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A mathematical model is presented for a two-dimensional, steady, incompressible electrically 
conducting, laminar free convection boundary layer flow of a continuously moving vertical porous plate 
in a chemically reactive medium in the presence of a transverse magnetic field. The basic equations 
governing the flow are in the form of partial differential equations and have been reduced to a set of 
non-linear ordinary differential equations by applying suitable similarity transformations. The problem 
is tackled numerically using shooting techniques with the fourth order Runge-Kutta integration scheme. 
Pertinent results with respect to embedded parameters are displayed graphically for the velocity, 
temperature and concentration profiles and were discussed quantitatively.  
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INTRODUCTION 
 
The applications of hydromagnetic incompressible 
viscous flow in science and engineering involving heat 
and mass transfer under the influence of chemical 
reaction is of great importance to many areas of science 
and engineering. This frequently occurs in petro-chemical 
industry, power and cooling systems, chemical vapour 
deposition on surfaces, cooling of nuclear reactors, heat 
exchanger design, forest fire dynamics and geophysics 
as well as in magnetohydrodynamic power generation 
systems. Many analytical and numerical studies have 
been conducted to explain the various aspects of 
boundary layer flow with heat and mass transfer over flat 
surfaces using both Darcian and non-Darcian models for 
the porous medium drag effects. 

Sakiadis (1961) studied the boundary layer flow over a 
stretching surface moving with a constant velocity, while 
Tsou et al. (1967) experimentally confirmed the numerical 
results   of   Sakiadis   by   analyzing  the  effects  of  heat  
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transfer on a continuously moving surface  with  constant 
velocity. Sakiadis works was extended by Erickson et al. 
(1966) to include blowing or suction at the stretching 
sheet on a continuously moving surface with constant 
speed and investigated its effects on the heat and mass 
transfer in the boundary layer region. The free-convection 
flow with thermal radiation and mass transfer over a 
moving vertical porous plate was investigated by 
Makinde (2005), whi lst  laminar free convection flow 
from a continuously-moving vertical surface in a 
thermally-stratified non-Darcian high-porosity medium 
was presented by Beg et al. (2008).  

Makinde (2001, 2003, 2008, 2009) have presented 
some works on the subject of magnetohydrodynamics 
(MHD) convection in porous medium. The problem of 
magnetohydrodynamic natural convection about a 
vertical impermeable flat plate can be found in Sparrow 
and Cess (1961), (1964) and Pop and Postelnicu (1999). 
Bakier et al. (1997) presented non-similar solutions for 
free convection from a vertical permeable plate in porous 
media whilst Yih (1999) studied the free convection effect 
on MHD coupled  heat  and  mass  transfer  of  a  moving  
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Figure 1. Physical configuration and coordinate system. 

 
 
 
permeable vertical surface. 

The present communication considers the effects of 
chemical reaction on a free convection of a continuously 
moving porous vertical surface as presented in Makinde 
(2005) and Beg et al. (2008). It investigates numerically 
the effects of heat and mass transfer in a hydromagnetic 
boundary layer flow of a moving vertical porous plate with 
uniform heat generation and chemical reaction. In the 
problem formulation, the continuity, momentum, energy 
and concentration equations are reduced to some 
parameter problem by introducing suitable transformation 
variables. The equations that govern the flow are coupled 
and solved numerically using the Newton–Raphson 
shooting method alongside the fourth-order Runge–Kutta 
integration scheme. The effects of various flow controlling 
parameters such as velocity, temperature and concentra-
tion are presented graphically and discussed quantita-
tively. The local skin-friction coefficient and the heat and 
mass transfer results are illustrated for representative 
values of the major parameters.  
 
 
FORMULATION OF THE PROBLEM 
 
Consider a two-dimensional free convection effects on the steady 
incompressible laminar MHD heat and mass transfer characteristics 
of a linearly started porous vertical plate, the velocity of the fluid far 
away from the plate surface is assumed zero for a quiescent state 
fluid. The variations of surface temperature and concentration are 
linear. The flow configuration and coordinate system are shown in 
Figure 1. 

All the fluid properties are assumed to be constant except for the 
density variations in the buoyancy force term of the linear 
momentum equation. The magnetic Reynolds number is assumed 
to be small, so that the induced magnetic field is neglected. No 
electrical field is assumed to exist and both viscous and magnetic 
dissipations are neglected. The Hall effects, the viscous dissipation 
and the joule heating terms are also neglected. Under these 
assumptions, along with Boussinesq approximations, the  boundary 

 
 
 
 
layer equations describing this flow as: 
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where u and v are the velocity components in x - and y - directions, 

respectively. T is the temperature, Tβ  is the volumetric coefficient 
of thermal expansion, � is the thermal diffusivity, g is the 
acceleration due to gravity, ν  is the kinematic viscosity, D is the 
coefficient of diffusion in the mixture, C is the species 
concentration, � is the electrical conductivity, B0 is the externally 
imposed magnetic field in the y - direction. The relevant boundary 
conditions can be written as: 
 

Vv = , Bxu = , axTTT w +== ∞ , bxCCC w +== ∞ , 

at 0=y ,  

0→u , ∞→ TT , ∞→ CC   as ∞→y ,              (5) 
 
where B is a constant, a and b denotes the stratification rate of the 
gradient of ambient temperature and concentration profiles. We 
introduce the following non-dimensional variables: 
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where F(�) is a dimensionless stream function, �(�) is a 
dimensionless temperature of the fluid in the boundary layer region, 

)(ηφ is a dimensionless species concentration of the fluid in the 
boundary layer region and � is the similarity variable. The velocity 
components u and v are respectively obtained as follows: 
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where νBVFw /= is the dimensionless suction velocity. With 

this new set of independent and dependent variables defined by 
Equation (6), the partial differential Equations (2) to (4) are 
transformed into local similarity equations as follows: 
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where primes denote differentiation with respect to �. The 
appropriate flat plate and free convection boundary conditions are 
also transformed into the form: 
 

1,1,,1 ==−==′ φθwFFF    at   � = 0,            (11) 
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NUMERICAL PROCEDURE 
 
The set of Equations (8) to (10) under the boundary conditions (11) 
have been solved numerically using the Runge–Kutta integration 
scheme with a modified version of the Newton–Raphson shooting 

method.  We let 1xF = , 2xF =′ , 3xF =′′ , 4x=θ , 

5x=′θ , 6x=φ ,  7x=′φ . Equations (8) to (10) are 

transformed into systems of first order differential equations as 
follows: 
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subject to the following initial conditions: 
 

wFx −=)0(1 ,        1)0(2 =x , 13 )0( sx = , 

1)0(4 =x , 25 )0( sx = , 1)0(6 =x , 37 )0( sx = .           (13) 
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Figure 2. Velocity profile for Pr = 0.72, Sc = 0.62, Fw = GT = Gc = 
0.1. 
 
 
 

In a shooting method, the unspecified initial conditions; 1s , 2s  

and 3s  in Equation (13) are assumed. Equation (12) is then 

integrated numerically as an initial valued problem to a given 
terminal point. The accuracy of the assumed missing initial 
condition is then checked by comparing the calculated value of the 
dependent variable at the terminal point with its given value. If a 
difference exists, improved values of the missing initial conditions 
must be obtained and the process is repeated. The computations 
were done by a written program, which uses a symbolic and com-
putational computer language MAPLE. A step size of η∆ = 0.001 
was selected to be satisfactory for a convergence criterion of 10-7 in 
nearly all cases. The maximum value of η∞, to each group of 
parameters Sc, M, Gr, Gc, and Pr are determined when the values 
of unknown boundary conditions at η = 0 does not change to 
successful loop with error less than 10-7. From the process of 
numerical computation, the local skin friction coefficient, the local 
Nusselt number and the local Sherwood number, which are 
respectively proportional to )0(F ′′ , )0(θ ′− , and )0(φ ′−  are 
worked out and their numerical values presented in a tabular form. 
 
 
RESULTS  
 
Numerical results are reported in the Table 1 and Figures 
2 to 17. The Prandtl number was taken to be Pr = 0.72, 
which corresponds to air, the values of Schmidt number 
(Sc) were chosen to be Sc = 0.24, 0.62, 0.78, 2.62, 
representing diffusing chemical species of most common 
interest in air like H2, H2O, NH3, and Propyl Benzene, 
respectively. Attention is focused on positive values of 
the buoyancy parameters, that is, Grashof number GT > 0 
(which corresponds to the cooling problem) and solutal 
Grashof number Gc > 0 (which indicates that the chemical 
species concentration in the free stream region is less 
than the concentration at the boundary surface). From 
Table 1, it is important to note that the skin friction 
together with the heat and mass transfer rate at the 
moving    plate    surface    decreases    with     increasing  

0)Pr( =′−′+′′ θθθ FF

0)( =′−′+′′ φφφ FFSc
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Table 1. Computation showing )0(f ′′ , )0(φ′ and )0(θ ′ for various values of embedded parameter Pr = 0.72. 
   

GT Gc M Fw Sc )0(F ′′  - )0(θ ′  - )0(φ′  

0.1 0.1 0.1 0.1 0.62 0.888971 0.7965511 0.7253292 
0.5 0.1 0.1 0.1 0.62 0.695974 0.8379008 0.7658018 
1.0 0.1 0.1 0.1 0.62 0.475058 0.8752835 0.8020042 
0.1 0.5 0.1 0.1 0.62 0.686927 0.8421370 0.7701717 
0.1 1.0 0.1 0.1 0.62 0.457723 0.8818619 0.8087332 
0.1 0.1 1.0 0.1 0.62 1.264488 0.7089150 0.6400051 
0.1 0.1 3.0 0.1 0.62 1.868158 0.5825119 0.5204793 
0.1 0.1 0.1 1.0 0.62 0.570663 0.5601256 0.5271504 
0.1 0.1 0.1 3.0 0.62 0.275153 0.2955702 0.2902427 
0.1 0.1 0.1 0.1 0.78 0.893454 0.7936791 0.8339779 
0.1 0.1 0.1 0.1 2.62 0.912307 0.7847840 1.6504511 
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Figure 3. Velocity profile for Pr = 0.72, Sc= 0.62, M = GT =Gc = 0.1. 
 
 
 
magnitude of fluid suction (Fw) at the moving surface. The 
rate of heat and mass transfer at the plate surface 
increases with increasing intensity of buoyancy forces 
(GT, Gc) and decreases with increasing intensity of 
magnetic field (M). Moreover, the skin friction decreases 
with buoyancy forces and increases with increasing 
magnetic field inten-sity and Schmidt number (Sc). 
Furthermore, the surface mass transfer rate increases, 
while the surface heat transfer rate decreases with an 
increase in the Schmidt number (Sc).  
 
 
DISCUSSION 
 
Effects of parameter variation on velocity profiles 
 
Generally, the  fluid  velocity  is  higher  near  the  moving  
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Figure 4. Velocity profiles for Pr = 0.72, Sc = 0.62, M = Fw = Gc = 
0.1. 
 
 
 

surface and decreases to its zero value far  away from 
the plate surface sat isfying the far  f ield 
boundary condit ion for al l  parameter values. In 
Figure 2, the effect of increasing the magnetic field 
strength on the momentum boundary-layer thickness is 
illustrated. It is now a well established fact that the 
magnetic field presents a damping effect on the velocity 
field by creating a drag force that opposes the fluid 
motion, causing the velocity to decrease. Figure 3 shows 
an increase in the fluid velocity within the boundary layer 
due to suction. Similar trend is observed with an increase 
in the buoyancy forces parameters (GT, Gc). However, as 
shown in Figures 4 and 5, an upward acceleration of the 
fluid in the vicinity of the vertical wall is observed with 
increasing intensity of buoyancy forces. Further, down-
stream of the fluid motion decelerates to the  free  stream 
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Figure 5. Velocity profiles for Pr = 0.72, Sc=0.62, M = Fw = GT = 
0.1. 
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Figure 6. Velocity profiles for Pr = 0.72, M = Fw= Gc = GT = 0.1. 
 
 
 
velocity. Figure 6 shows a slight decrease in the fluid 
velocity with an increase in Schmidt number. 
 
 
Effects of parameter variation on temperature 
profiles 
 
Figures 7 to 12 show that the fluid temperature attains its 
maximum value at the moving plate surface and 
decrease exponentially to the free stream zero value 
away from the plate satisfying the boundary conditions. It 
is noteworthy that the thermal boundary layer thickness 
increases with an increase in the intensity of magnetic 
field (M) and fluid suction. The trend is  opposite  with  an  
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Figure 7. Temperature profiles for Pr = 0.72, Sc = 0.62, Fw = GT = 
Gc = 0.1. 
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Figure 8. Temperature profile for Pr = 0.72, Sc=0.62, M=GT = Gc = 
0.1. 
 
 
 
increase in both thermal and solutal Grashof numbers 
(Grx, Gcx), that is, a decrease in the fluid temperature is 
observed with an increase in the intensity of buoyancy 
force.  Moreover, the fluid temperature increases slightly 
with an increase in the Schmidt number (Sc) leading to a 
slight increase in thermal boundary layer thickness.  
 
 
Effects of parameter variation on concentration 
profiles 
 
Figures 13 to 17 depict chemical species concentration 
profiles against spanwise coordinate η for varying values 
physical parameters in the  boundary  layer. The  species  
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Figure 9. Temperature profiles for Pr = 0.72, Sc = 0.62, M =Fw=Gc 
= 0.1. 
 
 
 

������ 1.0=cG �

������� 1=cG ��

������ 3=cG �

� � � 5=cG �

 
 
Figure 10. Temperature profiles for P r= 0.72, Sc = 0.62, M=Fw = 
GT = 0.1. 
 
 
 
concentration is highest at the moving plate surface and 
decreases to zero far away from the plate satisfying the 
boundary condition. From these figures,� it is noteworthy 
that the concentration boundary layer thickness increases 
with an increase in the magnetic field intensity (M). The 
same trend is observed with an increase in the magni-
tude of fluid suction at the moving surface. An increase in 
the values of both thermal and solutal Grashof numbers 
due to buoyancy forces causes a decrease in the 
chemical species concentration within the boundary layer 
leading to a decaying concentration boundary layer 
thickness. It is interesting to note that the chemical 
species concentration also decreases within the 
boundary layer with an increase in Schmidt number due  
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Figure 11. Temperature profile for Pr = 0.72, Grx= Gcx= Hax = 
Bix=0.1. 
 
 
 

�
 
Figure 12. Temperature profile for varying suction parameter 
when Pr=0.72, Sc=0.62, Grx=Gcx=1, M=0.1.  

 
 
 
to the combined effects of buoyancy forces and species 
molecular diffusivity. 
 
 
Conclusions 
 
This paper studied the combined effects of wall suction 
and magnetic field on boundary layer flow with heat and 
mass transfer over an accelerating vertical plate. The 
governing equations are approximated to a system of 
non-linear  ordinary  differential  equations   by   similarity 
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Figure 13. Concentration profiles for Pr = 0.72, Sc = 0.62, 
Fw=GT = Gc= 0.1. 
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Figure 14. Concentration profiles for Pr = 0.72, Sc = 0.62, M = 
GT=Gc = 0.1. 
 
 
 
transformation. Numerical calculations are carried out for 
various values of the dimensionless parameters of the 
problem. Our results revealed that the momentum 
boundary layer thickness decreases, while both thermal 
and concentration boundary layer thicknesses increase 
with an increase in the magnetic field intensity. 
Furthermore, an increase in wall suction enhances the 
boundary layer thickness and reduces the skin friction 
together with the heat and mass transfer rate at the 
moving plate surface. 
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Figure 15. Concentration profiles for Pr = 0.72, Sc = 0.62, M = 
Fw = Gc = 0.1. 
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Figure 16. Concentration profiles for Pr = 0.72, Sc= 0.62, M=Fw 

= GT =0.1. 
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Figure 17. Concentration profiles for Pr = 0.72, Grx = Gcx= Bix= 
Hax= 0.1. 
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