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ABSTRACT 

  A new class of distributions, called complementary power series exponentiated 

Nadarajah-Haghighi distribution was developed in this study by compounding the 

exponentiated Nadarajah-Haghighi distribution with zero truncated power series 

distributions. The new class of distributions were developed using the concepts of 

latent complementary risk scenario, in which the lifetime associated with a 

particular risk is not observable; rather we observe only the maximum lifetime 

value among all risks. The statistical properties such as quantile, moments, 

moment generating function, stochastic ordering property and order statistics for 

the new class of distributions were derived. In order to estimate the parameters of 

the new class of distributions, the maximum likelihood method was employed to 

develop estimators for the parameters. Special sub-distributions namely, 

complementary Poisson exponentiated Nadarajah-Haghighi, complementary 

geometric Nadarajah-Haghighi, complementary binomial Nadarajah-Haghighi 

and complementary logarithmic Nadarajah-Haghighi distributions were developed 

from the new class of distributions. A study of the failure rate of the special sub-

distributions revealed that they exhibit different kinds of non-monotonic failure 

rates including bathtub and upside-down bathtub. Monte Carlo simulations were 

performed to examine the behavior of the estimators and the results showed that 

the estimators were able to estimate the parameters well. The applications of the 

specials distributions were illustrated using two lifetime datasets and the results 

revealed that the special sub-distributions perform better than the exponentiated 

Nadarajah-Haghighi distribution. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background of the Study 

Barrage of modified versions of existing models have been proposed in literature 

by researchers in recent time with the primary objective of making them more 

flexible in providing good parametric fit to a given data. The exponential 

distribution which is popularly known in literature because of its constant hazard 

rate and memory-less property is not suitable for lifetime and reliability analysis 

where the need for a distribution with monotone (increasing and decreasing) and 

non-monotonic failure rates behaviors are required. 

Owing to these drawbacks of the exponential distribution, extended forms of the 

distribution have been proposed by quite a number of researchers in recent time to 

make it capable of providing rational parametric fit to specified data set. Some of 

these generalizations include: exponentiated exponential distribution (Gupta and 

Kundu, 1999; 2001); beta-exponential distribution (Nadarajah and Kotz, 2006); 

and extended exponential distribution (Gómez et al., 2014). Another extension of 

the exponential distribution which has attracted the attention of researchers 

recently is the Nadarajah-Haghighi (NH) distribution developed by Nadarajah and 

Haghighi (2011). The NH distribution was proved to have increasing, decreasing 

and constant failure rates; and also capable of modeling lifetime datasets which 

has its mode fixed at zero. 
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However, the NH model is not suitable for modeling data that exhibit non-

monotonic failure rates. Thus, researchers in distribution theory are proposing 

new modifications or generalizations of the NH distribution to make it more 

flexible. Some of these extensions include: inverted NH distribution (Tahir et al., 

2018); Weibull NH distribution (Peña-Ramírez, 2018); transmuted NH 

distribution (Kumar and Kumar, 2018); exponentiated NH distribution (Abdul-

Moniem, 2015) and Topp-Leone NH distribution (Yousof and Korkmaz, 2017). 

In line with the goal of developing more flexible distributions by generalizing 

existing classical distributions, this study develops another extension of the NH 

distribution called the complementary power series exponentiated NH (CPSENH) 

distribution.  

 

1.2 Problem Statement 

Although the NH distribution possess certain characteristics which makes it good 

for modeling some types of lifetime dataset, it has some limitations when it comes 

to analyzing data that exhibit non-monotonic failure rates which includes upside-

down bathtub, bathtub, modified bathtub and modified upside-down bathtub 

failure rates. Thus, the need to introduce current modifications of the NH model 

to address some of these shortcomings is vital. This study therefore develops, 

study the statistical properties and demonstrate the applications of the new 

generalizations of the NH distribution called the CPSENH distribution.  
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1.3 General Objective 

To develop, study the statistical properties and demonstrate the applications of the 

CPSENH distribution. 

 

1.4 Specific Objectives 

i. To develop the CPSENH distribution. 

ii. To derive the statistical properties of the CPSENH distribution. 

iii. To develop estimators for the parameters of the CPSENH distribution 

using maximum likelihood method. 

iv. Perform Monte Carlo simulations to assess the properties of the 

estimators. 

v. To assess the flexibility of the new distribution by means of goodness-of-

fit and illustration using real data sets. 

 

1.5 Significance of the Study 

Statistical distributions play a major role in parametric statistical modeling and 

inference. This implies that identifying appropriate distributions for modeling real 

datasets improve the power and efficiency of the statistical test associated with the 

datasets. Thus, developing new generalizations of existing distributions to 

improve their goodness-of-fit is imperative. 
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1.6 Thesis Outline 

The thesis is organized into five chapters including this one. Chapter two presents 

literature on modified distributions. Chapter three presents the methodology of the 

study. Chapter four presents the results and discussion. Finally, chapter five 

presents the summary, conclusion and recommendations of the study. 

 

 

 

. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.0 Introduction 

In this chapter, literature on generalized distributions developed by several 

researchers and some properties of these generalized distributions are presented. 

 

2.1 Reviews on Modifications and Generalizations of Nadarajah-Haghighi             

Distribution  

In recent times, more researchers have worked extensively and some are still 

working to come up with generators aimed at compounding some well- known 

classical distributions to make them more flexible and provide a better fit. 

One of the latest is the current group of models known as the exponentiated 

generalized power series family pioneered by Nasiru et al. (2018). They 

investigated the finite sample properties of the estimators of the special 

distributions by simulation and the result obtained revealed that the parameters of 

the distributions were good with regards to the simulations method and this was 

demonstrated using real datasets.  

Tahir et al. (2018) introduced a new model by name inverted NH distribution. 

They estimated the model parameters and studied its characteristics. After further 
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studies the new model was deemed to be a better fit to the real datasets that was 

provided. The model can be a good substitute to existing ones in literature. 

Alizadeh et al. (2018) developed a new model with four parameters known as the 

extended exponentiated NH model by modifying the NH model. Certain 

characteristics of this model were derived; one of such is the incomplete moment. 

Its importance and flexibility was demonstrated using real datasets. 

Yousof and Kurmaz (2017) introduced a recent model which is known as the 

Topp-Leone NH distribution. This model can be used to analyze different forms 

of data. Some characteristics were developed. The study also revealed that the 

model was better than some existing distributions.    

Guerra et al. (2018) came up with a new distribution by name the logistic NH 

distribution. Some characteristics of this model were expressed. They illustrated 

the potency of their distribution using two real datasets. In both cases it was 

revealed that the model fitted better than existing ones in literature.  

Peña – Ramirez et al. (2018) introduced the Weibull NH distribution. Its density 

function is more flexible and exhibits various shapes. The study revealed that in 

empirical applications, the more tractable than some NH models. It can therefore 

be used as an effective substitute to the previously developed models. 

Kumar and Kumar (2018) introduced a model called the transmuted extended 

exponential model. This was obtained by modifying the extended exponential 

model. The characteristics of this new model were expressed and the performance 
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of the model was ascertained. It was shown that the model is quite good and out-

performed some existing ones. 

Abdul-Monien (2015) introduced a new distribution called exponentiated NH 

exponential model which is a modified version of the NH exponential model.  

They demonstrated its usefulness by application to real data and it was evident 

that the model fits better than certain existing ones. 

 Khan et al. (2018) introduced a new model by name weighted NH distribution. 

They illustrated its usefulness by applying to four datasets and it showed that the 

weighted NH model provided better fit to the datasets. Their model was seen to be 

a substitute to older ones. Finally, they concluded that the weighted NH 

distribution gave more flexibility to different kind of datasets.    

Dias et al. (2018) develop a model by name beta NH distribution which 

generalizes the NH. They demonstrated the usefulness by application to different 

datasets.  Both applications showed that the beta NH is an alternative to the 

exponentiated Weibull, beta Weibull, Weibull, generalized exponential, extended 

exponential distributions and exponentiated NH distributions.  

Saboor et al. (2017) develop a lifetime distribution known as beta exponentiated 

NH model. The developed distribution can be applied to model different datasets 

that exhibit different kinds of shapes. The extended distribution proved to be 

better than the various existing models.  
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Chesneau et al. (2018) introduced a new distribution called a weighted transmuted 

exponential distribution. This was done by re-parameterization technique. Certain 

characteristics of the new distribution were determined and further studies 

revealed the usefulness of the new distribution. 

Yousof et al. (2017) worked on a new model for analysis of lifetime data referred 

to as the odd Lindley NH distribution. The strength of the distribution was 

demonstrated to be good. Certain characteristics were also developed and the 

model was shown to exhibit various shapes.  

Also, Vatto et al. (2016) pioneered a new distribution called the exponentiated 

generalized NH model. They studied and derived some of its characteristics 

exhibited the shapes of its hazard function. They also provided a maximum 

likelihood procedure for estimating the exponentiated generalized NH distribution 

parameters. 

Anwar and Bibi (2018) introduced a model named half-logistic generalized 

Weibull distribution. This new distribution has sub-models and certain 

characteristics were expressed. Its usefulness and potentiality was demonstrated 

on two datasets. Their study revealed that the recent one out-classed the models it 

was compared with. 

Elbatal et al. (2018) defined and studied a modern class of distributions referred 

to as the generalized Burr XII power series distribution. The study elaborated and 

explained expressions for some of its characteristics and behaviors. They 
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performed further studies and the importance of the developed model was also 

determined.      

Bera (2015) proposed a modern family of distributions known as the 

Kumaraswamy inverse Weibull Poisson model. The zero truncated Poisson 

distribution was compounded with the Kumaraswamy inverse Weibull model. He 

studied its characteristics and presented vivid expressions in the work. 

Okasha (2017) studied and defined a recent model referred to as the Topp-Leone 

(J-shaped) geometric distribution. The model developed was based on a 

compounding process. Further studies showed the derivation of some of its 

characteristics and the usefulness of the model was illustrated using real datasets.  

Nasiru et al. (2018) introduced the Poisson exponentiated Erlang-truncated 

exponential distribution and studied its statistical properties. The results of the 

simulation study revealed the stability of the parameters and the importance of the 

new distribution was demonstrated by applying it to real dataset. It was shown 

that the model out-performed similar models. 

Shafiei et al. (2015) pioneered a new model mainly referred to as the inverse 

Weibull power series distribution. They employed some techniques under 

favorable constraints and characterized the distribution by employing certain 

concepts. The strength of the model was exhibited using two real datasets. 

Asgharzadeh et al. (2013) introduced a modern model called Pareto Poisson-

Lindley distribution. The new model was achieved by a compounding method. 
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They established certain characteristics of the distribution and also showcased 

some of its behaviors. The results of the simulation displayed showed good 

performance. 

Alkarni (2016) proposed a modern class of distributions known as generalized 

extended Weibull power series class of models. He followed the same procedure 

adopted by Adamidis and Loukas (1998). He also worked on some sub-models 

and established a number of characteristics of the derived model. 

Bourguignon et al. (2015) introduced a recent model popularly known as the 

gamma-NH distribution. They demonstrated the various shapes exhibited by the 

distribution functions. It is worth mentioning that after careful examination, the 

model was deemed to be a good fit for real datasets. 

Muhammad (2017) introduced another model known as the generalized half-

logistic Poisson model which exhibits favorable behaviors. The practical 

importance, applicability and tractability were demonstrated using real data and 

this showed that the generalized half-logistic Poisson distribution out-performed 

certain models.  

Alizadeh et al. (2018) worked on a modern family of continuous models by name 

the complementary generalized transmuted Poisson –G family, an extension of 

the transmuted family pioneered by Shaw and Buckley (2007). Special models 

were provided and some general characteristics were expressed. The new model 

outranked other ones mentioned in literature. 
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Aryal and Yousof (2017) engineered and investigated a current family of 

distribution by name the exponentiated generalized-G Poisson class of models. 

They derived certain mathematical characteristics of the current distribution and 

certain behaviors were displayed. The model was shown to be very acceptable in 

terms of performance.  

Hassan et al. (2016) introduced a current class of models named the 

complementary exponentiated inverted Weibull power series family of 

distributions. This distribution is a generalization of some lifetime distributions. 

Its performance exceeded the models mentioned in the analysis. 

Muhammad (2017) worked on a recent distribution by name the complementary 

exponentiated Burr XII Poisson Model. Several mathematical and shape 

characteristics were provided. Further studies revealed the potency of the model. 

It was clearly evident that the model outmatches other distributions in literature.  

Cordeiro and Silva (2014) engineered a new distribution referred to as the 

complementary extended Weibull power series family of distributions. The 

characteristics of the new family were investigated. The study also highlighted 

various shapes of the distribution and the applicability was also displayed. 

Alizadeh et al. (2017) pioneered a current model known as the exponentiated 

power Lindley series model. Special cases were developed and studied. The 

distribution shows a number of shapes. Subsequent examination showed that the 

new model out-classed several models in terms of performance. 
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Nasir et al. (2019) engineered a recent model called the Burr XII power series 

class of distributions. The new distribution shows good strength and has some 

sub-models. The characteristics of this new distribution derived in the study were 

explicitly expressed. From the results, it is evident that the model can out-class 

existing ones.  

Louzada et al. (2013) developed a recent model referred to as the complementary 

exponentiated exponential geometric distribution, and it gave good fit to real sets 

of data. This family of distributions can be applied to varied forms of data 

existing in literature. 

Louzada et al. (2014) introduced a recent distribution known as the long-term 

exponentiated complementary exponential geometric distribution. The new 

distribution is obtained from the exponentiated complementary exponential 

geometric and accommodates a number of shapes. Like all other distributions, 

certain characteristics were derived.  

Alkarni (2013) proposed a current family of models referred to as a class of 

truncated binomial lifetime distribution. The theory behind this new model was 

expressed and vividly explained in the work. The importance of the new 

distribution was illustrated with the help of real datasets. 

Rashid et al. (2017) introduced a modern distribution with the aim of adding an 

extra dimension to the Lindley power series. The new model is known as the 
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complementary compound Lindley power series distribution. This new model 

contains special cases of several lifetime distributions.  

Flores et al. (2013) introduced a new distribution by name the complementary 

exponential power series distribution. Certain characteristics of the new 

distribution were expressed in the work. Its legitimacy was also demonstrated and 

further analysis shows that the model fits real datasets very well.  

A current model named as the complementary Burr III Poisson distribution was 

developed by Hassan et al. (2015). The distribution was achieved by mixing two 

distributions. Certain characteristics of the new model were derived and an 

intensive simulation study displayed its performance. 

Hassan et al. (2012) developed a distribution by name an exponentiated 

exponential binomial distribution. The characteristics of this model along with 

certain behaviors exhibited by the distribution were highlighted in the work with 

great precision. The model out-performed the existing models noted in this 

research work.  

Louzada et al. (2014) engineered a current class of models known as the 

exponentiated exponential geometric distribution. The new model exhibited a 

number of shapes and this can be considered as improvement upon the existing 

one which was generalized. The characteristics of the new model were studied 

and its performance was examined. 
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Fatima and Roohi (2015) introduced a recent modification to exponentiated 

Pareto-I distribution known as the transmuted exponentiated Pareto-I model. This 

new model exhibits a number of shapes. The distribution’s suitability in modeling 

breaking strength of materials was highlighted with real datasets. Furthermore, 

some characteristics of the model were expressed and its potency was provided 

through application to two datasets. 

Rahmouni and Orabi (2018) introduced a current distribution by name the 

exponential-generalized truncated geometric distribution. Some characteristics of 

this new model and certain shapes were exhibited. The potency of the new model 

was shown to be very good and it fits well to real datasets. 

Cancho et al. (2011) developed a new model referred to as the Poisson-

exponential lifetime distribution which exhibits a variety of shapes. Certain 

characteristics were expressed and the Fisher information matrix was derived and 

the model’s capacity to fit real datasets was demonstrated in the study.  

Peña-Ramirez et al. (2018) worked on a current model known as the 

exponentiated power generalized Weibull distribution. The suitability to model 

certain functions and the flexibility of the distribution was provided. Some 

characteristics of the distribution were vividly expressed in the study. 

Tahmasebi and Jafari (2015) introduced a well-known family of models referred 

to as the exponentiated extended Weibull-power series class of distributions. The 
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sub-models of this distribution were derived and clearly defined. Various 

characteristics of this family of models were stated and expressed in the study. 

Warahana-Liyanage and Pararai (2015) advanced a family of distributions known 

as the Lindley power series distribution. Various statistical characteristics of the 

distribution were depicted in the study. Special cases of the Lindley power series 

were developed. They simulated several times to test how well its parameters 

perform. 

Elgarhy et al. (2018) developed and examined the exponential generalized 

Kumaraswamy model. In this study, some mathematical characteristics such as 

moments were expressed. The model parameter estimation was done and the 

applicability of this model was exhibited with real datasets and the results 

revealed were positive. 

Rodrigues et al. (2016) pioneered a new model referred to as the exponentiated 

Kumaraswamy inverse Weibull model. Some mathematical characteristics of the 

model were discussed. The model parameters were examined using maximum 

likelihood estimation method. The importance of the model was illustrated with 

real datasets. 

Elbatal et al. (2017) developed a new model which is referred to as the 

exponential Pareto power series models. Special cases of this class were 

developed and some of its characteristics were worked upon. The legitimacy of 
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this modified model was tested and its usefulness was displayed using real 

datasets. 

Tahmasebi and Jafari (2015) introduced the generalized Gompertz-power series 

family of models a compound of the power series and generalized Gompertz 

models. The distribution comprised of sub-models which were duly discussed in 

the study to great effect. Advanced studies revealed the potentiality and 

usefulness of the model. 
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CHAPTER THREE 

METHODOLOGY 

3.0 Introduction 

The techniques of developing new distribution using the exponentiated 

Nadarajah-Haghighi (ENH) distribution, power series class of distributions and 

further highlighting the method of estimating the model parameters and model 

selection criteria are presented in this chapter. 

 

3.1 Data and Source 

The study employed two lifetime secondary data to demonstrate the applications 

of the developed distributions. The first dataset consists of the survival times (in 

days) of 72 guinea pigs infected with virulent tubercle bacilli. The dataset 

presented in Table 3.1 can be found in Bjerkedal (1960) and Nasiru et al. (2018). 
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Table 3.1: Survival times of guinea pigs 

0.1 0.93 1.08 1.22 1.53 1.83 2.3 2.93 

0.33 0.96 1.08 1.22 1.59 1.95 2.31 3.27 

0.44 1 1.09 1.24 1.6 1.96 2.4 3.42 

0.56 1 1.12 1.3 1.63 1.97 2.45 3.47 

0.59 1.02 1.13 1.34 1.63 2.02 2.51 3.61 

0.72 1.05 1.15 1.36 1.68 2.13 2.53 4.02 

0.74 1.07 1.16 1.39 1.71 2.15 2.54 4.32 

0.77 1.07 1.2 1.44 1.72 2.16 2.54 4.58 

0.92 1.08 1.21 1.46 1.76 2.22 2.78 5.55 

 

The second dataset consists of 101 observations on the failure time (in hours) of 

Kevlar 49/epoxy strands with pressure at 90%. The dataset was first presented in 

Barlow et al. (1984) and can also be found in Nasiru et al. (2018). Table 3.2 

displays the failure times in hours of Kevlar 49/epoxy strands. 

 

Table 3.2: Failure times of Kevlar 49/epoxy strands 

0.01 0.07 0.13 0.36 0.63 0.8 1.02 1.31 1.54 2.02 7.89 

0.01 0.07 0.18 0.38 0.65 0.8 1.03 1.33 1.54 2.05 

 0.02 0.08 0.19 0.4 0.67 0.83 1.05 1.34 1.55 2.14 

 0.02 0.09 0.2 0.42 0.68 0.85 1.1 1.4 1.58 2.17 

 0.02 0.09 0.23 0.43 0.72 0.9 1.1 1.43 1.6 2.33 

 0.03 0.1 0.24 0.52 0.72 0.92 1.11 1.45 1.63 3.03 

 0.03 0.1 0.24 0.54 0.72 0.95 1.15 1.5 1.64 3.03 

 0.04 0.11 0.29 0.56 0.73 0.99 1.18 1.51 1.8 3.34 

 0.05 0.11 0.34 0.6 0.79 1 1.2 1.52 1.8 4.2 

 0.06 0.12 0.35 0.6 0.79 1.01 1.29 1.53 1.81 4.69   
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3.2 Exponentiated Nadarajah-Haghighi Distribution 

A random variable X  is said to have exponentiated NH distribution (Abdul-

Moniem, 2015) if its cumulative density function (CDF) is given 

as                 

      1 1
1 , 0, 0, 0, 0 3.1

x
G x e x

 


  
 

        

and its corresponding probability density function (PDF) and hazard rate function 

takes the form:  

 
   

  
 

1 1 1

1
1 1

1
, 0, 0, 0, 0 3.2

1

x

x

x e
g x x

e





 




 
  

  


 


    



 

  and    

 
      

  
 

1
1 1 1 1 1

1 1

1 1
, 0 3.3

1 1

x x

x

x e e
x x

e

 




  




 



    

 

 
 

 

respectively. Here,   is the scale parameter and both ,   are shape parameters.   
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3.3 Power Series Class of Distribution 

Suppose N  is a discrete random variable from a power series distribution 

(truncated at zero) and whose PDF is given by                   

 
 

 , 1,2......., 3.4
n

na
P N n n

C




     

where  
1

n

n

n

C a 




  and na  depends on n , (0, )S , S  can be   and 0   . 

 C   is finite and its first, second and third derivative with respect to   are 

defined and given by  ' .C ,  '' .C , and  ''' .C , respectively. The power series 

family of distribution consists of Poisson, binomial, geometric and logarithmic 

distribution. Table 3.2 displays some useful quantities of the zero truncated power 

series distribution. 

 

Table 3.3: Useful quantities of some power series distributions 

Distribution  C     'C     1C    na   s   

Poisson 1e    e    log 1     
1

!n


   0,   

Geometric  
1

1 


    
2

1 


    
1

1 


   1    0,1   

Logarithmic  log 1      
1

1 


   1 e    1n    0,1   

Binomial  1 1
m

    
 

1
1

m

m





   

1

1 1m     
m

n

 
 
 

  
 0,
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3.4 Maximum Likelihood Estimation 

The maximum likelihood estimation (MLE) is the most common technique 

employed for estimating parameters of a statistical model by choosing a set of 

values of the model parameters which maximizes the likelihood function. Let 

 1 2, ,...,
T

nX x x x  be a vector of random variables in one class of distribution on 

nR  and indexed by a k – dimensional parameters  1 2, ...,
T

k    where 

kR   and .k n  Let  /F X   be the distribution function of X  and that 

the joint density function  1 2, ,..., /nf x x x   exist. Then the likelihood of   is the 

function                                     

      1 2, ,..., / , 3.5nL f x x x     

which is the probability of observing the given data as a function of  . The 

maximum likelihood estimates of   are those values of   which maximizes the 

likelihood function. If  1 2, ,..., nX x x x
 
are independent and identically distribut

ed, then the likelihood is given by                                

      
1

/ . 3.6
n

i

i

L f x


    

Practically, it is often favorable to handle the logarithms of the likelihood 

function, the log-likelihood function, is given by                       

      
1

log / . 3.7
n

i

i

f x


   

Because logarithm is a monotone function when the likelihood function is 
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maximized, the log-likelihood function is also maximized and vice versa. The 

likelihood equations are attained by setting the first partial derivatives of the log-

likelihood function with respect to 1 2, ,..., k    to zero; that are 

 1 2/ , ,...,
0, 1, 2,

n

i

x x x
i




 




 and solving the system of likelihood equations.   

 

3.5 Methods of Evaluating Maximum Likelihood Estimators 

Suppose 1 2, ,..., nx x x  represent a random sample of size n from the sampling 

model  /f X  , where   is an unknown parameter. An estimator of   obtained 

by techniques such as method of moments and maximum likelihood estimation, is 

a function of the sample, that is a statistic  1 2, ,..., nT x x x  . The mean square 

error and bias (equivalently root mean square error and average bias) is used to 

study the behavior of an estimator or asymptotic properties of the estimator.   

  

3.5.1 Mean Square Error of an Estimator 

Let  1 2, ,..., nX x x x  be a random sample and   be the estimator of the 

unknown parameter   from the random sample. Then obviously the deviation of  




 from the true value of  , | | 


 measures the quality of the estimator. That is, 

the mean square error (MSE) of an estimator 


 of a parameter   is the function 

www.udsspace.uds.edu.gh 

 

 



23 

 

of   and is expressed as                    

 
2 22

var var . 3.8MSE E E Bias


      

                
                  

            
 

The expectation in ( 3.8 ) corresponds to the random variables 1 2, ,..., nx x x  since 

they are the only random components in the expression. The sequence of 

estimators { }n



  is weakly consistent or equivalently MSE consistent if n 


   

in probability as n  .That is, 0, if n   
                                        

 
 | | 0. 3.9nP 

 
    

   

 

3.5.2 Bias of an Estimator 

The bias of an estimator is defined as:                               

  , 3.10Bias E  
    

    
   

  

this is the difference between the expected value of 


 and , where 


 is an 

estimator of , an unknown population parameter. If E  
 

 
 

 then the estimator 

has either a positive or negative bias. That is, on the average the estimator tends to 

over (or under) estimate the population parameter. 
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An estimator is unbiased if ,E   
 

  
 

 . For an unbiased estimator 


,                   

  
2

var . 3.11MSE E


  
    

     
   

  

If an estimator is unbiased, its MSE is equal to its variance. The sequence of 

estimators { }n



  is asymptotically unbiased if nE 
 
  
 

 as n  .  

 

3.6 Model Comparison and Model Selection Criteria 

To illustrate the relevance and flexibility of our proposed model in modeling 

lifetime real dataset, we compare its performance with other existing competing 

models with regards to information lost. The lesser the information lost, the 

higher the model’s quality. Essentially, a comparison of different model-selection 

techniques’ ability to detect a true model involves a trade-off between goodness-

of-fit and models parsimony. So, we employed information criteria methods and 

goodness-of-fit statistics that penalize model for complexity, to keep the model 

from over fitting, to assess the best model from a number of alternative models 

which may have different number of parameters. The most commonly used 

information criteria are Akaike information criterion (AIC), corrected Akaike 

information criterion (AICc) and the Bayesian information criterion (BIC). The 

information criterion chooses models with smaller values of AIC, AICc, and BIC 

for a given set of candidate models and specified dataset. 
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The AIC (Akaike, 1974) measure the quality of statistical models for given 

dataset. It quantifies information lost when the data generating procedure is 

represented by a statistical model by attaining equilibrium in the trade-off 

between goodness-of-fit of the model and its complexity. Assume we have a 

statistical model of some data y  . Let k  be the number of estimated parameters in 

the model and L


 the maximum value of the model’s likelihood function. Then the 

AIC is given by                           

  2 2log . 3.12AIC k L
 

   
 

  

The AIC rewards goodness of fit, but it also includes a penalty (to minimize over 

fitting) that is an increasing function of the number of estimated parameters.  

AICc (Hurvich and Tsai, 1989) is AIC with correction for finite sample 

sizes defined as:                                  

  2log 2 , 3.13
1

n
AICc L k

n k

   
     

    
  

where, n  is the number of observations, and k  is the number of estimated 

parameters. That is, AICc is essentially AIC with bigger penalty for more 

parameters. It is convenient to use AICc if the sample size is small or when the 

model has numerous parameters (Anderson, 2002). 

The BIC (Schwarz, 1978) is another criterion for model selection among finite 

sets of models. In fitting models, it is possible to increase the likelihood by adding 
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parameters, but with trade-off for over fitting. Both BIC and AIC try to resolve 

this problem by adding a penalty term for the number of parameters in the model; 

the penalty term is bigger in BIC than AIC. The BIC is express by:                                    

    log 2log , 3.14BIC n k L
 

   
 

    

where L


  is the maximized value of the model likelihood function, n  is the 

sample size, k  is the number of parameters to be estimated. However, the smaller 

values of the model selection criteria, the better the fit of the given model. 
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 CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.0 Introduction 

 The chapter is divided into six sections, namely: complementary power series 

ENH distribution, statistical properties, estimation of parameters, special 

distributions, simulations and applications. 

 

4.1 Complementary Power Series Eponentiated Nadarajah-Haghighi   

      Distribution 

Given that the random variable N  represents the number of failure causes, 

1, 2,...,n   and the underlying distribution of N  is the zero truncated power 

series distribution. Suppose that 1 2, ,..., NX X X  is a sequence of independent and 

identically distributed, continuous random variables independent of N  that 

follows ENH distribution with CDF ( )G x  and, parameters ,   and  . These 

random variables denote the lifetimes associated with the failure causes. Usually 

the number of causes  N  and the lifetime iX   associated with a particular cause 

are not observable in a latent complementary risk scenario, but only the maximum 

lifetime ( )nX  among all the independent causes is often observed. Thus, we only 

observe the random variable 
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 ( ) 1 2max , ,..., .                                      (4.1)n NX X X X  

The conditional CDF of ( ) |nX N n  is given by 

 

 

1

1 (1 )

( | ) ( )

                     = ( )

                     = 1 .                                          (4.2)         

n

i

n

n
x

F x N n G x

G x

e
 





 

 





 

Hence, the marginal CDF of  ( )nX  is  

 

 

 

1

1 (1 )

1

1 (1 )

( ) ( )
( )

         = 1
( )

1

         = , 0, 0, 0, 0, 0.                           (4.3)
( )

nn
nn

i

nnn
xn

i

x

a
F x G x

C

a
e

C

C e

x
C





















   




 



 



 


  

 


  
    



  

The CPSENH distribution has a number of sub-distributions. These include: the 

complementary Poisson ENH (CPENH), complementary geometric ENH 

(CGENH), complementary binomial ENH (CBNH) and complementary 

logarithmic ENH (CLENH) distribution. The proposed distribution can be 

referred to as a CPSENH class of distributions since it contains a number of sub-

models. The newly developed model has some important applications in areas 

such as medical, industrial and finance where complementary risk problems arise.  
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The corresponding PDF of the CPSENH distribution is obtained by differentiating 

the marginal CDF in equation (4.3) and is given by 

 
 ' 1 (1 )

1
1 1 (1 ) 1 (1 )

1

( ) (1 ) 1 , 0,              (4.4)
( )

x

x x

C e

f x x e e x
C



 





  



 


 


    

 


     

 

where 0, 0    are scale parameters and 0, 0   are shape parameters.  

Henceforth, we represent a random variable X  that follows the CPSENH 

distribution as ~ ( ; , , , )X CPSENH x     . It is worth mentioning that when the 

parameters 1   and 1   the CPSENH distribution reduces to the 

complementary exponential power series distribution developed by Flores et al. 

(2013). 

The survival function plays a critical role in both engineering and biological 

studies. For instance, in the engineering sciences, it is used to estimate the 

reliability of a system. In the biological sciences and other related fields, the 

survival functions can be used to study the average time to the occurrence of 

events. The survival function of the CPSENH is  

 1 (1 )

( ) 1 ( )

1

        = 1 , 0.                                          (4.5) 
( )

         

x

S x F x

C e

x
C

 




 

 

 


     
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The hazard rate function of a random variable is useful when investigating the 

failure rate of a component. It is the instantaneous rate at which events happen 

given no previous events (instantaneous failure rate). The hazard rate function of 

the CPSENH random variable is defined as  

 

 
 

 

' 1 (1 )

1
1 1 (1 ) 1 (1 )

1 (1 )

( )
( )

( )

1

        = (1 ) 1 , 0.       (4.6)

( ) 1
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x x
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f x
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S x

C e

x e e x

C C e



 







  








 

 

 


    

 



 


    
 

 
  

 

Proposition 4.1. The ENH converges to the CPSENH when 0  . 

Proof.  Since 
1

( ) n

n

n

C a 




  , we have 

 1 (1 )

1

1

1

( ) .

n
n x

n

n

n

n

n

a e

F x

a

 





 













 

Considering 0  , we obtain 

 1 (1 )

1

0 0

1

1

lim ( ) lim .

n
n x

n

n

n

n

n

a e

F x

a

 


 




 


 




 









 

By applying L’Hôpital’s rule, we obtain 
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               = 1 .

n
n x

n

n

n

n

n

x

a e

a na

e
















  








 











 

This completes the proof. 

Proposition 4.2. The CPSENH can be written as an infinite mixture of the density 

of the largest order statistic of the ENH with parameters ,   and n . 

Proof. Using  
' 1

1

( ) n

n

n

C na 






 , the PDF of the CPSENH distribution can be 

written as 

 
 

 

1
1 1 (1 ) 1 (1 ) 1

1 (1 )

1

1
1 1 (1 ) 1 (1 )

1

( )

1

(1 ) 1
( ) 1

( )

         = (1 ) 1
( )

         = ( ) ( ; , , ),

x x n

x

n

n

n n
x xn

n

n

n

x e e
f x na e

C

na
x e e

C

N n g x n

 



 


  





  

 





 



  


     

 



 
    







 
 

 
  

 

 






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where ( )
( )

n

na
N n

C




  

 

and 

 
1

1 1 (1 ) 1 (1 )

( ) ( ; , , ) (1 ) 1
n

x x

ng x n n x e e
  

      


        

is the density function of the largest order statistic of the ENH.  

 

4.2 Statistical Properties 

It is often imperative to derive the statistical properties when new distributions are 

developed. This section presents statistical properties such as the quantile 

function, moments, moment generating function (MGF), stochastic ordering 

property and order statistics. 

 

4.2.1 Quantile Function 

The quantile function or the inverse CDF of a random variable is very useful 

when generating random numbers from a given probability distribution. It can 

also be used to describe some properties of a distribution such as the median, 

kurtosis and skewness. 

 

 

www.udsspace.uds.edu.gh 

 

 



33 

 

Proposition 4.3. The CPSENH quantile is given by 

1
1

11 ( ( ))
1 log 1 1 ,0 1,                            (4.7)u

C uC
x u






 


                     

 

where 1C   is the inverse of  C .  

Proof. By definition, the quantile function is given by  

 1( ) inf : ( ) ,0 1.                                                      (4.8)u uF u x F x u u      

For a continuous increasing function F , 1( )F u  is the unique real number ux  

such that ( )uF x u . Thus, equating the CDF of the CPSENH distribution to u  

and solving for ux  yields 

1
1

11 ( ( ))
1 log 1 1 ,0 1.                           u

C uC
x u






 


                     

 

This completes the proof. 

It can be seen that the quantile function of the CPSENH class of distributions is 

tractable and can be used for generating random numbers from the distributions. 

Sometimes the data may contain outliers or extreme values and the median may 

be required as the most appropriate central tendency measure instead of the mean. 

The median of the CPSENH class of distributions is obtained by substituting 

0.5u   into equation (4.7). Hence, the median is given by 
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1
1

11 (0.5 ( ))
Median 1 log 1 1 .                           (4.9)

C C






 


                     

 

4.2.2 Moments 

The moments of a random variable are vital in statistical inference. They are 

employed to study important characteristics of a distribution such as the measures 

of central tendency, measures of dispersion and measures of shapes. The thr  non-

central moment of the CPSENH random variable is derived here. 

Proposition 4.4. If ~ ( ; , , , )X CPSENH x     , then the thr  non-central moment 

of X  is given by  

1
'

1
1 0 0

1( 1)
( 1, 1),  1, 2,...,            (4.10)

( 1) ( )
j

i r j r n ir
jn

r

n i j

r nn a e
i r

j ii C


  




    


  

  
      

  


  

where 1( , ) a t

x

a x t e dt



     is the upper incomplete gamma function. 

Proof.  By definition, the thr  non-central moment of a continuous random 

variable X  with the support (0, )   is given by  

'

0

( ) ( ) .r

r E X x f x dx


    
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From Proposition 4.2, we have 

 

'

( )

10

( )

1 0

1

1 1 (1 ) 1 (1 )

1 0

( ) ( ; , , )  

     = ( ) ( ; , , )

     = (1 ) 1 .
( )

r

r n

n

r

n

n

nn
r x xn

n

x P N n g x n dx

P N n x g x n dx

a
n x x e e dx

C

 



  

   

  


 



 








    



 



 



 

 

 

Employing the expansion 
1

0

1
(1 ) ( 1) ,| | 1i i

i

z z z
i








 
    

 
   and that fact that 

1 (1 )0 1 1xe
     , we have 

1
' 1 ( 1)(1 )

1 0 0

1( 1)
(1 ) .

( )

i n i
r i xn

r

n i

nn a e
x x e dx

iC

 
 

 


 
   

 

 
  

 
   

Let ( 1)(1 ) ,y i x     by change of subject 

1

1 1
1

y
x

i



 
  

   
   

. As 

0, 1x y i    and as ,x y  . Also,   1(1 )
1

dy
x dx

i

   


.  Hence, 

1
1

'

1 0 1

1( 1)
1 .

( ) 1 1

r
i r n i

yn
r

n i i

nn a e y dy
e

iC i i

  




  


  

    
     

      
   

The binomial theorem as stated in Graham (1994) is the power series identity 

0

( )v j v j

j

v
x b x b

j






 
   

 
 . Adopting the binomial theorem, we have 
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1
'

1
1 0 0 1

1

1
1 0 0

1( 1)

( 1) ( )

1( 1)
     = ( 1, 1), 1,2,....

( 1) ( )

j

j

j

i r j r n ir
yn

r

n i j i

i r j r n ir
jn

n i j

r nn a e
y e dy

j ii C

r nn a e
i r

j ii C








  




  



    



   

    


  

  
   

  

  
     

  

 



 

This completes the proof for the thr  non-central moment. 

 

4.2.3 Moment Generating Function 

The MGFs are special functions employed to establish the moments if they exist 

for a random variable and functions of moments such as mean and variance, 

kurtosis and skewness in a much simpler way. 

Proposition 4.5. If ~ ( ; , , , )X CPSENH x     , then the MGF is  

1

1
1 0 0 0

1( 1)
( ) ( 1, 1),      (4.11)

!( 1) ( )
j

i r j r r n ir
jn

X

n r i j

r nt n a e
M t i

j ir i C


  



     


   

  
     

  
  

Proof. If  the MGF exist, then  

 
0

( ) ( ) .tX tx

XM t E e e f x dx



    

Employing Taylor series expansion, the MGF can be expressed as 

'

0

( ) ,
!

r

X r

r

t
M t

r






  
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where 
'

r  is the thr  non-central moment. Thus, substituting the  thr  non-central 

moment gives the MGF as 

1

1
1 0 0 0

1( 1)
( ) ( 1, 1),

!( 1) ( )
j

i r j r r n ir
jn

X

n r i j

r nt n a e
M t i

j ir i C


  



     


   

  
     

  
  

This completes the proof. 

 

4.2.4 Stochastic Ordering Property 

Stochastic orders (SO) are very useful in many areas of applied probability and 

statistics. In the fields of reliability and maintainability theory, SO have relevant 

applications in, for instance, defining notions of positive and negative aging, 

bounding system reliabilities and availability, and comparing maintenance 

policies (Ohnishi, 2002). Stochastic ordering is the common way of showing 

ordering mechanism in lifetime distributions. A random variable 1X  is said to be 

greater than a random 2X  in likelihood ratio order if 1

2

( )

( )
X

X

f x

f x
 is an 

increasing function of .x   

Proposition 4.6.  Let 1 ~ ( ; , , , )X CPSENH x      and 2 ~ ( ; , , )X ENH x    , 

then 1X  is greater than 2X  in likelihood ratio order 2 1( )lrX X  provided 0  .  
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Proof. The ratio of the densities of 1X  and 2X   is 

 
1

2

' 1 (1 )1
( )

.
( ) ( )

x

X

X

C e
f x

f x C

 
 



  


    

Differentiating the ratio of the two densities with respect to x , we have 

 
 

1

2

'' 1 (1 )

1
2 1 1 (1 ) 1 (1 )

1
( )

(1 ) 1 .
( ) ( )

x

X x x

X

C e
f xd

x e e
dx f x C



 





  



  


 


    

 


      

Hence, for 0  , 1

2

( )
0

( )

X

X

f xd

dx f x
  for all x . This completes the proof. 

 

4.2.5 Order Statistics 

Order statistics are essential tools in non-parametric statistics and inference. They 

are obtained from transformation that involves the ordering of an entire set of 

observations on a random variable. Since order statistics have myriad of 

applications in several areas of statistics, it is important to derive some common 

order statistics for the CPSENH class of distributions. Suppose 1 2, ,..., nX X X  are 

independent identically distributed random sample of size n  from CPSENH class 

of distributions with CDF ( )F x   and PDF ( )f x  . Let 1: 2: :...n n n nX X X    

represent the order statistics obtained from the sample. The PDF of the thk  order 

statistic, for 1, 2,...,k n , is given by 

www.udsspace.uds.edu.gh 

 

 



39 

 

   
:

11
( ) ( ) 1 ( ) ( ),                    (4.12)

( , 1)k n

k n k

Xf x F x F x f x
B k n k

 
 

 
 

where 
1

1 1

0

( , ) (1 )a bB a b y y dy    is the beta function.  Using the fact that 

0 ( ) 1F x   for 0x  , we have 

   
0

1 ( ) ( 1) ( ) .                                        (4.13)
n k

n k mm

m

n k
F x F x

m






 
    

 
  

Hence, substituting equation (4.13) into equation (4.12), we obtain 

 
:

1

0

1
( ) ( 1) ( ) ( ).                       (4.14)

( , 1)k n

n k
m km

X

m

n k
f x F x f x

mB k n k


 



 
   

   
   

Finally substituting the CDF and PDF of the CPSENH class of distributions into 

equation (4.14) yields the PDF of the thk  order statistic for the CPSENH class of 

distributions as 

 

   

:

1
1 1 (1 ) 1 (1 )

1

1 (1 ) ' 1 (1 )

0

(1 ) 1
( )

( , 1)

1 1

           ( 1) .                       (4.15)
( ) ( )

k n

x x

X

m k

x x

n k
m

m

x e e
f x

B k n k

C e C e
n k

m C C

 

 


  

 
 

 

 

 


    

 

   





 
 

 

    
             

   
  


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4.3 Estimation of Model Parameters 

In order to illustrate the applications of the developed distribution with regards to 

modeling real datasets, it is essential to develop estimators for estimating the 

parameters of the distribution. In this section, estimators are developed for 

estimating the parameters of the CPSENH class of distributions. Suppose 

1 2, ,..., nx x x  are possible outcomes of a random sample of size n  from the 

CPSENH and 
1 (1 )ix

iz e
 

 , then the log-likelihood function is 

 

1 1 1

'

1

log( ) ( 1) log(1 ) (1 (1 ) ) ( 1) log(1 )

               log ( ) log 1  .                                                                      (4.16)

n n n

i i i

i i i

n

i

i

n x x z

n C C z





    

 

  



          

  
 

  



 

By differentiating the total log-likelihood function with respect to the parameters 

, ,    and , the score functions are obtained as: 

'''

'
1

(1 ) (1 )( )
,                                                    (4.17) 

( ) (1 )

n
i i

i i

z C zn nC

C C z

 





   

    
  

   


 

''

'
1 1

(1 ) (1 ) log(1 )
log(1 ) ,                               (4.18)

(1 )

n n
i i i

i

i i i

z C z zn
z

C z

 



 

   

     
   

   
 
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 

 

1 1 1

1 "

'
1

(1 ) log(1 )
log(1 ) (1 ) log(1 ) ( 1)

1

(1 ) 1 (1 ) log(1 )
          + ,                                        (4.19)

1

n n n
i i i

i i i

i i i i

n
i i i i i

i
i

z x xn
x x x

z

z z C z x x

C z




 



 
   

 

  




  





 
       

 

    
 

 
 

  



 

and 

 

 

1
1

1 1 1

1 1 ''

'
1

(1 )
( 1) (1 ) ( 1)

1 1

(1 ) (1 ) 1
          .                                                  (4.20)

1

n n n
i i i i

i i

i i ii i

n
i i i i i

i
i

x x x zn
x x

x z

x x z z C z

C z




 




    

  

 







  

 




       

  

   
 

 
 

  



 

The normal equations that need to be solved simultaneously to obtain the 

maximum likelihood estimates of the parameters are obtained by equating 

equations (4.17), (4.18), (4.19) and (4.20) to zero. That is, 0, 0, 0
  

  
  

  
 

and 0






. The resulting normal equations do not have closed form and so the 

maximum likelihood estimates are obtained by solving the equations using 

numerical methods. 
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 4.4 Special Distributions 

In this section, we present the CDF, PDF and the hazard functions of the special 

sub-models of the CPSENH class of distributions. These are: the CPENH, 

CGENH, CBENH and CLENH distributions. 

 

4.4.1 Complementary Poisson Exponentiated Nadarajah-Haghighi 

Distribution 

The zero truncated Poisson distribution is a special case of the power series 

distribution with 
1

!
na

n
  and ( ) 1, ( 0)C e    . From equation (4.3), the CDF 

of the CPENH distribution is 

1 (1 )(1 ) 1
( ) , 0,                              (4.21)

1

xee
F x x

e

 



  
 


 

where   0, 0    are scale parameters and 0, 0    are shape parameters. 

When 1  , the CPENH distributions reduces to the complementary Poisson 

exponentiated exponential distribution. When 1   and 1  , the CPENH 

distribution reduces to the complementary exponential Poisson distribution 

developed by  Flores et al. (2013).  Figure 4.1 displays the plot of the CDF of the 

CPENH distribution for some selected parameter values. 
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Figure 4.1: Plot of CDF of CPENH  

 

The CPENH distribution PDF is given by 

  
1 (1 )(1 )1

1 1 (1 ) 1 (1 )( ) (1 ) 1 , 0.          (4.22)
1

xe
x x e

f x x e e x
e

 

 


  


 

 
       


 

Figure 4.2 shows the PDF of the CPENH distribution for some selected parameter 

values. It can be seen that the PDF for some chosen parameter values can be 

approximately symmetric, left skewed and right skewed. 
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Figure 4.2: Plot of PDF of CPENH  

 

The CPENH distribution hazard function is given by 

 
1 (1 )

1 (1 )

(1 )1
1 1 (1 ) 1 (1 )

(1 )
( ) (1 ) 1 , 0.          (4.23)

x

x

e
x x

e

e
x x e e x

e e

 

 

 


  

 
  

 

 


    


   


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The plots of the CPENH hazard function is given in Figure 4.3. From Figure 4.3, 

it can be seen that the hazard function exhibit different kinds of non-monotonic 

shapes such as the bathtub, upside-down bathtub and decreasing failure rate. 

 

Figure 4.3: Plots of hazard rate function for CPENH 
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4.4.2 Complementary geometric Exponentiated Nadarajah-Haghighi  

          Distribution 

The zero truncated geometric distribution is a special case of the power series 

distribution with 1na   and ( ) , (0 1)
1

C


 


  


. From equation (4.3), the 

CDF of the CGENH distribution is given by 

 

 

1 (1 )

1 (1 )

(1 ) 1
( ) , 0,                                                         (4.24)

1 1

x

x

e
F x x

e















 

 

 
 

 

 

where 0,0 1     are scale parameters and  0, 0    are shape 

parameters. It is worth mentioning that   is also valid for ( ,1) .  When 1  , 

the CGENH reduces to the complementary geometric exponentiated exponential 

distribution. When 1   and 1  , the CGENH reduces to the complementary 

exponential geometric distribution developed by Flores et al. (2013). Figure 4.4 

shows the CDF of the CGENH distribution for some parameter values. 
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Figure 4.4: Plot of CDF of CGENH 

The CGENH distribution PDF is  

 

 

1
1 1 (1 ) 1 (1 )

2

1 (1 )

(1 ) (1 ) 1
( ) , 0.                           (4.25)

1 1

x x

x

x e e
f x x

e

 




  




  




    

 

  
 

 
 

  

 

Figure 4.5 is the plot of the CGENH distribution PDF for some chosen values. 

The density of the CGENH distribution can exhibit both left skewed and right 

skewed shapes. 
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Figure 4.5: Plot of PDF of CGENH  

 

The CGENH hazard function is  

 

   

1
1 1 (1 ) 1 (1 )

1 (1 ) 1 (1 )

(1 ) (1 ) 1
( ) , 0.                            (4.26)

1 1 1 1

x x

x x

x e e
x x

e e

 

 


  

 
 

  





    

   

  
 

   
   

      

 

The plots of the CGENH hazard function are presented in Figure 4.6. The 

CGENH hazard function can exhibit both upside-down bathtub and bathtub 

shapes as shown in Figure 4.6. 
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Figure 4.6: Plots of the hazard rate function of the CGENH  

 

4.4.3 Complementary Binomial Exponentiated Nadarajah-Haghighi 

Distribution 

The zero truncated binomial distribution is a special case of the power series 

distribution with n

m
a

n

 
  
 

, and ( ) (1 ) 1, ( 0)mC       , where ( )m n m  is 

the number of replicas and is a positive integer. Using equation (4.3), the CDF of 

the CBENH is  

 1 (1 )1 1 1

( ) , 0,                          (4.27)       
(1 ) 1

m

x

m

e

F x x

 




  
  

   
 
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where 0, 0    are scale parameters and 0, 0    are shape parameters. 

When 1  , the CBENH reduces to the complementary binomial exponentiated 

exponential distribution. When 1   and 1  , the CBENH distribution reduces 

to the complementary exponential binomial distribution developed by Flores et al. 

(2013).  Figure 4.7 shows the CDF of the CBENH for some selected parameter 

values and 5m  .  

 

Figure 4.7: Plot of CDF of the CBENH  

 

www.udsspace.uds.edu.gh 

 

 



51 

 

 The CBENH PDF is  

 
 

1

1 (1 )

1
1 1 (1 ) 1 (1 )

1 1

( ) (1 ) 1 , 0.        (4.28)       
(1 ) 1

m

x

x x

m

e

f x m x e e x



 





  



 




 


    

 
 

     
 

 

The PDF of the CBENH exhibit right skewed shapes with different degrees of 

kurtosis for some chosen values as displayed in Figure 4.8.  

 

Figure 4.8: Plot of PDF of the CBENH  
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 The CBENH hazard function is  

 
 

 

1

1 (1 )

1
1 1 (1 ) 1 (1 )

1 (1 )

1 1

( ) (1 ) 1 , 0.     (4.29)       

(1 ) 1 1

m

x

x x

m

m x

e

x m x e e x

e



 







  






  

 



 


    

 

 
 

  
   

 
   

  

 

The CBENH hazard function plot for 5m   are shown in Figure 4.9. It exhibits 

decreasing, bathtub and upside-down bathtub failure rates.  

 

Figure 4.9: Plots of hazard rate function of the CBENH  
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4.4.4 Complementary Logarithmic Exponentiated Nadarajah-Haghighi 

 Distribution 

The zero truncated logarithmic distribution is a special case of the power series 

distribution with 
1

na
n

  and ( ) log(1 ), (0 1)C        . Using equation (4.3) 

the CDF of the CLENH distribution is defined as 

 1 (1 )log 1 1

( ) , 0,                                        (4.30)
log(1 )

xe

F x x

 




  
 

   


 

where 0,0 1     are scale parameters and 0, 0    are shape parameters. 

It is imperative to note   is also valid for  ( ,1) . When 1  , the CLENH 

reduces to the complementary logarithmic exponentiated exponential distribution. 

When 1   and 1  , the CLENH distribution reduces to the complementary 

exponential logarithmic distribution developed by Flores et al. (2013). Figure 

4.10 shows the CDF of the CLENH for some chosen values. 
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Figure 4.10: Plot of CDF of the CLENH  

 

The CLENH PDF is given by 

 

 

1
1 1 (1 ) 1 (1 )

1 (1 )

(1 ) 1
( ) , 0                                       (4.31)

log(1 ) 1 1

x x
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x e e
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    

 

 
 

 
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  

 

www.udsspace.uds.edu.gh 

 

 



55 

 

Figure 4.11 displays the density function of the CLENH distribution. From Figure 

4.11, it can be seen that the PDF of the CLENH distribution exhibit right skewed 

shapes for some given parameter values. 

 

Figure 4.11: Plot of PDF of the CLENH 

 

  The CLENH hazard function is  
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 

 
 

1
1 1 (1 ) 1 (1 )

1 (1 )

1 (1 )

(1 ) 1
( ) , 0.                              (4.32)

1 1
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







    

 

 

 
 

  
              

  

 

The plot of the CLENH hazard function is shown in Figure 4.12.  The CLENH 

hazard function can exhibit decreasing and upside-down bathtub failure rates as 

shown in Figure 4.12. 

 

Figure 4.12: Plot of hazard rate function of the CLENH  
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4.5 Monte Carlo Simulation 

 The estimators for the parameters of the CPSENH were assessed using Monte 

Carlo simulations. For the purpose of illustration the CPENH was used for the 

experiment. The simulation experiment was carried using sample sizes 

30,70,100,150,250,350n   and 500 . For each sample size, the experiment was 

replicated 1,000 times. The following sets of parameter values 

I : 0.8, 0.6, 0.1, 0.2        and  II : 2.5, 1.5, 0.8, 0.5        were 

used to obtain random samples from the CPENH model. Table 4.1 displays the 

mean estimate (ME), average bias (AB), root mean square error (RMSE) and 

coverage probability (CP) for the estimators. As shown in Table 4.1, the ME vary 

with respect to the sample sizes and get more closer to the actual parameter values 

as the sample sizes increases. The ABs for ,   and   were generally positive 

whiles that of   was negative. However, looking at the absolute values of the 

ABs, it can be seen that it decays towards zero as the sample sizes increases. The 

RMSEs of the estimators of the parameters decreases as the sample size increases. 

This is an indication that the consistency property of the maximum likelihood 

estimators will be achieved as n  . The CPs for the 95%  interval also vary as 

the sample size increases with most of the CPs close to the nominal value of 

0.95.  Thus, the estimators estimates the parameters well. 
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Table 4.1: Monte Carlo simulation results 

Parameter n   

I   II 

ME AB RMSE CP   ME AB RMSE CP 

  30 33.0427 32.2427 581.964 0.8570   4.5322 2.0322 8.5066 0.9970 

 

70 6.9063 6.1063 176.32 0.8110 

 

3.5966 1.0966 3.0157 0.9910 

 

100 1.1614 0.3614 1.0489 0.8070 

 

3.3584 0.8584 2.6670 0.9820 

 

150 1.0050 0.2050 0.6303 0.8260 

 

3.1758 0.6758 2.2831 0.9800 

 

250 0.8905 0.0905 0.4214 0.8490 

 

2.9509 0.4509 1.8909 0.9710 

 

350 0.8401 0.0401 0.2335 0.8800 

 

2.8938 0.3938 1.5985 0.9700 

  500 0.8215 0.0215 0.1314 0.9000   2.7433 0.2433 1.3823 0.9540 

  30 0.7199 0.1199 0.5169 0.8250   2.3875 0.8875 3.1290 0.9500 

 

70 0.6628 0.0628 0.3655 0.8380 

 

2.0995 0.5995 2.3098 0.9140 

 

100 0.6341 0.0341 0.1822 0.8300 

 

2.1643 0.6643 2.5023 0.9110 

 

150 0.6211 0.0211 0.1240 0.8670 

 

1.9935 0.4935 2.2711 0.9110 

 

250 0.6172 0.0172 0.0826 0.8610 

 

1.9008 0.4008 1.7366 0.9050 

 

350 0.6156 0.0156 0.0640 0.8830 

 

1.7256 0.2256 1.1896 0.9180 

  500 0.6142 0.0142 0.0501 0.8990   1.6983 0.1983 0.8000 0.9170 

  30 1.3070 1.2070 1.7117 0.9920   2.1288 1.3288 1.9047 0.9770 

 

70 0.8254 0.7254 1.1165 0.9890 

 

1.9527 1.1527 1.9431 0.9820 

 

100 0.7353 0.6353 0.9918 0.9830 

 

1.7101 0.9101 1.7900 0.9860 

 

150 0.5585 0.4585 0.7170 0.9740 

 

1.5188 0.7188 1.5721 0.9930 

 

250 0.4023 0.3023 0.4786 0.9510 

 

1.2816 0.4816 1.2383 0.9910 

 

350 0.3330 0.2330 0.3786 0.9460 

 

1.1142 0.3142 0.9609 0.9900 

  500 0.2760 0.1760 0.2953 0.9530   0.9508 0.1508 0.6630 0.9870 

  30 0.1950 -0.0050 0.1320 0.9720   0.4195 -0.0805 0.2408 0.9810 

 

70 0.1851 -0.0149 0.0523 0.9820 

 

0.4156 -0.0844 0.1601 0.9480 

 

100 0.1840 -0.0160 0.0380 0.9780 

 

0.4319 -0.0681 0.1435 0.9500 

 

150 0.1874 -0.0126 0.0305 0.9860 

 

0.4444 -0.0559 0.1268 0.9560 

 

250 0.1899 -0.0101 0.0219 0.9860 

 

0.4577 -0.0423 0.1030 0.9650 

 

350 0.1921 -0.0079 0.0184 0.9840 

 

0.4757 -0.0243 0.0827 0.9770 

  500 0.1945 -0.0055 0.0153 0.9860   0.4860 -0.0140 0.0646 0.9820 
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4.6 Applications to Lifetime Data 

The applications of the special distributions were demonstrated in this section 

using two lifetime datasets. The performance of the special distributions was 

compared using the AIC, AICc and BIC. The ENH distribution was also fitted to 

the datasets and its performance was compared to that of the special distributions. 

  

4.6.1 Guinea Pigs Survival Times Data 

Table 4.2 presents the descriptive statistics of the guinea pigs survival time data. 

From Table 4.2, the minimum and maximum survival times of the guinea pigs 

were 0.10 and 5.55 days respectively. The average survival time was 1.768 days. 

The coefficient of skewness of 1.37 and excess kurtosis value of 2.20 revealed 

that the survival times was right skewed and more peaked than the normal curve. 

Table 4.2: Descriptive statistics of survival times (in days) of guinea pigs 

Minimum Maximum Mean Skewness Excess Kurtosis 

0.1000 5.5500 1.7680 1.3700 2.2000 

 

The survival times were modeled using the CPENH, CGENH, CBENH, CLENH 

and ENH distributions. It is important to mention that 5m   replicas were used to 

fit the CBENH distribution to the dataset. The estimates for the parameters are 

shown in Table 4.3. For the CPENH, the parameters   and   were significant at 

the 5%  significance level. The parameters of the CGENH and ENH were all 
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significant at the 5%  significance level. For the CBENH only the parameter   

was significant and for the CLENH only the parameter   was significant. 

Table 4.3: Maximum likelihood estimates for the guinea pigs data 

Model Estimate Standard error z-value P-value 

CPENH 3.4171


   3.4898 0.9792 0.3275 

 

0.7056


   0.2252 3.1333 0.0017
* 

 
5.3599



   2.6241 2.0425 0.0411
* 

  1.9241


   1.8721  1.0278  0.3041  

CGENH 0.011


  0.0011  9.3973  162.2000 10   
*
  

 

28.8790


  0.0006 48243.4513 162.2000 10 
* 

 
7.4780



   0.0118 -634.4898 162.2000 10 
* 

  2.8333


  0.3114   9.0980 162.2000 10 
*
  

CBENH 2.1747


  1.9103  1.1384  0.2549  

 

0.8067


  0.2595 3.1081 0.0019
* 

 
1.7851



  1.3931 1.2814 0.2001 

  2.1203


  1.4868  1.4261  0.1538  

CLENH 0.3864


  0.5828  0.6630  0.5073  

 

1.6910


  1.4880 1.1364 0.2558 

 

2.8430


   8.6290 -0.3295 0.7418 

  3.1306


  0.8219  3.8090  0.0001
*
  

ENH 35.8242 10


   44.0393 10    14.4190  162.2000 10 
*
  

 

70.4950


  55.8150 10   61.2123 10   162.2000 10 
* 

 

1.5948


  0.2300 6.9360 
124.0340 10

*
  

 

    

    *: means significant at the 5%  significance level 
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Table 4.4 presents the goodness-of-fit statistics for the fitted models. It can be 

seen from Table 4.4 that the CPENH was the best model for the data since it has 

the highest log-likelihood value and the least values for the AIC, AICc and BIC. 

Table 4.4: Goodness-of-fit statistics for guinea pigs data 

Model log-likelihood AIC AICc BIC 

CPENH -92.8300
* 

193.6503
* 

194.2473
* 

202.7570
* 

CGENH -93.1200 194.2475 194.8445 203.3542 

CBENH -92.9700 193.9487 194.5457 203.0554 

CLENH -93.9300 195.8527 196.4497 204.9593 

ENH -98.5600 203.1276 203.4805 209.9576 

             *: means best based on the goodness-of-fit statistic 

Figure 4.13 shows the histogram of the guinea pigs data and the densities of the 

fitted distributions on the left, and the empirical CDF of the guinea pigs data and 

the fitted CDFs on the right. It can be seen that the fitted distributions mimic the 

empirical density and CDF of the guinea pigs data.  

 

Figure 4.13: Plots of fitted densities and CDFs for guinea pigs data 
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The probability-probability plots of the fitted distributions were plotted to 

examine how well the distributions fits the given dataset. From Figure 4.14, the 

special distributions provided better fit to the dataset than the ENH distribution as 

the plot of their observed probability against the expected cluster along the 

diagonal as compared to that of the ENH distribution. 

 

Figure 4.14: Probability-probability plots of fitted distributions for guinea  

          pigs data 
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4.6.2 Kevlar 49/Epoxy Strands Failure Times Data 

Table 4.5 displays the descriptive statistics of the Kevlar 49/Epoxy strands failure 

times data. From Table 4.5, the minimum and maximum failure times were 0.01 

and 7.89 hours respectively. The mean failure time was 1.025 hours. The 

skewness value of 3.05 implies that the failure times are right skewed. The excess 

kutosis value of 14.47 implies that the distribution of the failure times is more 

peaked than the normal curve and the observations are closely distributed around 

their average value. 

Table 4.5: Descriptive statistics of failure times of Kevlar 49/Epoxy strands 

Minimum Maximum Mean Skewness Excess Kurtosis 

0.0100 7.8900 1.0250 3.0500 14.4700 

 

The estimates for the parameters of the CPENH, CGENH, CBENH, CLENH and 

ENH are shown in Table 4.6. It is worth stating that the CBENH distribution was 

fitted to the dataset using 5m   replicas. The parameters   and   for the 

CPENH and CBENH distributions were significant at the 5%  significance level. 

All the parameters for the CGENH distribution were significant with the 

exception of  . The parameters   and   were significant for the CLENH. The 

parameters for the ENH were all significant at the 5%  significance level as 

shown in Table 4.6. 
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Table 4.6: Maximum likelihood estimates for the Kevlar/Epoxy strands data 

Model Estimate Standard error z-value P-value 

CPENH 1.3412


   0.9016 1.4875 0.1369 

 

0.8757


   0.2586 3.3862 0.0007
* 

 

1.1919


   1.1833 1.0073 0.3138 

  0.7369


   0.1994  3.6957  0.0002
*
  

CGENH 2.8075


  3.5242  0.7966  0.4257  

 

0.6956


  0.2759 2.5216 0.0117
* 

 

0.7088


  0.3071 2.3080 0.0210
* 

  0.6784


  0.2231   3.0409 0.0024
*
  

CBENH 1.1961


  0.7440  1.6077  0.1079  

 

0.9118


  0.2634 3.4615 0.0005
* 

 
0.2730



  0.3324 0.8212 0.4115 

  0.7538


  0.1917  3.9331  58.3860 10
*
  

CLENH 0.0855


  0.1019  0.8385  0.4017  

 

3.7972


  3.7968 1.0001 0.3173 

 
150.3863



   0.0265 -5667.2575 162.0000 10 
*
  

  1.4450


  0.1295  11.1558 162.0000 10 
* 

ENH 120.0200


  35.7146 10    21002.0536  162.0000 10   
* 

 

0.2534


  21.1294 10   22.4385 162.0000 10 
* 

 
3.8001



  15.0750 10   7.4879 167.0000 10
*
  

 

    

                 *: means significant at the 5%  significance level 

Comparative analysis of the fitted distributions was performed and the results as 

shown in Table 4.7 implies that the CGENH provided the best fit to the dataset 

since it has the highest value of the log-likelihood and the least values for the 

AIC, AICc and BIC. 
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Table 4.7: Goodness-of-fit statistics for the Kevlar/Epoxy strands failure data 

Model log-likelihood AIC AICc BIC 

CPENH -102.3400 212.6781 213.0948 223.1386 

CGENH -102.0000
* 

211.9907
* 

212.4074
* 

222.4512
* 

CBENH -102.4200 212.8330 213.2497 223.2934 

CLENH -108.5900 225.1750 225.5917 235.6355 

ENH -116.4200 238.8321 239.0795 246.6775 

           *: means best based on the goodness-of-fit statistic 

Figure 4.15 displays the histogram and the fitted densities on the left, and the 

empirical CDF and the fitted CDFs on the right. From figure 4.15, the fitted 

distributions mimic the empirical density and CDF of the Kevlar/Epoxy strands 

failure data. 

 

Figure 4.15: Plots of fitted densities and CDFs for Kevlar/Epoxy strands data 

The probability-probability plots of the fitted distributions were used to assess 

how well the distributions fit the data. From Figure 4.16, it can be seen that the 

CGENH, CPENH and CBENH distributions provided better fit to the dataset as 

compared to the CLENH and ENH distributions. 
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Figure 4.16: Probability-probability plots of fitted distributions for Kevlar 

strands data 
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CHAPTER FIVE 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

5.0 Introduction 

This chapter presents the summary of the study, conclusions and 

recommendations. 

 

5.1 Summary 

Statistical probability distributions play significant role in parametric modeling 

and inferences. Many statistical modeling or inferences make assumptions about 

the underlying statistical distribution of the data generating process. However, 

most of the dataset may not follow the existing classical distributions. Thus, the 

need to develop new or generalize the existing probability distributions for 

modeling datasets is imperative.  

This study adopted the concept of complementary risk scenario to generalize the 

ENH distribution. The new generalization of the ENH distribution was named the 

CPSENH distribution. The limiting distribution of the CPSENH distribution was 

shown to be the ENH distribution. It is important to mention that the CPSENH 

distribution generalizes the complementary exponential power series distribution 

developed by Flores et al. (2013). The CDF, PDF, survival and hazard rate 

functions of the CPSENH distribution were derived. The PDF of the CPSENH 
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distribution was expressed as an infinite mixture of the density of the largest order 

statistic of the ENH distribution to make it easy to derive the statistical properties 

of the distribution. Statistical properties such as the quantile, moments, moment 

generating function, stochastic ordering property and order statistics of the 

CPSENH distribution were derived. 

The CPSENH distribution contains a number of sub-distributions. These include: 

CPENH, CGENH, CBENH and CLENH distribution. The CDF, PDF and hazard 

rate function of the sub-distributions were derived. The plots of the PDF and 

hazard rate function revealed that the sub-distributions can exhibit different kinds 

of shapes that are suitable for modeling lifetime datasets. The PDFs can exhibit 

reversed-J, unimodal, approximately symmetric, right skewed and left skewed 

shapes with different degrees of kurtosis. The hazard rate functions exhibit both 

monotonic and non-monotonic failure rates. 

In order to estimate the parameters of the new distribution, the maximum 

likelihood method was employed to develop estimators for the parameters of the 

CPSENH distribution. Monte Carlo simulation experiments were performed to 

assess the properties of the estimators and the results revealed that the estimators 

were able estimate the parameters well. 

Applications of the sub-distributions were illustrated using two lifetime datasets. 

The first dataset consists of the survival times of guinea pigs and the second 

dataset comprises the failure times of Kevlar/Epoxy strands. Exploratory analyses 

of the datasets revealed that both datasets were right skewed and more peaked 
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than the normal distribution. The performances of the distributions fitted to the 

datasets were compared using the log-likelihood, AIC, AICc and BIC. For the 

guinea pigs data, the CPENH distribution was selected as the best distribution 

whiles for the Kevlar/Epoxy strands data, the CGENH distribution was selected as 

the best. The histogram of the datasets and the densities of the fitted distributions 

were used to examine how well the sub-distributions fit the datasets. Similarly, 

the empirical CDFs of the datasets and the fitted CDFs were plotted to explore 

whether the distributions fits the given datasets well. Also, the P-P plots of the 

fitted distributions were also plotted to assess the performance of the distributions. 

The sub-distributions were compared to the ENH distribution and the results 

revealed that all the sub-distributions performed better than the ENH distribution. 

 

5.2 Conclusions 

This study developed the CPSENH distribution. The properties of the distribution 

were established and sub-distribution such as the CPENH, CGENH, CBENH and 

CLENH distributions were studied. The findings of the study revealed that the 

sub-distributions exhibit different kinds of failure rates such as decreasing, 

bathtub and upside-down bathtub shapes. This makes them suitable for modeling 

lifetime datasets with such kinds of failure rates. 

 Estimators were developed for estimating the parameters of the distribution and 

Monte Carlo simulation experiments were carried out to examine the behaviour of 
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the estimators. The simulations indicated the estimators were able to estimate the 

parameters well. 

Applications of the sub-distributions were illustrated using two lifetime datasets 

and the results revealed that each of the sub-distributions performs better than the 

ENH distribution. However, for the guinea pigs data, the CPENH distribution was 

the best model and for the Kevlar/Epoxy strands data the CGENH distribution 

was the best model. 

 

5.3 Recommendations for Further Studies 

i. In this study, the applications of the developed distributions were shown 

using complete samples of survival datasets in the estimation of the model 

parameters. However, there are situations were censored observations may 

be encountered. Thus, subsequent further research should consider 

application of the developed distributions using censored survival datasets. 

ii. This study used the stochastic representation ( ) 1 2max( , ,..., )n NX X X X  to  

develop the CPSENH distribution. By considering the stochastic represent

ation (1) 1 2min( , ,..., )NX X X X , a new distribution that is useful in 

modeling lifetime data from series system can be developed.  
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