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Abstract 

A modelled split plot experiment involving Completely Randomized Design of the main 

(whole) plots replicated three times was analysed using three statistical software packages 

namely Genstat, SPSS and R. The results were compared in terms of accuracy of output and 

ease of analysis. The data set was also analysed semi-manually to validate the results of the 

software outputs. Genstat and R produced identical result to the semi-manual analysis 

indicating they were correct. SPSS however, produced erroneous test results even when the 

correct linear model was specified. The correct output could however be obtained by 

specifically instructing SPSS on how to carry out the test. This experiment demonstrates the 

need for experimenters to be in charge of every aspect of an experiment from design to analysis 

leaving no part to the whims of statistical software. It also demonstrates that SPSS on its own 

is incapable of producing the correct result based on the linear model for this experiment. SPSS 

and Genstat are menu-driven and may be easier to learn than R which is mostly command based. 

 

INTRODUCTION

Split plot designs are common field 

plot techniques in agriculture and other 

research areas. A Split plot is considered as 

a “generalization of Randomized Complete 

Block designs (RCBD)”  (Montgomery, 

1991) to accommodate treatment 

combinations that are too many to be 

accommodated in conventional RCBDs 

(Gomez & Gomez, 1984) or a special case 

of incomplete block design involving 

several sizes of experimental units 

(Milliken & Johnson, 1996). One 

implementation of Split-plot (for a two 

factor experiment) involves creating a 

number of blocks which are divided into 

plots corresponding to the number of 

treatments in the main plot treatment 

(Factor A); then subdividing each 

experimental unit of Factor A into sub-plots 

corresponding to the number of treatments 

in the subplot treatment (Factor B). 

Treatments of Factor A are randomized at 

the level of the blocks (one block at a time) 

such that each main (whole) plot is allocated 
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only one treatment of Factor A. Factor B is 

also randomized but at the level of the 

whole plots (one whole plot at a time) such 

that one sub-plot in each whole plot is 

allocated one of the treatments of Factor B. 

With respect to Factor B, each experimental 

unit of Factor A becomes a block. A third or 

fourth factor could be added using the same 

procedure and further subdividing the 

subplots. At the end, the experiment 

consists of a hierarchical series of RCBDs, 

each experimental unit serving as a block 

for the sub-plots immediately below it. The 

main plots serve as “sub-plots” for the 

topmost blocks. 

However, this is not the only way to 

implement split-plots. According to Steel & 

Torrie (1980) split-plot designs 

“incorporate one or more of the completely 

randomized, randomized complete block or 

Latin square designs” implying a split-plot 

could start with a CRD rather than an 

RCBD. Split-plots are notorious for lacking 

sufficient degrees of freedom at the main 

plot level and this has led some writers to 

suggest that “precision of the main plots are 

sacrificed for the sub-plots” (Gomez & 

Gomez, 1984). This does not always have 

to be the case. In fact better sensitivity can 

be achieved if we use CRD rather than 

RCBD at the main plot level due to gain in 

degrees of freedom for testing the main 

plots and that improves the sensitivity of the 

experiment.  

When the main plot is CRD, there is a 

mis-match between the main plot design 

and the sub-plot design. While the main-

plot design is CRD, the sub-plot design is 

an RCBD with respect to the experimental 

units of the main plots. This can become a 

source of confusion especially for some 

statistics software programmes and may 

lead to erroneous result. This therefore calls 

for clarity of thinking on the part of the 

experimenter and due process should be 

followed. 

GENSTAT is a general statistical 

package suitable for agricultural field 

experiments. It has both commercial and 

free versions for some countries. It is noted 

for its rigour in statistical approach. SPSS is 

a general statistical package but geared 

towards the social sciences.  It is widely 

used for analysis of agricultural field 

experiments partly because of its ease of use 

and wide availability. R is free software and 

provided without guarantee. It is rigorous in 

its approach but is limited in the provision 

of menu-driven graphical interphase. It is 

therefore largely command base which 

makes it difficult to grasp initially.  

The aim of this paper is therefore to 

compare these three software programmes 

in terms of accuracy in analysing a simple 

split-plot design in which the main plots are 

completely randomized. Accuracy of result 

is the most important criterion although 

ease of use (especially menu-driven 

interphase) is also a criterion. 

 

MATERIALS AND METHODS 

The experiment 

Let us assume that a mango farmer is 

interested in investigating the effects of two 

land preparation methods (burning and non-

burning) and three fertilizers (nitrogen, 

phosphate and NPK (15-15-15)) on the 

yield of mango trees. He wishes to replicate 

each treatment combination three times. 

Implementing this as a CRD 2X3X3 

factorial would involve randomly selecting 

one of the 18 burning-fertilizer treatment 

combinations, implementing it and then go 

to the next. This would involve burning 9 

small patches (in some random order) each 

representing one experimental unit. The 

unit to be burnt might be a small area for 

planting one tree or a few trees planted in a 

row. This is obviously not the most 

desirable thing.  

On the other hand, having just two 

areas, one burnt the other not burnt will 

result in so severe a restriction that there 

would be no “pure” error to test for burning. 

It might be expedient to divide the 

experimental plot into sizes that are 

reasonably large for proper burning to take 

place. The two land preparation methods 

(burn and no burn) would then be randomly 

assigned to the plots.  Let us assume the area 
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is divided into six plots, three plots would 

randomly be assigned to the burning and 

therefore burnt and the other three left 

unburnt. Each of the six large plots would 

be divided into three sub-plots and the 

fertilizer would then be randomized on 

these plots. This arrangement leads to a 

split-plot design. The main plot is a 

completely randomized experiment with 

three replicates. One realization of this 

arrangement may be as shown in figure 1. 

 

Linear model and expected mean squares 

One way of specifying the linear 

model for the analysis of this experiment is 

as follows; 

Yijk = µ + Bi +ω(i)j + ∂(ij) + Fk + BFik +

ωF(i)jk + є(ijk) ……………. Eqn 1 

i=1, 2;   j=1, 2, 3;  k=1, 2, 3. 

Where 

Yijk= the yield (quantity) of fruits in a sub-

plot belonging to the kth fertilizer treatment 

(fixed) in one of the three (jth) replicates of 

the ith burning (fixed) treatment; 

µ = the overall mean 

Bi= the ith Burning effect (fixed) 

ω(i)j= the random error effect due to the jth 

replicate of the ith burning effect assumed 

IID ~ N(0, σ2) 

∂(ij)= the ijth random restriction error on the 

randomization of the fertilizer on each of 

the six plots assumed IID ~ N(0, σ2). This 

error cannot be estimated. 

Fk= the kth fertilizer effect (fixed) 

BFik = the fixed interaction effect of the ith 

burning effect and the kth fertilizer effect 

ωF(i)jk = the mixed interaction effect of the 

kth fertilizer and the jth replicate within the ith 

burning  

є(ijk)= the random error due to the ijkth 

measurement assumed to be IID ~ N(0, σ2). 

This error term cannot be estimated in the 

experiment. 

To determine whether our favourite 

tests are testable we developed the expected 

mean squares (EMS) table. The expected 

mean squares table for this linear model is 

shown in Table 1. From this table we can 

write down the correct tests of our 

hypothesis of interest for which we started 

the experiment. For purposes of 

comparison, analysing the experiment as 

CRD and RBCD are added to show that 

these would give us the wrong tests.  

Also note that if the main plot part of 

the experiment were designed as RCBD 

with three blocks rather than three (genuine) 

replicates, the test for burning ((B)=0) 

would have a reference distribution of Fα 

(1,2) which is less sensitive than the design 

above with a reference distribution of Fα 

(1,4) provided blocking was just for 

convenience but not essential.  

 

Analysis 

The experiment was analysed using the 

linear model specified in Eqn 1. All three 

packages were used one at a time for the 

analysis. Genstat Discovery 4 (version 

10.3.806) (Payne, R.W., Murray, D.A., 

Harding, S.A., Baird, D.B. & Soutar, 2007), 

SPSS (v18.0) (SPSS, 2009) and R (v 3.0) (R 

Development Core Team, 2013) were all 

running on a Sony Vaio laptop.  The 

experiment was also analysed semi-

manually in excel by first calculating the 

means of the six experimental units in each 

of the burn/no burn plots and using the 

means to run a one-way ANOVA. This 

should be the correct analysis of the land 

preparation experiment with or without the 

fertilizer experiment. From the ANOVA 

output of SPSS, the mean square for 

burning was also calculated using 

MS(B)/MS(𝝎) and a Reference distribution 

of Fα (1,4) as dictated by the expected mean 

squares (Table 2). 

RESULTS  

The result of the semi-manual analysis 

of the main plot as a CRD is shown in Table 

3. The result shows the correct tests for the 
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land preparation experiment. The result 

shows that the Burning treatments were not 

significantly different at the 5% level of 

probability. The results of the other 

statistical packages are compared with this. 

It is therefore clear that SPSS output 

appeared to be wrong but not that of Genstat 

or R. 

Genstat results are shown in Table 4 

and are basically correct.  Genstat 

recognises the model structure and tests our 

three hypotheses stated in Table 2 with the 

correct mean squares and degrees of 

freedom.   

SPSS analysis output is shown in Table 

5a. This output has the correct sums of 

squares and degrees of freedom but the test 

for the land preparation (Burning) appears 

to be wrong. The test for the land 

preparation is highly significant in Table 5a 

when indeed it is not at 5% level of 

probability (Table 4). However, if we 

manually calculate the F-value as dictated 

by the expected mean squares (Table 2), we 

get F-calculated = 5.04, implying we fitted 

the correct linear model but SPSS does not 

“understand” the data structure. By 

including the command “/test = MS(B) vs 

MS(𝝎)”, Table 5b is produced in addition 

and this contains the correct test for the land 

preparation experiment. 

DISCUSSION 

The results indicate that Genstat gets the 

result right. However, in the analysis we had 

to create a factor “block” which did not 

exist in the linear model. This can be a 

source of confusion because the linear 

model does not have a block also if the 

experiment is analysed as RCBD we get it 

wrong. The blocks here refer to the 

experimental units of the land preparation 

experiment. Each experimental unit 

becomes a block relative to the fertilizer 

experiment because fertilizers were 

randomized in each unit of the six burning 

plots one at a time. Indeed Genstat requires 

a block to be specified in order to analyse 

any split plot experiment and will not 

proceed without a block being specified.  

In SPSS, when the model is specified 

as shown in Eqn 1, the result is as in Table 

5a. The test for the land preparation is 

highly significant when indeed it is not at 

5% level of probability. Although the sums 

of squares are right the test for the land 

preparation experiment is wrong. This is 

very dangerous for those who may not have 

clear thought about the experiment and 

hope that SPSS might save the situation. It 

is therefore important to develop the tests 

for any proposed experimental design 

before implementing it. It is also important 

that the computer output should be checked 

against the result expected before accepting 

it as correct. In this situation the garbage out 

of the computer is as a result of “mis-

understanding of the model structure” by 

the software but not due to a mis-

specification of the linear model. To force 

SPSS to do the right thing it is important to 

click on “Paste” which will convert the 

windows model to SPSS code. The line 

“/Test = burning vs burning*block” is 

added to the code. This tells SPSS to test 

burning effects with burning*blocks which 

is the error term for the burning effects.  

SPSS prints an additional table shown in 

Table5b which is the result we expected.  

The result produce by R is correct and 

conforms to that produced by Genstat. R 

can therefore be used easily for this 

situation. However, R will require typing 

the code unlike Genstat which has a fully 

developed menu-driven interphase.  

With regard to ease of use Genstat and 

SPSS have better developed menu-driven 

interphase than R. They are therefore easier 

to learn but this can also lead to mis-use by 

obtaining meaningless statistics as 

demonstrated here for SPSS. Genstat 

incorporates better features to guard against 

abuse. 

CONCLUSION 

This experiment shows that it is 

important to develop tests for real 

experiments before they are carried out. 

This has important implications. First any 

flaw in the design of the experiment would 

be noticed and corrected. This experiment 
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also demonstrates that what may seem 

straight forward is sometimes not. CRD and 

probably RCBD involving only fixed 

factors have tests that are almost always 

apparent but real field experiments are 

usually more sophisticated and the tests 

may not be common senses but have to be 

worked out. Needless to say textbooks 

cannot be used as cookbooks for real field 

experiments. Experiments must be designed 

based on efficiency, resources available 

including the sets of treatments, the nature 

of experimental material and the precision 

required. The linear model, expected mean 

squares and tests of any hypothesis of 

interest must be developed. When the 

experimenter is satisfied that his 

requirements are met based on any 

constraints encountered should money, 

effort and time be spent on the actual field 

implementation. This experiment cannot be 

assumed to be an isolated case and therefore 

care should be taken in carrying out real 

field experiments.  
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TABLE 1 

Expected mean squares table of a split-plot design with a CRD main plots 

Source of Variation EMS df 

Bi σ2 + 3σ∂
2 + 3σω

2 + 9φ(B)* 1 

ω(i)j σ2 + 3σ∂
2 + 3σω

2  4 

∂(ij) σ2 + 3σ∂
2 0 

Fk σ2 + σωF
2 + 3φ(F)* 2 

BFik σ2 + σωF
2 + 3φ(BF)* 2 

ωF(i)jk σ2 + σωF
2  8 

є(ijk) σ2 0 

Total  17 

*φ(F), φ(BF) and φ(B)  are summarized forms of writing the EMS of the fixed factor effects. 

 

TABLE 2 

Tests of Hypotheses with reference Distribution of a split-plot also analysed as a CRD 

Split-plot Design (Correct Design)  CRD (Wrong Design) RCBD (Wrong Design) 

Hypothesis Test statistic Ref 

Dist. 

 Test statistic Ref 

Dist. 

Test statistic Ref 

Dist. 

𝝋(B)=0 MS(B)/MS(𝝎) Fα(1, 4)  MS(B)/MS(є) Fα(1,12) No test - 

𝝋(F)= 0 MS(F)/MS(𝝎F) Fα(2, 8)  MS(F)/MS(є) Fα(2,12) No test - 

𝝋(BF)=0 MS(BF)/MS(𝝎F) Fα(2, 8)  MS(BF)/MS(є) Fα(2,12) No test - 

 

 

TABLE 3 

One-way ANOVA analysis of means of the main plots (semi-manual analysis). This result 

shows the correct analysis of the land preparation experiment 

Source of Variation 

Sum of 

Squares 

Degrees 

of 

freedom 

Mean 

Squares 

F-

calculated P-value 

F- 

critical 

Burning 15.57 1 15.57 5.036 0.088 7.709 

Error 12.37 4 3.09    

Total 27.94 5         

 

 

TABLE 4 

Analysis of a split-plot with a CRD main-plot; Genstat produces correct result 

Source of 

variation 

Degrees 

of 

freedom 

Sum of 

squares 

Mean 

squares 

F-

calculated p-value. 

burning 1 46.722 46.722 5.04 0.088 

Residual 4 37.111 9.278 4.39   

fertilizer 2 36.000 18.000 8.53 0.010 

burning.fertilizer 2 5.778 2.889 1.37 0.308 

Residual 8 16.889 2.111     

Total 17 142.5       
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TABLE 5A 

SPSS analysis showing that the test for burning is significant when indeed it is not at 5% level 

of probability. This occurs because the variance ratio (F) and the reference distribution are 

both wrong. 

Source Type III Sum of 

Squares 

Degrees of 

freedom Mean Square F-calculated  Sig. 

Intercept 10224.500 1 10224.500 4843.184 .000 

burning 46.722 1 46.722 22.132 .002 

block * burning 37.111 4 9.278 4.395 .036 

fertilizer 36.000 2 18.000 8.526 .010 

burning * fertilizer 5.778 2 2.889 1.368 .308 

Error 16.889 8 2.111   
Total 10367.000 18    

 

 

TABLE 5B 

SPSS output showing the correct test for the burning experiment to be non-significant at 5% level of probability. This test has 
to be specifically requested in the syntax. 

Source Sum of Squares df Mean Square F Sig. 

Contrast 46.722 1 46.722 5.036 0.088 

Error 37.111 4 9.278   

 

 

TABLE 6 

Analysis with R gives correct result. Again block have to be specified to get it correct 
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Figure 1: A split-plot design in which the main (burning) plots are completely randomized 

and replicated three times with fertilizer (nitrogen, phosphate and NPK) randomized in each 

of the six experimental units of the burning experiment 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDICES 

Appendix 1: Data used for the analysis (artificial) 

plot no block burning fertilizer 

Yield of 

mango 

(kg/plot) 

1 1 burn Nitrogen 25 

2 1 burn Phosphate 27 

3 1 burn NPK 29 

4 2 no_burn Nitrogen 19 

5 2 no_burn Phosphate 20 

6 2 no_burn NPK 24 

7 3 burn Nitrogen 25 

8 3 burn Phosphate 21 

9 3 burn NPK 25 

10 4 no_burn Nitrogen 24 

11 4 no_burn Phosphate 22 

12 4 no_burn NPK 27 

13 5 burn Nitrogen 25 

14 5 burn Phosphate 26 

15 5 burn NPK 26 

16 6 no_burn Nitrogen 19 

17 6 no_burn Phosphate 21 

18 6 no_burn NPK 24 
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Appendix 2: SPSS AND R COMMANDS FOR ANALYSIS OF DATA 
 

SPSS Syntax (code) used to analyse the experiment  
 

UNIANOVA yield BY block burning fertilizer 

  /METHOD=SSTYPE(3) 

  /INTERCEPT=INCLUDE 

  /CRITERIA=ALPHA(0.05) 

  /DESIGN=burning block*burning fertilizer burning*fertilizer 

 /Test =burning vs block*burning. 

 

Appendix 3: R code used to analyse experiment  
AnovaModel.1 <- (aov(Yield ~ burning*fertilizer + Error(block/fertilizer), data=splitplot)) 

summary(AnovaModel.1) 

 

 


