3.17) 

                                                           𝜍𝑡
2 =  𝛼0 + 𝛼1𝑥𝑡−1

2 + ⋯ +  𝛼𝑚𝑥𝑡−𝑚
2                                          (3.18) 

where𝛼0> 0 and 𝛼𝑖  ≥ 0, 𝑖 = 1, … , 𝑚. 

and 

                                 𝐸 (𝑥𝑡  𝐼𝑡 = 𝐸 [ 𝐸 ( 𝑥𝑡 | 𝐼𝑡) ] = 𝐸  𝜍𝑡𝐸  𝜀𝑡  = 0                                                      (3.19) 

                                                         𝑉𝑎𝑟(𝑥𝑡  𝐼𝑡 = 𝐸  𝑥𝑡
2 =  𝜍𝑡

2 =  𝛼0 +   𝑖=1
𝑚 𝛼𝑖𝑥𝑡−𝑖

2                           (3.20) 

and the error term, 𝜀𝑡 is such that 

                                                        𝐸 ( 𝑥𝑡 | 𝐼𝑡) = 0                                                                                             (3.21) 

and 
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                                                    𝑉𝑎𝑟 (𝑥𝑡  𝐼𝑡 = 1                                                                                           (3.22) 

From equations (3.21) and (3.22), it can be seen that the error term 𝜀𝑡   is a conditional 

standardised martingale difference. A stochastic series {𝑥𝑡} is said to be a martingaledifference 

if its expectation with respect to past values of another stochastic series {𝑦𝑖} is zero (Amos, 

2010).That is  

                                    𝐸  𝑥𝑡+𝑖 𝑦𝑖 , 𝑦𝑖−1) = 0 𝑓𝑜𝑟 𝑖 = 1,2, …                                                    (3.23) 

 From the structure of the model, it can be seen that the dependence of the present volatility {𝑥𝑡} 

is a simple quadratic function of its lagged values.   The coefficients 𝛼𝑖 , 𝑖 = 0, … , 𝑚 can 

consistently be estimated by using 𝜍𝑡
2 =  𝛼0 + 𝛼1𝑥𝑡−1

2 + ⋯ +  𝛼𝑚𝑥𝑡−𝑚
2 . To ensure that the 

conditional variance 𝜍𝑡
2  is always positive for all 𝑡, isrequired that  𝛼0> 0 and 𝛼𝑖  ≥ 0, 𝑖 = 1,… , 𝑚. 

From equations (3.17) and (3.18) itfollows that large past squared values {𝑥𝑡−𝑖
2 }, 𝑖 = 1,… , 𝑚 

follows a large conditionalvariance𝜍𝑡
2 for the present volatility {𝑥𝑡}. Consequently, {𝑥𝑡}   tends 

to assume a largevalue in absolute value. Hence under the ARCH framework, large shocks tend 

to befollowed by another large shock.  

3.4.1 Estimation of the ARCH (𝒎) 

There are three likelihood functions that are commonly used in ARCH (𝑚) estimation depending 

on the distributional assumption made on the error term𝜀𝑡 . The three common distributions are 

the normal distribution, standardized student-t distribution which is a heavy tailed distribution 

and the generalised error distribution (GED). Using the maximum likelihood estimation 

technique, the parameters can be estimated using 

𝑓 𝑥1 ,… , 𝑥𝑡 𝜃 ) = 𝑓  𝑥𝑡  𝑥𝑡−1 ) 𝑓  𝑥𝑡−1 𝑥𝑡−2 ) …𝑓  𝑥𝑚+1 𝑥𝑚  ) 𝑓 ( 𝑥1 , … , 𝑥𝑚   𝜃  = 
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1

 2𝜋𝜍𝑡
2

exp( 
−𝑥𝑡

2

2𝜍𝑡
2  ) 𝑓  𝑥1 ,… , 𝑥𝑚   𝜃 ).

𝑇

𝑡=𝑚+1

(3.24) 

Where𝜃 =  𝛼0 , 𝛼1 ,… , 𝛼𝑚  ′  𝑎𝑛𝑑 𝑓  𝑥1 , … , 𝑥𝑚   𝜃 )is the joint probability density function 

of𝑥1 , … , 𝑥𝑚 . Since the exact form of 𝑓  𝑥1 ,… , 𝑥𝑚   𝜃 ) is complicated anddifficult  to  obtain,  it  is  

commonly  dropped  from  the  prior  likelihood  function, especially when the sample size is 

sufficiently large. Rather it is practically easier to condition on the first 𝑥1 ,… , 𝑥𝑚   since they are 

usually known and equal to its observed values. This results in the conditional likelihood 

function being: 

                   𝑓 𝑥1 ,… , 𝑥𝑡 𝜃 ;  𝑥1 ,… , 𝑥𝑚 ) =  
1

 2𝜋𝜍𝑡
2

exp( 
−𝑥𝑡

2

2𝜍𝑡
2  ) 

𝑇

𝑡=𝑚+1

                                                (3.25) 

Where𝜍𝑡
2  can be evaluated recursively.  Under   the normality assumption, the 

estimates, 𝛼0 𝛼1 ,… ,𝛼𝑚 are obtained by maximising the prior likelihood function called the 

conditional maximum likelihood estimates (MLE) (Tsay, 2002). 

Maximising the conditional likelihood function can be difficult to handle. An equivalent way 

which is easier to handle is to maximise the logarithm of the conditional likelihood function. 

Accordingly, the conditional log likelihood function is given as: 

ℓ 𝑥𝑚+1 ,… , 𝑥𝑡  𝜃 ;  𝑥1 , … , 𝑥𝑚 ) =  (−
1

2
ln 2𝜋 −  

1

2
ln 𝜍𝑡

2 −  
𝑥𝑡

2

2𝜍𝑡
2 )

𝑇

𝑡=𝑚+1

 

                                                                                  =  −   ( 
1

2
ln 𝜍𝑡

2 + 
𝑥𝑡

2

2𝜍𝑡
2 )

𝑇

𝑡=𝑚+1

 + 𝐾                          (3.26) 

where 𝐾 =  −  
  𝑇−𝑚   

2
ln 2𝜋. 
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Since the first term
1

2
ln 2𝜋  does not involve any parameter and hence its exclusion has no effect 

on the estimation process. Again 𝜍𝑡
2 =  𝛼0 + 𝛼1𝑥𝑡−1

2 + ⋯ +  𝛼𝑚𝑥𝑡−𝑚
2  can be evaluated recursively. 

3.5 The Generalized Autoregressive Conditional Heteroscedasticity Model 

The Generalized ARCH (GARCH) model was developed by Bollerslev (1986) as an extension of 

the ARCH model. The principle of parsimony may be violated when a model has a large number  

of  parameters  resulting  in  difficulties  in  using  the  model  to  adequately describe the data. In 

particular, although the ARCH model is simple, it may require many parameters as there might 

be a need for a large value of lag q and hence the principle of parsimony would be violated in 

such a case. GARCH model may contain fewer parameters when compared to an ARCH model. 

Thus a GARCH model may be preferred to an ARCH model using the principle of parsimony. 

Let 𝑥𝑡 =  𝑟𝑡 −  𝑢𝑡  be the mean corrected return, where 𝑟𝑡  is the return of an asset, 𝑢𝑡 , the conditional 

mean of𝑥𝑡 . Then 𝑥𝑡  follows a GARCH (m, s) model if 

𝑥𝑡 =  𝜍𝑡𝜀𝑡                                                               (3.27) 

𝜍𝑡
2  = 𝛼0 +  𝛼1 𝜍𝑡−𝑖

2

𝑚

𝑖=1

 +   𝛽𝑗𝜍𝑡−𝑗
2

𝑠

𝑗=1

              (3.28) 

where {𝜀𝑡} is a sequence of independent, identically distributed random variables with mean 

zero and unit variance and the parameters of the model are 𝛼𝑖  , 𝑖 = 0, … , 𝑚 and𝛽𝑗 , 𝑗 = 1, … , 𝑠 

suchthat 𝛼𝑖 ≥ 0 and 𝛽𝑗 ≥ 0 ; (   𝛼𝑖 +  𝛽𝑖 
𝑣
𝑖=1 < 1) where v = max(𝑚, 𝑠) and 𝛼𝑖  = 0 for 𝑖>𝑚 and  

𝛽𝑗  = 0 for 𝑗> 𝑠 . The constraints on 𝛼𝑖 +  𝛽𝑖  implies  that  the  unconditional  variance  of  𝑥𝑡   is  

finite,  whereas  its  conditional variance  𝜍𝑡
2  evolves over time. From equations (3.27) and 

(3.28), it is seen that  the  GARCH  (𝑚, 𝑠)  model  employs  the  same  equation as  (3.17)  for  

the  mean corrected return 𝑥𝑡   as in the ARCH (m) but the equation for the volatility includes 𝑠 
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new terms. Therefore equations (3.27) and (3.28) reduces to a pure ARCH (𝑚) model if   𝑠 = 0. 

Thus the GARCH model generalizes the ARCH model by introducing values of 𝜍𝑡−1
2 , 𝜍𝑡−2

2 ⋯ . 

The parameters  𝛼𝑖  and  𝛽𝑖  are respectively referred to as the ARCH and GARCH parameters. 

The GARCH (𝑚, 𝑠) model can be stated differently. Let 𝜂𝑡 =  𝑥𝑡
2 −  𝜍𝑡

2 so that 𝜍𝑡
2 =  𝑥𝑡

2 −  𝜂𝑡 . 

By substituting𝜍𝑡−𝑖
2 =  𝑥𝑡−𝑖

2 −  𝜂𝑡−𝑖 𝑖 = 0, … , 𝑚  into equation (3.28), the GARCH (m, s) can be 

written as 

𝑥𝑡
2 =  𝛼0 +    𝛼𝑖 +  𝛽𝑖 𝑥𝑡−𝑖

2

𝑣

𝑖=1

+  𝜂𝑡 −   𝛽𝑗𝜂𝑡−𝑖

𝑠

𝑗=1

             (3.29) 

Wherev= max (m, s ),𝛼1 = 0 for i> 𝑚, 𝛽𝑖 = 0 𝑓𝑜𝑟 𝑗 > 𝑠 

Thus the equation of 𝜍𝑡
2  has an Autoregressive Moving Average, ARMA (m, s) representation 

and it can be seen that{𝜂𝑡} is a martingale difference series.However, the {𝜂𝑡} is not an 

independent, identically distributed random sequence. In order to find the GARCH (m, s) 

process, we solve for 𝛼0 in the equation (3.29) by letting the variance of 𝑥𝑡   be  𝜍𝑡
2 . This yields 

𝛼0 = 𝜍𝑡
2  1 −    𝛼𝑖

𝑚

𝑖=1

−  𝛽𝑗

𝑠

𝑗=1

                                           (3.30) 

And substituting the value of 𝛼0 as given by equation (3.29) into equation (3.30) gives 

𝑥𝑡
2 =  𝜍𝑡

2  1 −  ( 𝛼𝑖 +  𝛽
𝑖
 )

𝑣

𝑖,𝑗=1

 +   ( 𝛼𝑖 +  𝛽
𝑖
 )

𝑣

𝑖,𝑗=1

 𝑥𝑡−1
2 −  𝛽

𝑗
𝜂
𝑡−𝑖

+  𝜂
𝑡

𝑠

𝑗=1

= 𝜍𝑡
2 +   𝛼𝑖 +  𝛽

𝑖
 

𝑣

𝑖,𝑗=1

 𝑥𝑡−𝑖
2 − 𝜍𝑡

2 −  𝛽
𝑗
𝜂
𝑡−𝑖

+  𝜂
𝑡

𝑠

𝑗=1

                                        (3.31) 

Therefore 
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𝑥𝑡
2 − 𝜍𝑡

2 =    𝛼𝑖 +  𝛽
𝑖
 

𝑣

𝑖,𝑗=1

 𝑥𝑡−𝑖
2 − 𝜍𝑡

2 −  𝛽
𝑗
𝜂
𝑡−𝑖

+  𝜂
𝑡

𝑠

𝑗=1

                                 (3.32) 

Multiplying both sides of equation (3.32) by ( 𝑥𝑡−𝑘
2 − 𝜍𝑘

2 ) results in 

 𝑥𝑡−𝑘
2 − 𝜍𝑘

2  𝑥𝑡−𝑖
2 − 𝜍𝑡

2 =   𝛼𝑖 +  𝛽
𝑖
 

𝑣

𝑖,𝑗=1

 𝑥𝑡−𝑖
2 − 𝜍𝑡

2  𝑥𝑡−𝑘
2 − 𝜍𝑘

2 −  𝛽
𝑗
𝜂
𝑡−𝑖

𝑠

𝑗=1

+ 

𝜂𝑡−𝑖 𝑥𝑡−𝑘
2 − 𝜍𝑘

2 + 𝜂𝑡 𝑥𝑡−𝑘
2 − 𝜍𝑘

2                                                                                        (3.33) 

And taking expectations of equation (3.33), we have 

𝐸  𝑥𝑡−𝑘
2 − 𝜍𝑘

2  𝑥𝑡−𝑖
2 − 𝜍𝑡

2  = 𝐸    𝛼𝑖 +  𝛽
𝑖
 

𝑣

𝑖,𝑗=1

 𝑥𝑡−𝑖
2 − 𝜍𝑡

2  𝑥𝑡−𝑘
2 − 𝜍𝑘

2  − 𝐸   𝛽
𝑗
𝜂
𝑡−𝑖

𝑠

𝑗=1

 + 

𝐸 𝜂𝑡−𝑖 𝑥𝑡−𝑘
2 − 𝜍𝑘

2 + 𝜂𝑡 𝑥𝑡−𝑘
2 − 𝜍𝑘

2                                                                       (3.34) 

 But 𝐸[ 𝜂𝑡( 𝑥𝑡−𝑘
2 − 𝜍𝑘

2 ) ] = 𝐸 ( 𝑥𝑡−𝑘
2 − 𝜍𝑡

2 )𝐸  𝜂𝑡 𝑥𝑡 = 0since 𝜂𝑡   is a martingaledifference and also 

                𝐸 [𝛽𝑗𝜂𝑡−𝑖( 𝑥𝑡−𝑘
2 − 𝜍𝑡

2 )] = 𝐸 [ (  𝑥𝑡−𝑘
2 − 𝜍𝑡

2) 𝐸  𝜂𝑡−𝐽  𝑥𝑡−𝐽 ] = 0 𝑓𝑜𝑟 𝑘 < 𝑗            (3.35) 

Thus the auto covariance of the squared returns for the GARCH (m, s) model is given by 

𝑐𝑜𝑣(𝑥𝑡
2, 𝑥𝑡−𝑘+𝑖

2 ) = 𝐸    𝛼𝑖 +  𝛽
𝑖
 

𝑣

𝑖,𝑗=1

 𝑥𝑡−𝑖
2 − 𝜍𝑡

2  𝑥𝑡−𝑘
2 − 𝜍𝑘

2   

                                             =   ( 𝛼𝑖 +  𝛽𝑖  )
𝑣

𝑖,𝑗=1
  𝑐𝑜𝑣  𝑥𝑡

2 , 𝑥𝑡−𝑘+𝑖
2                             (3.36) 

Dividing both sides of equation (3.36) by 𝜍𝑡
2  gives the autocorrelation function at lag k as  

                                        𝜌𝑘 =  ( 𝛼𝑖 +  𝛽𝑖  )

𝑣

𝑖 ,𝑗=1

𝜌𝑘−𝑖 , 𝑓𝑜𝑟 𝑘 ≥  𝑚 + 1                        (3.37) 
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This result is analogous to the Yule-Walker equations for an AR process. Hence the 

autocorrelation function (ACF) and the partial autocorrelation function (PACF) of the squared 

returns in a GARCH process has the same pattern as those of an ARMA process. The ACF and 

PACF are useful in determining the orders m and s of the GARCH (m, s) process. Also, the ACF 

is used in checking model accuracy; in which case, the ACF‟s of the residuals indicates the 

presence of a white noise if the model is adequate. The parameters 𝛼0 ,𝛼1 , … , 𝛼𝑚 ;𝛽1 ,𝛽2 ,… , 𝛽𝑠affect 

the autocorrelation but given the𝜌𝑘 , ⋯,𝜌𝑚+1−𝑣, the autocorrelation at higher lags are determined 

uniquely by the expression in equation (3.35) (Bollerslev, 1986) as cited in Ngailo (2011). 

Denoting the 𝑣𝑡ℎpartial autocorrelation for 𝑥𝑡
2 by 𝜙𝑣𝑣 then  

𝜌𝑘 =  𝜙𝑣𝑣𝜌𝑘−𝑖

𝑣

𝑖,𝑗=1

, 𝑘 = 1, … , 𝑣 = max  𝑚, 𝑠                          (3.38) 

It can be seen from equation (3.38) that, there are cut offs after lag m for an ARCH (m) process 

such that 𝜙 ≠ 0 for k ≤ m and 𝜙  = 0 for k>m and it is similar to the AR (m) process and decays 

exponentially (Bollerslev, 1986). To understand the theory and concepts of the GARCH model, 

we would focus on the special case of the GARCH (1, 1) model. 

3.5.1    GARCH (1, 1) Model 

The GARCH (1, 1) model is a particular case of the GARCH (m, s) model where the orders m 

and s are both equal to one (i.e.  m = s = 1). Let {𝑥𝑡} be the mean corrected return, 𝜀𝑡   be a 

gaussian white noise with mean zero and unit variance. If 𝐼𝑡 is the   information set   available at 

time t given by 𝐼𝑡  ={𝑥1 , 𝑥2 , . . . , 𝑥𝑡−1;  𝜍𝑡 
2 ,𝜍𝑡

2, …,𝜍𝑡−1
2 }, then the process {𝑥𝑡} follows a GARCH (1, 

1)model if 

𝑥𝑡 =  𝜍𝑡𝜀𝑡                                                                   (3.39)  
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𝜍𝑡
2 =  𝛼0 +  𝛼1𝑥𝑡−1

2 +  𝛽1𝜍𝑡−1
2                                (3.40) 

Where𝛼0 , 𝛼1  and 𝛽1 are the parameters of the model such that 𝛼0  ≥ 0, 𝛼1 ≥ 0,  𝛽1  ≥ 0  and (𝛼𝑖+ 

𝛽𝑖< 1).  The constraints on the parameters are to ensure that the conditional variance 𝜍𝑡
2is 

positive. Clearly from (3.39) and (3.40), it is clear  that large past mean corrected return 𝑥𝑡−1
2   or 

past conditional variance 𝜍𝑡−1
2   give rise to  large values  of  𝜍𝑡

2   (Tsay,2002).    It can be seen 

that {𝑥𝑡} is a martingale difference as the conditional mean is zero (i.e. 𝐸 ( 𝑥𝑡 | 𝐼𝑡) = 0). Taking   

𝜂𝑡 =  𝑥𝑡
2 −  𝜍𝑡

2so that 𝜍𝑡
2 =  𝑥𝑡

2 −  𝜂𝑡  , the GARCH (1,1) can be represented differently. By 

substituting 𝜍𝑡−𝑖
2 =  𝑥𝑡−𝑖

2 −  𝜂𝑡−𝑖   , into equation (3.40), the GARCH (1, 1) can be written as 

𝑥𝑡
2 =  𝛼0 +  𝛼1 + 𝛽1 𝑥𝑡−1

2 +  𝜂𝑡 − 𝛽1𝜂𝑡−1 

                                                                             =  𝛼0 +  𝛼1𝑥𝑡−1
2 + 𝛽1 𝑥𝑡−1

2 −  𝜂𝑡−1 + 𝜂𝑡        (3.41)  

Again it can be seen that {𝜂𝑡} is a martingale difference series as = 0 (i.e. 𝐸 ( 𝑥𝑡 | 𝐼𝑡) = 0) 

E (𝜂𝑡) = 0 and  ( 𝜂𝑡 ,𝜂𝑡−𝑗  ) for 𝑗 ≥ 1 ) and {𝜂𝑡} is an uncorrelated sequence. From (3.41)  

                                         𝐸 𝑥𝑡
2 = 𝜍𝑡

2 =  𝛼0 +  𝛼1 + 𝛽1  𝐸 𝑥𝑡−1
2               (3.42) 

This implies 

𝜍𝑡
2 =   𝛼0 +  𝛼1 + 𝛽1 𝐸 𝜍𝑡

2𝜀𝑡
2                         (3.43) 

thus 

𝜍𝑡
2 =   𝛼0 +  𝛼1 +  𝛽1 𝜍𝑡

2𝐸(𝜀𝑡
2)       (3.44) 

which yields 

𝜍𝑡
2 =   𝛼0 +  𝛼1 + 𝛽1 𝜍𝑡

2 ,                  (3.45) 

Since 
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          𝐸 𝜀𝑡
2 = 𝑣𝑎𝑟  𝜀𝑡

2 = 1                                   (3.46) 

                𝜍𝑡
2 =

𝛼0

[ 1 −  𝛼1 +  𝛽1 ]
,                            (3.47) 

Provided  𝛼1 + 𝛽1 < 1   

3.5.2 Estimation of GARCH (𝒎, 𝒔) model 

Once the orders m and s have been identified, the parameters𝛼0 , 𝛼1 ,… , 𝛼𝑚   ;𝛽1 ,𝛽2 ,… , 𝛽𝑠 of the 

GARCH (m, s) model can then be estimated. The maximum likelihood estimation is used to 

estimate the parameters of the model. The initial values of both the squared returns and past 

conditional variances are needed in estimating the parameters of the model. Bollerslev (1986) 

and Tsay (2002) suggest that the unconditional variance given in equation (3.28) or the past 

sample variance of the returns may be used as initial values. Therefore 

assuming𝑥1 ,𝑥2 , . . . , 𝑥𝑚 ;  𝜍𝑡  
2 , 𝜍𝑡

2, …, 𝜍𝑠
2 are known, the conditional log-likelihood is given by  

ℓ 𝑥𝑚+1 ,… , 𝑥𝑡 ;𝜍𝑠+1
2 ,… , 𝜍𝑡

2 𝜃 ;  𝑥1𝑥2,… , 𝑥𝑚 ; 𝜍1
2 , 𝜍2

2 , . . , 𝜍𝑠
2)         

=   −
1

2
ln 2𝜋 −  

1

2
ln 𝜍𝑡

2 −  
𝑥𝑡

2

2𝜍𝑡
2 

𝑇

𝑡=𝑣+1
                              (3.48) 

Where𝜃 = (𝛼0 ,𝛼1 , … , 𝛼𝑚 ; 𝛽0 ,𝛽1 ,… , 𝛽𝑠)  and 𝑣 = max(𝑚, 𝑠) 

It  follows  that  the  conditional  maximum  likelihood  estimates  are  obtained  by maximizing 

the conditional log-likelihood function given by equation (3.48) 
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3.5.3 Volatility and Half-life volatility Determination 

The estimation of the volatility of a time series depends on its conditional variance. The squared 

of the conditional variance gives the conditional volatility. The conditional variance can be 

written  

as:  

𝛼0

  [ 1 −  𝛼𝑖 +  𝛽𝑖 ]
                                                   (3.49) 

The half-life volatility measures the time required for the volatility to move half way back 

towards its unconditional mean (Engle and Patton, 2001). The half-life was estimated using the 

relation; 

                                            𝜏 =
log (𝛼 + 𝛽)/2 

log(𝛼 + 𝛽)
                      (3.50) 

Where𝛼 and 𝛽 are the coefficients of the conditional variance equation,  

3.6. Vector Autoregressive (VAR) Modelling 

A vector auto regression (VAR) model is a mechanism that is used to link multiple stationary 

time series variables together and it is an extension of the univariateautoregression (AR) model 

to dynamic multiple time series. The VAR model is useful for describing the dynamic behavior 

and relationship between economic and financial time series, for forecasting the series and for 

structural analysis. The VAR model fits a time series regression of each dependent variable on its 

lag values and on the lag values of other dependent variables considered. Forecast from VAR 

models are quite flexible because they can be made conditional on the potential future paths of 

specified time series variables in the model. If the variables are not individually covariance 
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stationary, it can be differenced to make it stationary and a VAR model then fitted to the 

transformed series. 

A VAR process consists of a set of 𝑘 −endogenous time series variables 𝑅𝑡 =  𝑟1𝑡 ,

𝑟2𝑡 , … . , 𝑟𝑘𝑡  ′ 𝑓𝑜𝑟 𝑘 = 1, …… , 𝐾. A VAR model of order 𝑝 denoted as VAR (𝑝) is given by; 

 𝑅𝑡 = 𝑣 +  𝐴1𝑟𝑡−1 + ⋯……… . + 𝐴𝑝𝑟𝑡−𝑝 +  𝑢𝑡  ,     𝑡 = 0, 1, … . , 𝑇     (3.51)  

 where 𝑅𝑡 =  𝑟1𝑡 ,… . , 𝑟𝑘𝑡  
′  is a  𝑘 × 1  random vector of the rates, 𝐴𝑖 , 𝑖 = 1, …… , 𝑝 is a fixed 

(𝐾 × 𝐾)parameter (coefficient) matrice, 𝑣 = (𝑣1, … . . , 𝑣𝑘)′ is a fixed (𝐾 × 1) vector of intercept 

allowing for the possibility of a zero mean and𝑢𝑡 =  𝑢1𝑡 , … . , 𝑢𝑘𝑡  
′  is a 𝐾 −dimensional white 

noise series or innovation process with time invariant positive definite covariance matrix and 

zero mean. It is assumed that 𝑢𝑡  has a multivariate normal distribution. 

3.6.1 Lag Order Selection 

In fitting a VAR (p) model, one important step is the determination of the optimal lag of the 

VAR process. Lag order determinations enable us to ensure that the model chosen will reflect the 

observed process as precisely as possible with a small error term. In this study, we consider three 

lag order selection methods which differ by the severity of the penalty imposed for parameter 

profligacy and hence in the parsimony of the model selected. This study used the Akaike 

Information Criterion (Akaike, 1974), the Schwarz Bayesian Information Criterion (Schwarz, 

1978) and the Hannan-Quinn Information Criterion (Hanan and Quinn, 1979) to determine the 

optimum lag order  in fitting the VAR (p) model that describe the relationship between the set of 

time series variables. These criteria are given by; 

                      𝐴𝐼𝐶 = 𝑙𝑛  (𝑝)𝑢
  +

2

𝑇
𝑝𝐾2                                                     (3.52) 
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    𝐻𝑄𝐼𝐶 = 𝑙𝑛   (𝑝)
𝑢

 
 +

2 𝑙𝑛 {𝑙𝑛(𝑇)}

𝑇
𝑝𝐾2                             (3.53) 

    𝑆𝐵𝐼𝐶 = 𝑙𝑛   (𝑝)
𝑢

 
 +

𝑙𝑛(𝑇)

𝑇
𝑝𝐾2                                        (3.54) 

where 𝑇 denotes the number of observations in the data, 𝑝assigns the lag order,  (𝑝)𝑢
 =

𝑇−1  𝑢𝑡 𝑢𝑡
′ 𝑇

𝑡=1  is the residual covariance matrix without a degree of freedom corrected from the 

model and K is the number of parameters in the statistical model. For all the criteria, 𝑝 is chosen 

so that the value of the criterion is minimized. The first part of these criteria measures the 

goodness of fit of the statistical model to the data whiles the second part is the penalty term of 

the criteria which penalizes a candidate model for the number of parameters used. Based on this 

penalty term, the SBIC and HQIC are consistent estimators and tend to select models with fewer 

parameters when the sample size is large than does the AIC. The lag order with the least values 

of these criteria is the optimum number of lags to be used. 

3.6.2 Stability Condition of a VAR (p) Model 

Statistical inference using a VAR (p) model depends crucially on the stability of the model 

parameters over time. Given sufficient starting values, a stable VAR (p) process generates 

stationary time series with time invariant means, variances and covariance structure. The stability 

is determined by evaluating the reverse characteristic polynomial equation of the VAR (p) model 

given as; 

 𝑑𝑒𝑡(𝐼𝑘 −  𝐴1𝑧
1 − ⋯− 𝐴𝑝𝑧

𝑝)  ≠ 0, 𝑓𝑜𝑟  𝑍 ≤ 1                                          (3.55) 

The VAR (p) process is stable if the reverse characteristic polynomial has no root in and on the 

complex unit circle (thus the process is stable if  𝑧 > 1) (Lutkepohl, 2005). If the solution of the 
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reverse characteristic polynomial has a root 𝑧 = 1, then either some or all the variables in the 

VAR (𝑝) process are integrated of order one (I(1)). In practice, if the eigenvalues of the 

parameter matrix, 𝐴i are less than one (1) in modulus, then the VAR (𝑝) is stable (which is 

 𝐴𝑖 < 1 in univariate case). The stability of the VAR (p) model enables us to write the VAR (p) 

process as an invertible moving average process from which further inference such as Impulse 

Response Analysis can be made.  

3.7 Criterion for Model Selection 

In order to obtain the most adequate model that best describes a time series data, it is important 

for model selection criteria to be carried out. This is because there is the possibility of two or 

more models to compete in the selection of the best model. The Akaike Information Criterion 

(AIC), the Akaike Information Criterion corrected (AICc) and the Bayesian Information 

Criterion (BIC) are the model selection criteria that were employed in this study to select the 

most adequate model. The information criteria include a penalty that is an increasing function of 

the number of parameters. The penalty discourages over fitting, that is, increasing the number of 

parameters almost always improves the goodness of fit. The best model is the one with the 

smallest AIC, AICc or BIC values, given a set of candidate models. The AIC, AICc, and BIC are 

generally given by; 

AIC = 2𝑘 − 2𝐼𝑛(𝐿)                                                                         (3.56) 

AICc = AIC +
2𝑘(𝑘 + 1)

𝑛 − 𝑘 − 1
                                                                  (3.57) 

BIC = log(𝜍𝑒
2) +

𝑘

𝑛
log(𝑛)                                                                (3.58) 

where; 
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k represents the number of parameters in the model 

L denotes the maximised value of the likelihood function 

n is the number of observations in the data 

𝜍𝑒
2is the error variance 

3.8 Model Diagnostics 

To use the fitted models for statistical inference, it is essential to diagnose the model to 

determine whether the model best fit the series. This involves checking whether or not the 

residuals of the model fitted are white noise series; thus whether they are free from serial 

correlation and conditional heteroscedasticity. This study employed both univariate and 

multivariate model diagnostics techniques such as the univariate and multivariate Ljung-Box, the 

univariate and multivariate ARCH-LM as well as the CUSUM tests model diagnostics 

techniques. 

3.8.1 UnivariateLjung-Box Test  

The study employed the univariateLjung and Box (1978) test to test jointly whether or not 

several autocorrelations  𝑟𝑙   of the residuals of the individual VAR (p) models fitted were zero. 

It is based on the assumption that the residuals contain no serial correlation (no autocorrelation) 

up to a given lag 𝑚. The univariate Ljung-Box statistic is given by: 

 𝑄 𝑚 = 𝑇 𝑇 + 2  
𝑟𝑙

2

𝑇−𝑙

𝑚
𝑙=1                                (3.59) 

Where 𝑟𝑙represents the residual sample autocorrelation at lag𝑙, 𝑇is the size of the series, 𝑚is the 

number of time lags included in the test. 𝑄 𝑚 has an approximately chi-square distribution with 
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𝑚 degrees of freedom. We fail to reject H0 and conclude at α-level of significance that, the 

residuals are free from serial correlation when thep_value is greater than the significance level. 

3.8.2 Univariate ARCH-LM Test 

For a fitted model to adequately fit a series, the variance of the models‟ residuals must be 

constant over time. The univariate ARCH-LM test proposed by Engle (1982) was used in this 

research to check for the presence or absence of conditional heteroscedasticity in the residuals of 

the individual equations of the model fitted. If there exist no ARCH-effect, it implies that the 

residuals of the model are homoscedastic and have constant variance. This statistic uses the 

linear regression model;  

 𝑢𝑡
2 =   𝑎0 +   𝑎1𝑢𝑡−1

2 + ⋯ + 𝑎𝑚𝑢𝑡−𝑚
2 +   𝑒𝑡                                                   (3.60) 

𝑡 = 𝑚 + 1, … . . , 𝑇 

Where 𝑒𝑡  is the error term, 𝑇 is the sample size and 𝑚  is a positive integer. The ARCH-LM 

statistic tests the hypothesis that; 

 𝐻0 :  𝑎1 = ⋯ =   𝑎𝑚  = 0 (no ARCH − effect) against 

 𝐻0 :  𝑎1 ≠ ⋯ ≠  𝑎𝑚  ≠ 0 (ARCH − effect exist) 

The ARCH-LM test statistic is calculated as;  

 𝐿𝑀 = 𝑇𝑅2                                                                                                                (3.61) 

where𝑅2 is the coefficient of determination for the auxiliary regression. The decision rule is to 

reject 𝐻0  and conclude that there is conditional heteroscedasticity (ARCH-effect) in the residuals 

of the model if  𝐿𝑀 > 𝜒2 (𝑚), or if the𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 𝛼, where 𝑚is the lag order of ARCH-effect 

and 𝛼 is the significance level chosen. 

3.8.3 Multivariate Ljung-Box Test 
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In addition to testing for the accuracy of the individual equations of the fitted model, it is 

important to test for the accuracy of the overall VAR (p) process. This research therefore 

employed the multivariate Ljung-Box test to check for the presence or absence of serial 

correlation among the residuals of the overall VAR (p) model. The test is designed to test the 

hypothesis; 

 𝐻0 :  𝑅𝑚  =   𝑅1 , … . .  𝑅𝑚   = 0 (no serial correlation) against 

 𝐻1 :  𝑅𝑚  ≠ 0 (there exist serial correlation in the residuals) 

The multivariate Ljung-Box test is given by; 

 𝑄𝑚  =  𝑇2   𝑇 − 𝑖 −1𝑚
𝑖=1 𝑡𝑟 ĉ𝑖 

′  ĉ0 
−1 ĉ𝑖 ĉ0 

−1                                            (3.62) 

Where ĉ𝑖  = 1
𝑇  û𝑡

𝑇
𝑡=𝑖+1 û𝑡−𝑖

′ . If T → infinity, then
𝑇

𝑇2(𝑇−𝑖)−1 → 1. For large 𝑇 and m, 

𝑄𝑚  ~𝜒2(𝑘2 ℎ − 𝑝 ). We fail to reject 𝐻0 and conclude that there is no serial correlation in the 

residuals of the model when 𝑄𝑚  < 𝜒2(𝑘2 ℎ − 𝑝 ) or the p-value of the statistic is greater than 

the chosen 𝛼-level. 

3.8.4 Multivariate ARCH-LM Test 

The multivariate ARCH-LM test was also used to test for conditional heteroscedasticity on the 

residuals of the overall VAR (p) model. The multivariate ARCH-LM test is based on the 

regression model below; 

  𝑣𝑒𝑐ℎ  𝑢𝑡𝑢𝑡
′  = 𝑎0 +  𝑎1𝑣𝑒𝑐ℎ 𝑢𝑡−1𝑢𝑡−1

′  + ⋯ + 𝑎𝑝𝑣𝑒𝑐ℎ 𝑢𝑡−𝑝𝑢𝑡−𝑝
′  + 𝑒𝑡      (3.63) 

where𝑒𝑡   assigns a spherical error process, 𝑣𝑒𝑐ℎ is the column-stacking operator for symmetric 

matrices that stacks the columns from the main diagonal on downward. 
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𝑎0is 1
2  𝑘(𝑘 + 1)-dimension and 𝑎𝑗 ′𝑠 are 1

2  𝑘 𝑘 + 1 × 1 2  𝑘(𝑘 + 1) coefficient 

matrices(𝑗 = 1, … . , 𝑝). The multivariate ARCH-LM statistic tests the pair of hypothesis; 

 𝐻0  =  𝑎1 = ⋯ =  𝑎𝑝 = 0 (No ARCH-effect) against 

 𝐻1  =  𝑎1 ≠ 0 𝑜𝑟 …𝑜𝑟 𝑎𝑝 ≠ 0 (ARCH-Effect exist) 

If all the 𝑎𝑗  matrices are zero, there is no ARCH effect in the residuals of the model. The LM 

statistic can be determined by replacing all unknown 𝑢𝑡 ′𝑠  by estimated residuals from a VAR 

(p) model and estimating the parameters in the resulting auxiliary model by OLS. Denoting the 

residuals covariance matrix estimator by Ʃ𝑣𝑒𝑐ℎ
  and the corresponding matrix obtained for 𝑞 =

0 by  𝛴0
−1, the ARCH-LM statistic is given as;  

 𝐿𝑀𝐴𝑅𝐶𝐻  (𝑝) =  1
2 𝑇𝐾 𝐾 + 1 − 𝑇𝑡𝑟 Ʃ𝑣𝑒𝑐ℎ

 𝛴0
−1                            (3.64) 

The statistic has asymptotic   𝜒2 (
𝑝𝐾2 𝐾+1 2

4
)    distribution, where 𝑝the lag is order of the 

process, 𝑘 is the number of parameters and 𝑇 is the size of the series. 

3.8.5 Cumulative Sum (CUSUM) Test 

The cumulative sum test by Brown et al., (1975) was used to test for stability of the fitted model 

over time. The focus of this test is the maximal excursion (from zero) of the random walk 

defined by the cumulative sum of adjusted (-1, +1) digits in the sequence. The purpose of the test 

is to determine whether the cumulative sum of the partial sequences occurring in the tested 

sequence is too large or too small relative to the expected behavior of that cumulative sum for 

random sequences. The test statistic is defined as; 

 CUSUM𝜑 =  
𝑞 𝑡

(𝑟)

𝜍 𝑞
                                                                                        (3.65)

𝜑
𝑡=𝑘+1  
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Where𝑞 𝑡
(𝑟)

 are the recursive residuals and 𝜍 𝑞  is the standard error of the regression fitted to all 𝑇 

sample points and 𝜑 = 𝐾 + 1, … , 𝑇. For a structural unstable (random) model, the CUSUM 

wanders off too far from the zero line. A test with a significance level of 5% is obtained by 

rejecting stability if CUSUM𝜏  crosses the lines ±0.948[ 𝑇 − 𝐾 + 2(𝜑 − 𝐾)  𝑇 − 𝐾 ]  

(Ploberger et al., 1989). The CUSUM test is designed basically to detect a non-zero mean of the 

recursive residuals due to shift in the model parameters. 

3.8.6 Granger Causality Test 

The idea behind Granger causality is that, if a time series variable 𝑥 affects another 𝑧, then, 𝑥 

should help improve the prediction of variable z. A stationary time series variable 𝑥𝑡  is Granger 

causal for another stationary time series variable𝑧𝑡 , if past values of 𝑥𝑡have additional power in 

predicting 𝑧𝑡  after controlling for past values of 𝑧𝑡(Gelper and Croux, 2007). If the innovation to 

𝑧𝑡and the innovation to𝑥𝑡  are correlated, then there exist instantaneous causality. Causality may 

be classified as unidirectional, bilateral or independent (Gujurati, 2003). Mathematically, the 

process 𝑥𝑡  is said to Granger cause 𝑧𝑡  if;  

  (𝑧 ℎ/𝛺𝑡) ≤   (𝑧 ℎ/𝛺𝑡  ⃥ {𝑥𝑠| 𝑠 ≤  𝑡})  for at least ℎ = 1, 2, ……     (3.66)          

Where 𝛺𝑡  is the information set containing all the relevant information in the universe available 

up to including𝑡𝑧𝑡(ℎ/𝛺𝑡)is the optimal ℎ −step forecast of the process zt  at origin 𝑡base on the 

information in𝛺𝑡 .  (𝑧 ℎ/𝛺𝑡)is the forecast Mean Square Error (MSE) and (𝛺𝑡  ⃥ {𝑥𝑠| 𝑠 ≤  𝑡})is 

the set containing all relevant information in the universe except  the information of past and 

present values of the 𝑥𝑡  process. This implies that, with respect to 𝑥𝑡 , the variance of the optimal 

linear predictor of 𝑧𝑡+ℎbased on 𝑥𝑡 is smaller than the variance of the optimal linear predictor of 

𝑧𝑡+ℎbased on 𝑧𝑡 ,, 𝑧𝑡−1, … .. alone (Lukepohl, 2005). 
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3.8.7 Impulse Response Function (IRF) Analysis 

The Granger causality test introduced is quite useful to infer whether a time series variable helps 

predict another one. However, these analyses fall short of quantifying the impact of the impulse 

time series variable on the response variable over time. The impulse response analysis is used to 

investigate these kinds of dynamic interactions between the endogenous time series variables and 

is based upon the Wold‟s moving average representation of a VAR (p) process. IRF enables us to 

determine the response of one time series variable to an impulse or a shock in another time series 

variable in the system that involves a number of further variables as well. If there is a reaction of 

one time series variable to an impulse in another variable, then the latter is causal for the former. 

However, the effect of a unit shock in any of the variables dies away quite rapidly due to stability 

of the system. The Wold representation is based on the orthogonal errors ηt  given by;  

 𝑅𝑡 = 𝜇 + 𝛩0𝜂𝑡 + 𝛩1𝜂𝑡−1 + 𝛩2𝜂𝑡−2+. ..                                                            (3.67) 

where𝛩0is a lower triangular matrix. The impulse responses to the orthogonal shocks 𝜂𝑗𝑡 are; 

 
𝜕𝑅𝑖 ,𝑡+𝑠

𝜕𝜂𝑗 ,𝑡
=

𝜕𝑅𝑖 ,𝑡

𝜕𝜂𝑗 ,𝑡−𝑠
= 𝛩𝑖𝑗

𝑠    𝑖, 𝑗 = 1,2, … , 𝑘, 𝑠 > 0                                                  (3.68) 

where𝛩𝑖𝑗
𝑠  is the  𝑖, 𝑗 𝑡ℎ element of 𝛩0. For𝑘 variables there are 𝑘2 possible IRF. 

3.8.8 Forecast Error Variance Decomposition (FEVD) Analysis 

The forecast error variance decomposition tells us the proportion of the movements in a sequence 

due to its "own" shocks versus shocks to the other variable. The FEVD was used in this research 

to determine the contribution of the 𝑗𝑡ℎ  variable to the h-step forecast error variance of the 

𝑖𝑡ℎvariable. If the  𝑗𝑡ℎ  variable shocks explain none of the forecast error variance of the 

𝑖𝑡ℎvariable at all forecast horizons, then the 𝑖𝑡ℎsequence is exogenous. Also, if the 𝑗𝑡ℎ  variable 
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shocks could explain all of the forecast error variance in the 𝑖𝑡ℎ  sequence at all forecast horizons, 

then the 𝑖𝑡ℎ  variable would be entirely endogenous. The FEVD is given as; 

 𝐹𝐸𝑉𝐷𝑖 ,𝑗  ℎ =
𝜍𝜂𝑗

2  (𝛩𝑖𝑗
𝑠 )2ℎ−1

𝑠=0

𝜍𝜂1
2  (𝛩𝑖1

𝑠 )2ℎ−1
𝑠=0 +...+𝜍𝜂𝑘

2  (𝛩𝑖𝑘
𝑠 )2ℎ−1

𝑠=0
    𝑖, 𝑗 = 1, 2, … , 𝑘                  (3.69) 

where 𝜍𝜂𝑗

2  is the variance of 𝜂𝑗𝑡 . A VAR (p) process with 𝑘  variables will have 𝑘2𝐹𝐸𝑉𝐷𝑖 ,𝑗  ℎ  

values. 

 

 

3.9 Conclusion 

The chapter carefully presented statistical techniques that were employed in this study in a 

comprehensive manner.  
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CHAPTER FOUR 

ANALYSIS AND DISCUSSION OF RESULTS 

4.0 Introduction 

This chapter deals with the analysis and discussion of the results obtained from the study. The 

chapter is sub-divided into three main headings namely; preliminary analysis, further analysis 

and discussion of results.  

4.1 Preliminary Analysis 

This section explains the descriptive statistics of the data on the returns of Rice, Maize and 

Millet. The maximum and minimum values of the Rice returns for the entire study period were 

4.575 and -4.549 respectively. For the Maize returns, the maximum and minimum values were 

2.400 and -2.885 respectively. Also, the maximum value for the Millet returns was 4.408 and 

that of the minimum was -4.438. Moreover, the average returns of Rice, Maize and Millet were 

0.016, 0.001 and 0.020 respectively. The coefficients of variation for the returns of Rice, Maize 

and Millet were 3194.66, 33193.89 and 2869.75 respectively indicating that there is a greater 

variability among the returns of Maize compared to that of Rice and Millet. Furthermore, the 

returns of Rice, Maize and Millet for the entire period were all found to be negatively skewed 

and platykurtic in nature as shown in Table 4.1. 
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Table 4.1: Descriptive Statistics for the returns of Rice, Maize and Millet 

Variable Mean CV Minimum Maximum Skewness Kurtosis 

Rice 0.016 3194.660 -4.549 4.575 -0.020 70.080 

Maize 0.001 33193.890 -2.885 2.400 -1.470 19.370 

Millet 0.020 2069.750 -4.438 4.400 -0.090 46.090 

 

Table 4.2 displays the monthly descriptive statistics for the returns of rice. It was revealed from 

Table 4.2 that the maximum returns of rice occurred in May, while the minimum value was 

recorded in April. Also, the coefficient of variation (CV) revealed that the largest variability 

occurred in August and the highest average returns occurred in May. Again, it was observed that 

Rice returns were positively skewed for the months of March, May, June, July, September and 

December while it was negatively skewed for the month of April, August, October and 

November. Moreover, for the Rice returns, the months of March, May, June, July, September 

and December were found to be platykurtic while that of April, August, October and November 

were leptokurtic in nature. 
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Table 4.2: Monthly descriptive statistics of Rice returns 

Month Mean CV Minimum Maximum Skewness Kurtosis 

March 0.047 299.110 -0.092 0.344 1.400 0.880 

April -0.309 -396.240 -4.549 0.098 -3.690 13.700 

May 0.349 352.580 -0.395 4.575 3.600 13.250 

June 0.123 107.810 0.000 0.526 2.310 6.810 

July -0.010 -754.920 -0.120 0.122 0.100 -0.930 

August 0.005 3406.740 -0.344 0.271 -0.160 0.780 

September 0.079 158.360 -0.154 0.356 0.300 1.170 

October 0.010 1476.310 -0.319 0.240 -1.150 1.830 

November -0.038 -460.370 -0.453 0.197 -0.860 1.030 

December -0.049 -243.860 -0.309 0.239 0.360 3.700 

 

Studies on the monthly returns of maize revealed that the maximum and minimum returns 

occurred in March and October respectively. Also, the highest average returns occurred in 

December and the coefficient of variation (CV) revealed that the largest variability in the returns 

occurred in November. Moreover, the Maize returns were found to be positively skewed for the 

months of May, June, August, March and December but negatively skewed for the months of, 

April, July, September, October and November. Again, it was observed that the Maize returns 

were platykurtic in nature for all the months except March, April, July, September and October 

as shown in Tables 4.3. 
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Table 4.3: Monthly descriptive statistics of Maize returns 

Month Mean CV Minimum Maximum Skewness Kurtosis 

March 0.026 -676.360 -2.028 2.400 0.270 12.870 

April 0.040 311.870 -0.282 0.258 -1.120 3.000 

May 0.104 76.780 0.124 0.271 0.780 -0.310 

June 0.054 250.030 -0.219 0.310 0.180 0.540 

July -0.005 -2909.540 -0.384 0.263 -0.820 1.770 

August 0.064 838.210 -0.437 1.848 3.180 11.120 

September -0.126 -609.270 -2.065 1.809 -0.010 6.020 

October -0.210 -370.710 -2.885 0.274 -3.580 13.140 

November -0.804 3464.500 -2.202 0.358 -3.510 6.040 

December 0.108 99.770 -0.030 0.364 1.290 1.660 

 

The monthly descriptive statistics for the returns of Millet is shown in Table 4.4. It was revealed 

from Table 4.4 that the highest average returns of Milletoccurred in June. Also, in terms of the 

minimum and maximum returns of millet, the month of May recorded the minimum returns and 

the month of June had the maximum returns.The coefficient of variation (CV) revealed that the 

largest variability in the returns occurred in October. Again, the months of March, April, June, 

August and December were observed to be positively skewed whiles May, July, September, 

October and November were observed to be negatively skewed for the Millet returns. Finally, the 

months of March, April, June, August and December were all platykurtic in nature whereas the 

rest were leptokurtic for the returns of Millet as shown in Table 4.4. 
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Table 4.4: Monthly descriptive statistics of Millet returns 

Month Mean CV Minimum Maximum Skewness Kurtosis 

March 0.017 489.400 -0.107 0.156 0.330 -1.160 

April 0.046 172.180 -0.050 0.242 1.510 1.950 

May -0.239 -505.950 -4.438 0.175 -3.730 13.920 

June 0.416 280.180 -0.114 4.408 3.580 13.080 

July -0.027 -987.310 -0.826 0.276 -2.240 5.980 

August 0.217 294.280 -0.302 3.329 3.160 10.830 

September -0.146 -415.650 -2.172 0.302 -3.250 11.230 

October 0.008 1412.470 -0.291 0.199 -1.000 3.420 

November 0.025 436.860 -0.218 0.212 -0.340 0.780 

December -0.805 -131.800 -0.262 0.133 0.370 -0.070 

  

Figure 4.1 displays the time series plots for the returns of the cereals.  From the plot it was 

evident that the returns of the cereals fluctuates about a fixed point. This is an indication of 

stationarity in the returns of the cereals. 
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Figure 4.1: Time series plot of the returns of Rice, Maize and Millet 
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4.2 Further Analysis 

4.2.1 Test for Unit Roots 

A visual inspection of the ACF plot of the returns of Rice showed a rapid decay in the series 

suggesting stationarity of the series. The PACF plot also revealed very dominant significant 

spikes at lags 1, 2 and 3 as shown in Figures 4.2. 

 

Figure 4.2: ACF and PACF plots of Rice returns 

 

Also, Figure 4.3 shows the ACF and the PACF plots of the returns of maize. A visual 

observation of these plots indicates that both the ACF and the PACF decays fast and dies out 

after lag 1 and lag 3 respectively suggesting that the series is stationary. 
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Figure 4.3: ACF and PACF plots of the returns of Maize 

 

The ACF and the PACF of the returns of millet is shown in Figure 4.4 below. The ACF dies out 

after lag 1 and that of the PACF dies out after lag 4. The rapid decay in both plots indicates that 

the series is stationary. 

 

Figure 4.4: ACF and PACF plots of the returns of Millet 
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The KPSS and ADF test were carried out to further confirm the stationarity of the three series. 

From Tables 4.5, the KPSS test revealed that the returns of the three cereals were all stationary. 

Table 4.5: KPSS test for the returns of Rice, Maize and Millet 

Cereal Test Statistic Critical Value 

Rice 0.026 0.464 

Maize 0.051 0.464 

Millet 0.032 0.464 

 

Furthermore, an ADF test was performed with only a constant term and a constant with a trend. 

This affirmed the absence of unit root in the three series since in all cases, the p-values were less 

than the 0.05 level of significance as illustrated in Tables 4.6. 

Table 4.6: ADF test for the returns of Rice, Maize and Millet 

Cereal 

 

Constant 

 

Constant + Trend 

 

 

Test Statistic P-value Test Statistic 

 

P-value 

 Rice -10.203 

 

0.000 -10.172 

 

0.000 

Maize -9.713  0.000 -9.693  0.000 

Millet -9.909  0.000 -9.883  0.000 
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4.2.2 Fitting an ARIMA Model for Maize returns 

The various tentative models identified for Maize returns are shown in Table 4.7. Among these 

possible models ARIMA (1, 0, 1) was chosen as the appropriate model that fit the data well 

because it has the minimum values of AIC, AICc and BIC compared to other models. 

Table 4.7: Tentative ARIMA models for Maize 

Model AIC BIC AICc 

ARIMA(1, 0, 1) 183.460* 192.770* 183.600* 

ARIMA(1, 0, 2) 185.450 197.880 185.700 

ARIMA(1, 0, 3) 187.450 202.980 187.830 

*: Means best based on the selection criteria 

Table 4.8 displays the parameter estimates of the ARIMA (1, 0, 1) model. Observing the p-

values of the parameters of the model, it can be seen that both the Autoregressive and Moving 

Average components were highly significant at the 5% level. The model appears to be the best 

model among the proposed models. 

Table 4.8: Estimates of parameters for ARIMA (1, 0, 1) 

Variable Coefficient Standard Error Z-Statistic P-Value 

𝜙 0.334 0.095 3.529 0.000* 

𝜃 -0.890 0.047 -19.120 0.000* 

 

The estimated ARIMA (1, 0, 1) model for the returns of maize is given by; 

𝑌𝑡 = 0.334𝑌𝑡 + 𝜀𝑡 − 0.890𝜀𝑡−1                             (4.1) 
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To ensure that, the fitted ARIMA (1, 0, 1) model is adequate, both the Ljung-Box and ARCH-

LM tests were performed. The Ljung-Box test as shown in Table 4.9revealed that, the residuals 

of the model were free from serial correlation at lags 12, 24, 36, and 48 since the p-values of test 

statistic exceeds the 5% significance level at all these lags. This indicates that the mean of the 

residuals of the model were finite. Further, the ARCH-LM test also shown in Table 4.9 revealed 

that, the residuals of the model was free from conditional heteroscedasticity, since the ARCH-

LM test fails to reject the null hypothesis of no ARCH effect in the residuals of the equation at 

the 5% significance level. This shows that the residuals of the models were uncorrelated, thus 

have zero mean and have a constant variance over time; hence are white noise series. 

Table 4.9: Ljung-Box Test and ARCH-LM Test of ARIMA (1, 0, 1) Model for Maize 

returns 

  

Ljung-Box Test ARCH-LM Test 

Model Lag Test-Statistic P-Value Test-Statistic P-Value 

ARIMA(1, 0, 1) 12 1.301 1.000 6.751 0.874 

ARIMA(1, 0, 1) 24 9.800 0.995 7.984 0.999 

ARIMA(1, 0, 1) 36 16.489 0.998 12.713 1.000 

ARIMA(1, 0, 1) 48 26.650 0.995 6.470 1.000 

 

4.2.3 Fitting an ARIMA Model for Rice returns 

Taking the lower significant lags of both the ACF and PACF, a number of possible ARIMA 

models were identified for the returns of Rice. Comparing the AIC, AICc and BIC values of the 

various candidate models shown in Table 4.10, ARIMA (1, 0, 1) emerged as the best model. 

 

www.udsspace.uds.edu.gh 

 

 



65 
 

 

Table 4.10: Tentative ARIMA models for Rice 

Model AIC BIC AICc 

ARIMA(1, 0 ,1) 185.140* 194.640* 185.290* 

ARIMA(1, 0, 2) 187.060 199.490 187.310 

ARIMA(1, 0, 3) 188.980 204.510 189.360 

*: Means best based on the selection criteria 

Table 4.11 displays the parameter estimates of the selected model. From Table 4.11, it was 

observed that the p-value of the Moving Average (MA) component was highly significant but 

that of the Autoregressive (AR) component was not at the 5% level of significance. Therefore the 

AR component was dropped and a reduced model, ARIMA (0, 0, 1) was then fitted. The 

parameter estimate of the reduced model is shown in Table 4.12. The reduced model was 

therefore considered as the best model since it has the least values of AIC, AICc and BIC 

compared to that of the full model.  

Table 4.11: Estimates of parameters for ARIMA (1, 0, 1) for Rice returns 

Variable Coefficient Standard Error Z-Statistic P-Value 

𝜙 -0.004 0.103 -0.036 0.9713 

𝜃 -0.755 0.069 -11.023 0.000* 

 

Table 4.12: Estimates of parameters for ARIMA (0, 0, 1) for Rice returns 

Variable Coefficient Standard Error Z-Statistic P-Value 

𝜃 -0.757 0.052 -14.65 0.000 

AIC = 183.15 AICc = 183.22 BIC = 189.36 
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The estimated ARMA (0, 0, 1) model for the returns of rice is given by; 

𝑌𝑡 =  𝜀𝑡 − 0.757𝜀𝑡−1                                               (4.2) 

To justify the adequacy of the reduced model, both the Ljung-Box test and ARCH-LM test were 

performed. The Ljung-Box test result as shown in Table 4.13revealed that, the residuals of the 

reduced model was free from serial correlation at all the lags since the p-values of the test 

statistic exceeds the 5% significance level. This indicates that the mean of the residuals of the 

reduced model were finite. Also the ARCH-LM test result shown in Table 4.13, failed to reject 

the null hypothesis of no ARCH effect in the residuals of the reduced model at the 5% 

significance level. 

Table 4.13: Ljung-Box Test and ARCH-LM Test of ARIMA (0, 0, 1) Model for Rice 

returns 

  

Ljung-Box Test ARCH-LM Test 

Model Lag Test-Statistic P-Value Test-Statistic P-Value 

ARIMA(0, 0, 1) 12 1.993 0.999 0.535 1.000 

ARIMA(0, 0, 1) 24 10.844 0.990 0.593 1.000 

ARIMA(0, 0, 1) 36 14.428 1.000 0.720 1.000 

ARIMA(0, 0, 1) 48 18.558 1.000 1.006 1.000 

 

4.2.4 Fitting an ARIMA Model for Millet returns 

The lower significant lags of the ACF and PACF plots of the Millet returns were used to fit 

tentative ARIMA models shown in Table 4.14. It was observed that ARIMA (1, 0, 1) had the 

least AIC, AICc and BIC values and hence was considered as the best model. 
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Table 4.14: Tentative ARIMA models for Millet returns 

 

 

 

 

 

*: Means best based on the selection criteria 

It was observed from Table 4.15 that the p-value of the Moving Average components was highly 

significant at the 5% level of significance but that of the Autoregressive component was not. 

Therefore the AR component was dropped and a reduced model, ARIMA (0, 0, 1) was then 

fitted. The parameter estimate of the reduced model is shown in Table 4.16. The reduced model 

was therefore considered as the best model since it has the least values of AIC, AICc and BIC 

compared to that of the full model.  

Table 4.15: Estimates of parameters for ARIMA (1, 0, 1) for Millet returns 

Variable Coefficient Standard Error Z-Statistic P-Value 

𝜙 -0.009 0.114 -0.081 0.935 

𝜃 -0.680 0.084 -8.120 0.000* 

 

Table 4.16: Estimates of parameters for ARIMA (0, 0, 1) for Millet returns 

Variable Coefficient Standard Error Z-Statistic P-Value 

𝜃 -0.685 0.057 -11.990 0.000 

Model AIC BIC AICc 

ARIMA(1 ,0, 1) 223.800* 233.120* 233.950* 

ARIMA(1, 0, 2) 225.500 237.920 225.750 

ARIMA(1, 0, 3) 227.320 242.850 227.700 

ARIMA(1, 0, 4) 227.390 246.020 227.920 
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AIC = 221.8 AICc = 221.88 BIC = 228.02 

   

The estimated MA (0, 0, 1) model for the returns of millet is given by; 

𝑌𝑡 =  𝜀𝑡 − 0.685𝜀𝑡−1                                                   (4.3) 

The Ljung-Box test and ARCH-LM test were carried out to determine the adequacy of the 

reduced model. The Ljung-Box statistic in Table 4.17 clearly shows that the p-values of the test 

statistic exceed the 5% level of significance for all lag orders which implies that there is no 

significant departure from white noise for the residuals. Further the ARCH-LM test results in 

Table 4.17 showed that there is no ARCH effect in the residuals of the selected model. 

Table 4.17:Ljung-Box Test and ARCH-LM Test of ARIMA (0, 0, 1) Model for Millet 

returns 

 

  

Ljung-Box Test ARCH-LM Test 

Model Lag Test-Statistic P-Value Test-Statistic P-Value 

ARIMA(0, 0, 1) 12 2.920 0.996 1.847 1.000 

ARIMA(0, 0, 1) 24 10.628 0.991 1.840 1.000 

ARIMA(0, 0, 1) 36 13.431 1.000 1.994 1.000 

ARIMA(0, 0, 1) 48 15.570 1.000 2.488 1.000 

 

4.2.5 Fitting an ARIMA-GARCH Model to the Cereals 

In this section we developed ARMA (p, q) – GARCH (m, s) models for the Cereals. Before 

developing the models, we identified various GARCH models for the Cereals. Table 4.18 
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displays the tentative GARCH model for Rice. From the results, GARCH (1, 0) appears to be the 

best since it has the least AIC and BIC values. 

 

Table 4.18: Tentative GARCH models for Rice 

Model AIC BIC 

GARCH (1, 0) -1.080* -1.004* 

GARCH (1, 2) -1.070 -0.976 

GARCH (1, 3) -1.058 -0.945 

*: Means best based on the selection criteria 

The GARCH (1, 0) model was then concatenated with ARIMA (1, 0, 1) model to form a 

composite model for the rice returns. The estimates for ARIMA (0, 0, 1)-GARCH (1, 0) model is 

shown in Table 4.19. Clearly from Table4.19, all the parameters were significant for both the 

mean equation and the variance equation at the 5% level of significance. Also, the conditional 

volatility as well as the half-life volatility of the returns of rice were computed in Table 4.19. The 

ARIMA (0, 0, 1)-GARCH (1, 0) model was diagnosed using Ljung-Box test and the ARCH-LM 

test at lag 20. Clearly, the tests results indicates that there was no serial correlation in the 

residuals of the model. The calculated ARCH-LM test statistic revealed that there was no ARCH 

effect, justifying the adequacy of the ARIMA (0, 0, 1)-GARCH (1, 0)   model. 

.    
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Table 4.19: Estimate of the parameters of ARMA (0, 1)-GARCH (1, 0) model for rice 

Mean Equation 

Parameters Estimates Std. Error T-statistic Probability 

𝜇 0.013 0.005 2.695 0.007 

𝜃 -0.322 0.079 -4.083 0.000 

Variance Equation 

Parameters Estimates Std. Error T-statistic Probability 

𝜔 0.016 0.007 0.218 0.027 

𝛼1 0.735 0.488 0.048 0.041 

Ljung -Box t-statistic 3.725 ARCH-LM           0.147 

Probability 

 

1.000 Probability            1.000 

Volatility 

 

0.004 Half-life volatility  3.251 

 

TheARIMA (0, 0, 1) – GARCH (1, 0) model for the returns of rice is given by; 

𝑟𝑡 = 0.0134 − 0.3221𝑟𝑡−1 + 𝑎𝑡 ,                                                      (4.4) 

𝜍𝑡
2 = 0.0161 + 0.7345𝑎𝑡−1

2                                                                  (4.5) 

Also, a number of possible GARCH models were identified for the returns of Millet. Comparing 

the AIC and BIC values of the various competing models shown in Table 4.20, GARCH (1, 0) 

emerged as the best model. 
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Table 4.20: Tentative GARCH models for Millet 

Model AIC BIC 

GARCH (1, 0) -0.947* -0.855* 

GARCH (1, 2) -0.941 -0.846 

GARCH (1, 3) -0.930 -0.834 

*: Means best based on the selection criteria 

A composite model was developed for the ARIMA (0, 0,1) and GARCH (1, 0) model for the 

millet returns.Table 4.21 displays the parameter estimates of the ARIMA (0, 0, 1)-GARCH (1, 0) 

model for millet returns. Observing the p-values of the parameters of both the mean equation and 

the variance equation, it can be seen that all the parameters were highly significant at the 5% 

level. For adequacy of the fitted model, the Ljung-Box and ARCH-LM test were performed on 

the residuals of the model at lag 20 to check the presence of ARCH effect in the residuals. The 

results revealed that both the mean equation and the variance equation has no serial correlation in 

the residuals of the model. The ARCH-LM test statistic also revealed that there was no ARCH 

effect, affirming the adequacy of the ARMA (0, 1) – GARCH (1, 0) model. The conditional 

volatility and the half-life volatility of the returns were also calculated as shown in Table 4.21. 
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Table 4.21: Estimate of the parameters of ARMA (0, 1)-GARCH (1, 0) model for millet 

Parameters Estimates Std. Error T-statistic Probability 

𝜇 0.020 0.007 2.643 0.008 

𝜃 -0.064 0.040 -1.614 0.016 

Variance Equation 

Parameters Estimates Std. Error T-statistic Probability 

𝜔 0.023 0.011 2.024 0.043 

𝛼1 0.675 0.472 2.119 0.000 

Ljung -Box t-statistic 9.178 ARCH-LM           2.790 

Probability 

 

0.981 Probability            1.000 

Volatility 

 

0.005 Half-life volatility  2.764 

 

TheARIMA (0, 0, 1) – GARCH (1, 0) model for the returns of millet is given by; 

𝑟𝑡 = 0.0194 − 0.0642𝑟𝑡−1 + 𝑎𝑡 ,                                                            (4.6) 

𝜍𝑡
2 = 0.0232 + 0.6751𝑎𝑡−1

2                                                                       (4.7) 

Further, Table 4.22 shows the tentative GARCH model for the returns of Maize. From the 

results, GARCH (1, 0) has the least AIC and BIC and for that matter it was considered to be the 

best model.   
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Table 4.22: Tentative GARCH models for Maize 

Model AIC BIC 

GARCH (1, 0) -0.417* -0.342* 

GARCH (1, 2) -0.367 -0.272 

GARCH (1, 3) -0.401 -0.288 

*: Means best based on the selection criteria 

The GARCH (1, 0) model was then combined with ARIMA (1, 0, 1) model to form a composite 

model for the maize returns. Table 4.23 shows the parameter estimates of ARIMA (1, 0, 1) – 

GARCH (1, 0) model for maize returns. From the results all the parameters were significant for 

both the mean equation and the variance equation at the 5% level of significance.The adequacy 

of the fitted model was investigated using theLjung-Box and ARCH-LM test at lag 20. The 

results revealed that the residuals of the ARIMA (1, 0, 1) – GARCH (1, 0) model were free from 

serial correlation and conditional heteroscedasticity as the p-value of the test statistic was 

insignificant at the 5% significance level. The conditional volatility as well as the half-life 

volatility of the returns of maize were computed as shown in Table 4.23. 
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Table 4.23: Estimate of the parameters of ARMA (1, 1)-GARCH (1, 0) for maize returns 

 

 

 

 

 

 

 

 

 

 

 

TheARIMA (1, 0, 1) – GARCH (1, 0) model for the returns of maize is given by; 

𝑟𝑡 = 0.014 − 0.110𝑟𝑡−1 + 0.110𝑎𝑡−1 + 𝑎𝑡 ,                                                 (4.8) 

𝜍𝑡
2 = 0.045 + 0.198𝑎𝑡−1

2                                                                                     (4.9) 

 

 

 

 

 

 

Mean Equation 

Parameters Estimates Std. Error T-statistic Probability 

𝜇 0.014 0.006 2.355 0.019 

𝜙1 -0.110 0.009 -1.141 0.000 

𝜃1 0.110 0.031 3.668 0.000 

Variance Equation 

Parameters Estimates Std.Error T-statistic Probability 

𝜔 0.045 0.008 5.313 0.000 

𝛼1 0.198 0.137 1.446 0.000 

Ljung -Box t-statistic 3.677 ARCH-LM             0.287 

Probability 

 

1.000 Probability             1.000 

Volatility 

 

0.003 Half-life volatility  1.428 
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4.2.6 Fitting a VAR Model 

The dynamic relationship among the returns of rice, maize and millet were studied by fitting 

Vector Autoregressive (VAR) model. To determine the optimal maximum lag order, p to be 

included in fitting the VAR model, three lag order selection criteria were used. The results 

shown in Table 4.24, revealed that, the AIC selected lag three (3) but BIC and HQIC selected lag 

two (2). 

Table 4.24: lag Order Selection for Fitting VAR Model 

Lag AIC BIC HQIC 

1 2.995 3.172 3.067 

2 2.759 3.112* 2.902* 

3 2.717* 3.247 2.932 

4 2.790 3.497 3.077 

5 2.856 3.740 3.215 

6 2.934 3.995 3.365 

7 3.011 4.248 3.514 

8 3.083 4.496 3.657 

9 3.109 4.700 3.755 

10 3.121 4.888 3.838 

*: Means best based on model selection criteria 

Both VAR (2) and VAR (3) models were fitted to the series, and the Likelihood Ratio Test 

(LRT) was used to select the best model for investigating the dynamic relationship. From Table 

4.25, the significant likelihood ratio test statistic revealed that the VAR (3) was best for 

modeling the dynamic relationship. 
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Table 4.25: Model Selection Criteria 

 

 

 

 

 

*: Means best based on model selection criteria 

**: significant at the 5% significance level 

A VAR (3) model was then fitted to examine the dynamic relationship among the returns of rice, 

maize and millet.The results in Table 4.26 revealed that, lag 1and 2 of rice returns were useful 

predictors of itself at the 5% significance level. Also, lag 3 of millet returns was a useful 

predictor of rice returns. However, lag 3 of rice and lag 1, 2 and 3of maize were not statistically 

significant at the 5% significance level in predicting the returns of rice. Lag 1, 2 and 3 of maize 

returns were statistically useful predictors of itself. While lag 1, 2 and 3 of both rice and millet 

were not useful predictors of the returns of maize. It was also seen that, lag 1and 2 of millet 

returns were useful predictors of itself at the 5% significance level. Whereas lag 1, 2 and 3 of 

rice returns were statistically significant at the 5% significance level in predicting the returns of 

millet, lag 3 of millet and lag 1, 2 and 3 of maize were not statistically significant at the 5% 

significance level in predicting the returns of millet.  

 

 

 

Model AIC BIC HQIC 

VAR (2) 2.672 3.015* 2.811* 

VAR (3) 2.632* 3.146 2.841 

Likelihood Ratio Test Statistic = 24.48 P-value =0.004** 
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Table 4.26: Parameter estimates of VAR (3) Model 

Equation Variable Coefficient Std. Error t- ratio P-value 

Rice Rice.L1 -0.731 0.079 -9.274 0.000* 

 

Rice.L2 -0.498 0.146 -3.406 0.001* 

 

Rice.L3 -2.209 0.139 -1.504 0.135 

 

Maize.L1 0.056 0.082 0.683 0.496 

 

Maize.L2 0.069 0.086 0.801 0.424 

 

Maize.L3 0.098 0.077 1.286 0.201 

 

Millet.L1 -0.011 0.125 -0.088 0.930 

 

Millet.L2 -0.141 0.130 -1.088 0.278 

 

Millet.L3 -0.149 0.071 -2.087 0.039* 

      Maize Rice.L1 -0.069 0.077 -0.905 0.367 

 

Rice.L2 -0.082 0.143 -0.578 0.564 

 

Rice.L3 -0.063 0.135 -0.466 0.642 

 

Maize.L1 0.442 0.080 -5.548 0.000* 

 

Maize.L2 0.314 0.084 -3.762 0.000* 

 

Maize.L3 0.180 0.075 -0.420 0.017* 

 

Millet.L1 0.032 0.122 0.261 0.794 

 

Millet.L2 0.006 0.126 0.046 0.963 

 

Millet.L3 -0.036 0.069 -0.516 0.607 

      Millet Rice.L1 0.926 0.050 18.655 0.000* 

 

Rice.L2 0.579 0.092 6.285 0.000* 

 

Rice.L3 0.254 0.088 2.902 0.004* 

 

Maize.L1 0.053 0.052 1.033 0.303 

 

Maize.L2 0.013 0.054 -0.242 0.809 

 

Maize.L3 0.010 0.048 0.206 0.837 

 

Millet.L1 -0.597 0.079 -7.569 0.000* 

 

Millet.L2 -0.240 0.082 -2.935 0.003* 

 

Millet.L3 -0.031 0.045 -0.701 0.485 

AIC = 2.632    BIC = 3.146   HQIC = 2.841    Log-Likelihood = -186.148 

 

*:Means significant at the 5% significance level 
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The estimated VAR (3) model without an intercept is given by; 

 

𝑅𝑖𝑐𝑒𝑡

𝑀𝑎𝑖𝑧𝑒𝑡

𝑀𝑖𝑙𝑙𝑒𝑡𝑡

 =   
−0.731 0.056 −0.011
−0.069 0.442 0.032
0.926 0.053 −0.597

  

𝑅𝑖𝑐𝑒𝑡−1

𝑀𝑎𝑖𝑧𝑒𝑡−1

𝑀𝑖𝑙𝑙𝑒𝑡𝑡−1

 

+   
−0.498 0.069 −0.141
−0.082 0.314 0.006
0.579 0.013 −0.240

  

𝑅𝑖𝑐𝑒𝑡−2

𝑀𝑎𝑖𝑧𝑒𝑡−2

𝑀𝑖𝑙𝑙𝑒𝑡𝑡−2

 

+   
−2.209 0.098 −0.149
−0.063 0.180 −0.036
0.254 0.010 −0.031

  

𝑅𝑖𝑐𝑒𝑡−3

𝑀𝑎𝑖𝑧𝑒𝑡−3

𝑀𝑖𝑙𝑙𝑒𝑡𝑡−3

 +  

𝑢1𝑡

𝑢2𝑡

𝑢3𝑡

                            (4.10) 

Table 4.27 shows additional information about each individual equation. It was clear that each 

individual time series model fitted for the returns of rice, maize and millet was statistically 

significant at the 5% significance level as indicated by the F-statistic. 

Table 4.27: Test for Significance of the Equations of the VAR (3) Model 

 

 

 

 

 

 

*: Means significant at the 5% significance level 

The stability of the VAR (3) model was also investigated. From Table 4.28, the results revealed 

that the parameters of the VAR (3) model were structurally stable over time as all the eigen-

values of the parameters have modulus less than one (1). This affirms that the series used in 

fitting the VAR model were weakly stationary as required in fitting a VAR model. 

Equation F-statistic P-value 

Rice 9.885 0.000* 

Maize 3.933 0.000* 

Millet 63.315 0.000* 
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Table 4.28: VAR (3) Model Stability test 

Eigen values Modulus 

0.1600388 + 0.6341251i 0.654008 

0.1600388 - 0.6341251i 0.654008 

-0.55128   + 0.2715227i 0.614519 

-0.55128   - 0.2715227i 0.614519 

0.3553569 + 0.6125116i 0.613542 

0.3553568 - 0.6125116i 0.613542 

-0.2651747 + 0.4600057i 0.530964 

-0.2651747 – 0.4600057i 0.530964 

 -0.5278848  0.527885 

 

The stability of the VAR (3) model was further investigated using the CUSUM test. From Figure 

4.5, the CUSUM plot of the residuals of each model falls within the 95% confidence limit 

indicating that, their individual residual mean are not significantly different from zero and have 

constant variance.  This affirms that the parameters of each model were structurally stable over 

time. This clearly shows that, the VAR (3) model fitted provides an adequate representation of 

the short run relationship among the returns of rice, maize and millet.  

 

Figure 4.5: CUSUM Plots of the Individual Equations of the VAR (3) Model 
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To ensure that the fitted VAR (3) model is adequate, both univariate and multivariate model 

diagnostic tests were performed. The univariateLjung-Box test and ARCH-LM test as shown in 

Table 4.29 revealed that the individual equations of the VAR (3) model were free from serial 

correlation and conditional heteroscedasticity at lag 12, 24, 36 and 48 respectively since the p-

values of all the test statistics were insignificant at the 5% significance level. This implies that 

the residuals of the models were uncorrelated, thus have zero mean and constant variance over 

time; hence are white noise series. 

Table 4.29: UnivariateLjung-Box Test and ARCH-LM Test 

 

 Ljung Box-Test ARCH-LM Test 

Equation Lag Test-Statistic P-value Test-Statistic P-value 

Rice 12 7.257 0.840 0.819 1.000 

 

24 14.856 0.925 0.828 1.000 

 

36 18.511 0.993 0.936 1.000 

 

48 21.512 1.000 1.205 1.000 

      Maize 12 7.914 0.792 5.808 0.925 

 

24 11.061 0.989 5.514 1.000 

 

36 19.565 0.988 6.992 1.000 

 

48 24.322 0.998 5.609 1.000 

      Millet 12 3.674 0.989 2.625 0.998 

 

24 7.353 1.000 4.779 1.000 

 

36 12.886 1.000 6.574 1.000 

 

48 18.391 1.000 10.528 1.000 

 

The adequacy of the overall VAR (3) model was also investigated using the multivariate Ljung-

Box and ARCH-LM test as shown in Table 4.30. The results revealed that the residuals of the 
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VAR (3) model were free from serial correlation and conditional heteroscedasticity as the p-

values of the entire test statistic were insignificant at the 5% significance level. This implies that 

the residuals of the model were uncorrelated and have constant variance.  

Table 4.30: Multivariate Ljung-Box Test and ARCH-LM Test of VAR (3) Model 

 

 

4.2.6.1Causality Analysis 

After the diagnostic tests revealed that the VAR (3) model was adequate, the VAR (3) model 

was used to investigate the Granger causality between the returns of the cereals. Results of the 

Granger causality test as shown in Table 4.31 revealed that, the returns of millet Granger-cause 

the returns of rice but the returns of maize, and its linear combination with millet do not Granger-

cause the returns of rice. This is seen from an insignificant chi-square statistic obtained for the 

individual returns of maize as well as their combination at the 5% significance level. This 

implies that, there is a relationship between the rice returns and millet returns indicating that the 

maize returns cannot improve the prediction in the returns of rice. The results also showed that, 

the returns of rice and millet, individually and their linear combination, do not Granger-cause the 

 

Ljung Box-Test ARCH-LM Test 

Equation Lag Test-Statistic P-value Test-Statistic P-value 

 

12 55.963 0.985 389.722 0.929 

VAR (3) 24 159.345 0.943 828.000 0.806 

 

36 209.767 1.000 756.000 1.000 

 

48 33.873 0.999 684.000 1.000 
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returns of maize as the chi-square statistic obtained for the individual returns as well as their 

combination is insignificant at the 5% significance level. This suggest that, there is no 

relationship between the maize returns and these variables and that returns of these variables 

cannot improve the prediction of price in the returns of maize.  Also, the returns of rice Granger-

cause the returns of millet whiles millet returns does not Granger-cause rice returns, indicating a 

unidirectional causality between these two cereals. The maize returns alone does not Granger-

cause millet returns. However, a linear combination of the returns of rice and maize, together 

Granger-cause millet returns. This implies that, past price of rice and the past prices of the linear 

combination of the returns of rice and maize can improve future prediction of the price of millet 

but past price of maize alone cannot improve prediction of rice returns. 

Table 4.31: Granger Causality Test 

Equations Excluded Chi-Squared Df P-value 

Rice Maize 1.980 3 0.577 

 

Millet 5.033 3 0.016** 

 

All 6.965 6 0.324 

     Maize Rice 0.987 3 0.804 

 

Millet 0.374 3 0.945 

 

All 1.141 6 0.980 

     Millet Rice 368.840 3 0.000** 

 

Maize 1.662 3 0.645 

 

All 369.090 6 0.000** 

 

 

**Means significant at 5% significance level. 

 

4.2.6.2 Impulse Response Function (IRF) Analysis 
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The impulse response function explains how the returns of rice, maize and millet in the model 

interact with each other following a shock in the VAR (3) model. When the response variable 

was rice returns,the rice returns showed a negative reaction in the first period and then a positive 

reaction after the second period until a stable response was obtained after period ten. The maize 

returns caused a negative shock in the first period, a positive shock in the second period, negative 

shock in the third period, a positive shock in the fourth period, a negative shock in period five 

and a positive shock in period seven until a stable response was obtained after the eleventh 

period. The rice returns reacted positively to a shock in the millet returns in the first period 

followed with a negative response in the second period and a positive shock from the third period 

to the sixth period and then a stable response for the rest of the periods.  

For the returns of maize as a response variable, a shock in the returns of rice cause a positive 

reaction in the returns of maize in the first period, a negative reaction in second period, a positive 

reaction in the third period, a negative reaction in the fourth period, a positive reaction in the 

fifth period and a negative reaction from the sixth period to the ninth period and then a stable 

response after period eleven. In the first period, the maize returns showed a positive response to a 

shock in its own values, the second period showed a negative response up to the fifth period and 

then a stable response to its own shocks onwards. Also, the returns of maize showed a negative 

reaction at the first, fourth and seventh period and then a positive reaction at the third, sixth and 

tenth period and stabilizes after period twelfth to a shock in the returns of millet. 

When the response variable was millet returns, a shock in the rice returns caused a negative 

reaction of millet returns in the first two periods, a positive reaction in the third period, a 

negative reaction in the fifth period, a positive reaction in the sixth period until a stable response 

was obtained after the seventh period. Maize returns showed a positive reaction in the first 
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period, a negative response at the second period, a positive reaction between the third and fourth 

periods, a negative reaction at the fifth period and a continues positive reaction from period six 

to period fifteen with a stable response for the rest of the periods. Millet returns showed a 

negative response to a shock in its own values at the first period and both negative and positive 

reactions between period two and period seven and then a stable response to its own shocks 

onwards.  

 

 

Figure 4.6: Plot of Impulse Response Analysis 
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4.2.6.3 Forecast Error Variance Decomposition (FEVD) Analysis 

The variance decomposition was used to determine the proportion of forecast error variance of a 

returns that is explained by itself and by the other endogenous returns in the study. Table 4.32 

gives the variance error decomposition of the returns of rice. It was realised that, much of the 

forecast variance in the returns of rice have been explained by innovations in the returns of rice 

itself. For instance, in the tenth period, about 98.4% of the error variance in the returns of rice is 

explained by innovations in the returns of rice, whiles only about 0.2%, and 1.4% of its error 

variance have been explained by the returns of maize and millet respectively. This affirms the 

results of the VAR (3) model and Granger causality that the returns of maize and millet do not 

contribute significantly to improve future predictions of the returns of rice. 

Table 4.32: Forecast Error Variance Decomposition for rice 

Period  Std. Error Rice Maize Millet 

1 0.419 100.000 0.000 0.000 

2 0.519 99.810 0.186 0.003 

3 0.521 99.414 0.188 0.398 

4 0.521 99.345 0.231 0.424 

5 0.524 98.633 0.614 0.753 

6 0.525 98.389 0.695 0.916 

7 0.525 98.389 0.697 0.915 

8 0.525 98.385 0.701 0.915 

9 0.525 98.370 0.715 0.915 

10 0.525 98.369 0.215 1.415 

 

From the forecast error variance decomposition of the returns of maize in Table 4.33, the returns 

of maize contributes most in forecasting the uncertainty of the maize. At period ten, about 99.4% 

of the error variance in the returns of maize have been explained by innovations in the returns of 

maize, whiles 0.5% and 0.1% of the error variance explained by innovations in the returns of rice 

and millet respectively. The results of maize variance decomposition also agrees with views of 
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the Granger causality test and the estimated VAR (3) model which revealed that, the past prices 

of rice and millet are not the most influencing determinant of the price of maize.  

Table 4.33: Forecast Error Variance Decomposition for maize 

Period  Std. Error Rice Maize Millet 

1 0.408 0.130 99.870 0.000 

2 0.446 0.366 99.599 0.035 

3 0.449 0.456 99.486 0.058 

4 0.449 0.466 99.455 0.079 

5 0.452 0.471 99.392 0.137 

6 0.452 0.475 99.383 0.143 

7 0.452 0.484 99.373 0.143 

8 0.452 0.484 99.373 0.144 

9 0.452 0.484 99.372 0.145 

10 0.452 0.486 99.369 0.145 

 

Finally, Table 4.34 displays the forecast error variance decomposition of the millet. From the 

results, rice returns contributes most in forecasting the uncertainty of millet. For instance, at 

period ten, about 70.2% of the error variance in the returns of the millet have been explained by 

innovations in the returns of rice, whiles about 29.2% of the error variance explained by 

innovations in the millet itself and 0.7% by the maize returns. The results of the millet variance 

decomposition also agrees with views of the Granger causality test and the estimated VAR (3) 

model which revealed that, the past price of rice is the most influencing determinant of the price 

of millet. It also confirms the unidirectional relationship between the returns of rice and that of 

millet.  
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Table 4.34: Forecast Error Variance Decomposition for millet 

 

 

 

 

 

 

 

 

 

4.3 Discussion of Results 

The descriptive statistics of the returns of rice, maize and millet revealed that the returns of the 

cereals were platykurtic in nature compared to the normal distribution.The platykurtic nature of 

the returns of these cereals indicates that the returns are widely distributed around the mean, 

hence low volatilities in these returns over time. The monthly distribution of the returnsof rice 

and millet clearly shows that the highest returns were recorded in the month of May and June 

respectively.This is usually the beginning of the rainy season in the region where the prices of 

the major staples are usually high.It was also shown that the maximum returns of maize was 

recorded in March. This could be attributed to the fact that among the cereals, maize is the most 

consumed staple within the region. Most of the local dishes are prepared using maize. Example 

of these local dishes are; „Twouzaafi‟, „Banku‟, „Kenkey‟, „pouridge‟ just to mention a few. 

Also, majority of the poultry farmers depend on maize as a source of feed for their birds. Again, 

traders usually buy it and store with the intention of making profit in the near future. Due to the 

huge demand for this cereal, its usually shoots up even at the middle of the dry season. 

Period  Std. Error Rice Maize Millet 

1 0.264 0.006 1.240 98.754 

2 0.495 61.571 0.359 38.070 

3 0.566 70.404 0.279 29.3173 

4 0.567 70.277 0.344 29.380 

5 0.567 70.308 0.352 29.340 

6 0.572 70.221 0.607 29.172 

7 0.572 70.123 0.654 29.223 

8 0.572 70.170 0.655 29.175 

9 0.572 70.164 0.663 29.173 

10 0.572 70.152 0.678 29.170 
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The unit root test conducted, showed that all the ACF of the cereals decays fast indicating that 

each of the series is in statistical equilibrium. The KPSS test and the ADF test were performed to 

further confirm the stationarity of each series. The results of both the KPSS test and the ADF test 

revealed that the mean, variance and covariance of each of the series were constant.  

Forecasting is an essential component in time series analysis; hence it was important to forecast 

the returns of the three cereals. This will serve as a guiding tool to the Ministry of Food and 

Agriculture, individuals and farmers in taking decisions regarding the future prices of these 

cereals. Three forecasting models were developed for the returns of rice, maize and millet to help 

in the prediction of the returns. These were ARIMA (0, 0, 1) for the returns of rice, ARIMA (1, 

0, 1) for the returns of maize and ARIMA (0, 0, 1) for the returns of millet. The diagnostic 

checks carried out on these models proved that the models were all adequate for predicting the 

returns of rice, maize and millet in the Northern region of Ghana. 

Also, a number of ARIMA (p, d, q)-GARCH (m, s) models were fitted to the cereals to help in 

calculating the volatility of the cereals. These were ARMA (0, 1)-GARCH (1, 0) for the returns 

of rice, ARIMA (1, 0, 1)-GARCH (1, 0) for the returns of maize and ARIMA (0, 0, 1)-GARCH 

(1, 0) for the returns of millet. Clearly, the diagnostic checks carried out on these models proved 

that the models were all adequate for predicting the volatility of the returns of rice, maize and 

millet in the Northern region of Ghana. The volatility of the returns of rice, maize and millet 

were 0.003, 0.005 and 0.004 respectively. This means that the returns of millet was more volatile 

compared to that of rice and maize. The half-life volatility of the returns of the cereals were also 

examined. The half-life volatility measures the time required for the volatility to move half way 

back towards its unconditional mean (Engle and Patton, 2001). The estimated half-life volatility 

for the returns of rice and millet was approximately three months and that of maize was 

www.udsspace.uds.edu.gh 

 

 



89 
 

approximately one month. This means that any shocks to this volatility takes approximately 3 

months for rice and millet returns and a month for the returns of maize  to return half-way back 

without any further shocks to this volatility. 

 VAR model was fitted to the series. Three model selection criteria were used to determine the 

appropriate order of the VAR model. From the results, the AIC selected lag 3 while the BIC and 

HQIC selected lag 2. Both VAR (3) and VAR (2) model were fitted to the datasets and the 

Likelihood Ratio Test used to select the best model. The results of the LRT revealed that the 

VAR (3) model was the better choice to the datasets, and the parameters of the VAR (3) model 

were estimated. From the results, it was observed that a dynamic relationship exist between the 

returns of rice, maize and millet. The lag 1, 2 and 3 of rice were useful in predicting millet 

returns. Lag 1 and 2 of rice were useful predictors of itself. It was also seen from the results that 

lag 3 of millet was a useful predictor of the returns of rice. The significance of the lag values of 

both the returns of rice and millet in predicting each other affirms the existence of a dynamic 

relationship between the two cereals. Again, maize was only a useful predictor of itself but not 

statistically significant at the 5% significance level in predicting the returns of rice and millet at 

all the lags. This implies that there is a weak relationship between maize returns and the returns 

of rice and millet. In order to make inference with the model, a number of diagnostic techniques 

were performed on the model to determine the adequacy of the model. Both the univariate and 

multivariate Ljung-Box test revealed that the model was free from serial correlation whiles the 

univariate and multivariate ARCH-LM test also revealed that the model was free from 

conditional heteroscedasticity. The stability of the model parameters were also investigated using 

the eigenvalues and CUSUM test. Both test revealed that the model parameters were structurally 
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stable, indicating that the residuals of the individual models in the VAR (3) model have zero 

mean and constant variance. 

The Granger causality test was employed to examine the nature of the relationship between the 

returns of rice, maize and millet. The results revealed that the returns of rice granger cause the 

returns of millet and vice versa, confirming the bilateral relationship between the rice returns and 

millet returns. This implies that if the previous values of rice returns are known, then future 

values of millet returns can be predicted and vice versa.  

Furthermore, an impulse response analysis was employed to examine how the cereals in the 

VAR (3) model will interact following a shock in the VAR (3) model. The results revealed that 

there was a relationship among the returns of these cereals. The FEVD further confirms the 

existence of a relationship among the returns of the cereals. For instance in the tenth period, 

about 29.2% of the forecast uncertainty in millet returns was explained by innovations in the 

returns of millet, whiles about 70.2% of the forecast uncertainties in millet returns have been 

explained by the returns of rice. Again, in the tenth period there turns of rice explained about 

98.4% of the forecast uncertainty in rice returns whiles the returns of millet explained about 

1.4% of the forecast uncertainty in rice returns. 

4.4 Conclusion 

This chapter dealt with the analysis and discussion of the results obtained.  
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

5.0 Introduction 

This chapter dealt with the conclusion and recommendations of the study.  

5.1 Conclusion  

In this study, themonthly returns of rice, maize and millet from March 2000 to December 2013 

were studied. Before fitting models to determine the volatility of these cereals, the monthly 

characteristics of each series were investigated. The investigation revealed that the three series 

were all stationary. The three models developed for modelling the volatility of the three cereals 

were all adequate based on the diagnostic techniques used in this study. The results also revealed 

that the returns of millet was more volatile than that of rice and maize. 

A multivariate time series model was also fitted to examine the dynamic relationship between the 

returns of these three cereals. The diagnostic tests revealed that the VAR (3) model fitted to 

investigate the dynamic relationship between the returns of rice, maize and millet was adequate. 

The VAR (3) model was then used to make inference about the relationship between the returns 

of these cereals. The Granger causality test revealed a bilateral relationship between the returns 

of rice and that of millet whiles the returns of maize is independent of the returns of rice and 

millet. The impulse response analysis and forecast error variance decomposition analysis both 

affirm that there exist a dynamic relationship between the returns of the three cereals. There is 

however the need for continuous monitoring of the performance of these models, review of the 
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returns of these cereals and necessary adjustments are required to make the use of these models 

more realistic. 

5.2 Recommendations 

Based on the outcomes of this research, it is recommended that; 

i. The Ministry of Food and Agriculture as well the Savannah Accelerated 

Development Authority should pay attention to these major cereals to ensure that 

food is secured since they are the major staples in the region. The government should 

also support and encourage farmers to take advantage of the irrigation dams to 

embark on dry season farming of these cereals.  

ii. It is also recommended that further studies should be carried out on the returns of 

these cereals over time to appropriately model the relationship between the returns. 

iii. MoFA and community based NGO‟s should educate farmers on modern storage and 

processing technologies to prolong the shelf life and add value to these cereals, in 

order to stablise  prices. 

iv. Government should subsidies farm inputs such as fertilizer to farmers to encourage 

them to produce more of these cereals locally. It should also expand the agriculture 

credit system to give farmers more credit and loans to expand their farms. 

v. Government should also absorb oil prices from the world market to ease the burden 

on farmers in order to increase their production. 
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