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1. Introduction

The knowledge of the statistical distribution any phenomenon follows,
greatly improves the sensitivity, efficiency and the power of the test
associated with it. Because of this, considerable efforts over the years have
been made in the development of large classes of standard probability
distributions along with relevant methodol ogies.

In recent years, new classes of distributions have been proposed by
modifying existing distributions using the Kumaraswamy family of
generalized distributions proposed by Cordeiro and de Castro [1] to cope
with bathtub failure rates. Among these aree Kumaraswamy linear
exponentia distribution [8], Kumaraswamy exponentiated Pareto distribution
[2] and Kumaraswamy generalized gamma distribution [9]. The
Kumaraswamy family has similar properties as the beta-G distribution (see
[4]) but has some advantages in terms of tractability, since it does not involve
any special function such as the beta function.

In this paper, we combine the works of Kumaraswamy [6] and Cordeiro
and de Castro [1] to derive the mathematical properties of a new model,
caled the Kumaraswamy Erlang-truncated exponential (Kw-ETE)
distribution. The Erlang-truncated exponential (ETE) distribution was
developed by El-Alosey [3]. A non-negative random variable X is said to
have the ETE distribution with shape parameter § > 0 and scale parameter

A > 0 if its probability density function (PDF) is given by

)
g(x; B, 1) = pL—e*)ePAETx x5 o, @
The corresponding cumulative distribution function (CDF) is given by

G B, A) =1-ePle)x o @)

2. Kumaraswamy Erlang-truncated Exponential
(Kw-ETE) Distribution

A non-negative random variable X has a Kw-ETE distribution with
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parameters o >0, 6 >0, >0 and L >0 (Kw-ETE(a, 0, B, 1)) if its
CDFisgiven by

Frw-eTE(X @, 6, B, A) =1-[1- (1~ e_B(l_e_k)x)e]a, x>0 (3

The parameters a, 6 and 3 are shape parameters and the parameter A is a
scale parameter. If the parameter o =1, then we obtain exponentiated
Erlang-truncated exponential (EETE) distribution and if o =1, 6 =1, then
the ETE distribution is obtained. The corresponding PDF is given by

2 A
fw-eTE (X @, 8, B, ) = 001 — e *)e PA-E X[y _ g Pll-e )Xo~
—A
x[1- (- e Pa-e x-S o (4
The survival and the hazard rate functions of the Kw-ETE(a., 0, B, 1) are
—A
Skwere(X @, 6, B, &) = [L- (1-e PP x50 ©)

and

hkw-eTE(X O, 6, B, )

2 —\
_ aBp(1- e )e P X ghl-e )x]e—l’ o0 ©)

1-— [1 _ e—ﬁ(l—e_k ) X]O

respectively. The reverse hazard has been shown to play a useful role
in reliability analysis (see [5]). The reverse hazard function of the
Kw-ETE (a, 0, B, 1) distributionis

Tkw-ETE(X @, 6, B, 1)

_ aBp(1— e—%)e—B(l—e‘x)x[l _ e—B(l—e‘”) x]e—l[l —(- e—B(l—e_k)x)e ](x—l
1— [1 _ (1_ e—B(l—e_)‘)x)e ]a

x>0 (7)
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Figure 1 and Figure 2 display the PDF and hazard function of the
KwW-ETE (a, 0, B, 1) distribution, for different parameter values, respectively.
From the figures, it is obvious that the PDF can be decreasing or unimodal
and the hazard can exhibit decreasing, increasing or constant failure rates.

— o=0.4,6=0.1,p=1.6=1.0 — o=2.5,6=0.5,p=1.6=1.0
— o=1.0,6=1.0,p=0.5=0.8 o=0.8,6=1.5p=0.52=0.8
0=5.0,8=2.5,p=0.5)=0.8 — 0=3.5,6=5.0,=0.5=0.8
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Figure 1. PDF of Kw-ETE distribution.

— 0=0.4,8=0.1,p=1.6)=1.0 — o=1.0,6=1.0,p=0.5)=0.8 0=0.8,6=1.5,p=0.51=0.8
0=5.0,8=2.5,p=0.51=0.8 — 0=3.5,8=5.0,8=0.51=0.8
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Figure 2. Hazard function plot of Kw-ETE distribution.
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The PDF of the Kw-ETE(a, 6, B, A) distribution can be written as

a linear combination of the PDFs of the ETE distribution. This result
is important in providing the mathematical properties of the
Kw-ETE(a, 0, B, ) model directly from those properties of the ETE

distribution. For d > 0, aseries expansion for (1- z)4~2, for |z|<1is
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(1_ Z)d -1 Z( 1)k( j Z l£| 11-)(dl—‘(dk)) k (8)

k=0

where I'(-) is the gamma function. Since 0 < e‘B(l_e_ )X <1 for x> 0,

using the series expansion (8) in (4) yields

frw-eTE(X: @, 6, B, 1)

_ op(l—e ") i (-D)1** (e + DT(O(K + 1)) o Bi+D) (e 7)x

ot K j'T(a — k)T(O(k + 1) - J) , X>0
& ()i*Rer(o + 0k + 1) _
) zikwymmna—wrww+n-pfHﬂ*Bhb%% ©)

where fere(X; B4, A) is the PDF of the ETE distribution with shape
parameter B, = B(j +1) and scale parameter 1. When o > 0 isan integer,

theindex k stopsat o —1 and when 6(k + 1) > 0 isan integer, thej stops at
ok +1) — 1.

3. Statistical Properties
In this section, the datistica properties of the newly developed
distribution were derived.

3.1. Quantile, median and mode

The characteristics of a distribution such as the median, skewness and
kurtosis can be studied through the quantile function of the distribution. The
guantile function of a distribution can aso be used to generate random
numbers from the distribution. The Kw-ETE(a, 6, B, &) quantile function,

say Q(p) = FY(p), is straightforward and to be computed by inverting (3).
The pth quantileis given by
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I 1
pL-e™) 1—(1—(1—p)§)%

Xp (10)

which is used for data generation from the Kw-ETE(a, 6, B, 1) distribution.
The random variable p is uniformly distributed on the (0, 1) interval. Using
(10), the median of the Kw-ETE(a., 6, B, A) distribution can be obtained as

= 1 In 1 .
pa-e™) | 1_ 1 (053)5

X05 (11)

The mode, which is defined as the maximum value of the PDF, denoted by
Xo can be obtained by numerically solving the following non-linear equation

(12) since it is not possible to obtain the explicit solution in the general case:
For different special cases, the explicit form may be obtained:

(0-DpL- e ™)ePi-e )X
1 o Bl-€7)x

(a-Depa-e™) e—B(l—e_k)x[l_ e—B(l—e_k)x]e—l

1-(1— e Bl-e7)x)p =p-e7). (12)

3.2. Moments

It is customary to derive the moments when a new distribution is
proposed. Moments play an important role in any statistical analysis,
especially in applications. They are used for finding measures of central
tendency, dispersion, skewness and kurtosis among others. In this subsection,
the rth non-central moment for the Kw-ETE(«, 0, B, A) distribution was

derived.

Proposition 1. If X hasa Kw-ETE(a, 0, B, 1) distribution, then the rth

non-central moment of X is given by the following:
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0

-y (-1)*Kor (o + D(O(k +1)I(r +1)

r= , =12, ...
S T BT P Yo P NI

(13)

Proof. Let X be a random variable having density function (4). The rth
non-central moment of Kw-ETE(«, 6, B, A) distribution is given by

= E(X") = jo X' fw-eTE(X 00, 6, B, A)dX.

Using (9),
. i (-1 **or (o + DT(O(K + 1))
Hr = (& + Do = Tk + 2) - )
x _[: X' ferE (X B i1, M) (14
Then

. = (=)I*Rer(a + )T(O(K + 1))
Hr = j%o KI(] +1)!1"(a—JI;)1"(6(k ++1)— )

© B _a
XIO xrBHl(l—e_k)e Bisa-exg,

Now, define the following substitution:
y=Bjal-e")x=dy=pj.(l-e")dx
Clearly,

x=—
Bj+1(1_ e_k)
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Thus,

LS ()ferenreksy) <[y ],
Hr = j%o G+ Do ITOK s D=5 o L;Hl(l_e—x)} ¢y

0

3 (-1)1 0 (o + 1) T(0(k + 1)) T(r +1)

=12, ...
(oK (1 + DM@~ KTk + D~ ))[B .- )]

This completes the proof.

The mean of the random variable X is obtained by putting r = 1 in (13).
Hence, the mean is

.5 (<1)i*Kor (o + 1) T(O(k + 1)) N
H i«zok’(j+1>’F(a—k>F(6(k+1>—j)B,-ﬂ(l—e—k)' @

The second non-central moment of the random variable X is obtained by
putting r = 2 in (13). Hence, the second non-central moment is

N (-1)1*Kor(a + 1)T(0(k + 1)) T(3)
e j,kzzo K (j + D! Te~ KTk + D) ~ DBjad-e )P wo

The variance of the random variable X is given by

0

o2 = (_1)i+k61“(oc +1Ir(6(k + 1)I(3) o
j,kZ:O k! (J + 1)! o — k)F(G(k +1) - j)[Bj+1(1— e_x)]z us. (17)

Based on the first four non-central moments of the Kw-ETE(a, 6, B, 1)
distribution, the coefficient of skewness and kurtosis can be obtained as

! _ ! 3
Skewness(X ) = 13 &uu+§u

(ny - n?)2
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and
! _ ! ’ 2_ 4
Kurtosis(X ) = 14 4“3lf+6“222 3
(W2 —p%)

respectively.
3.3. Moment generating function
In this subsection, the moment generating function of a random variable

X having a Kw-ETE(a., 6, B, ) distribution was derived.

Proposition 2. If X has Kw-ETE(a, 6, B, 1) distribution, then the

moment generating function M y (t) hasthe form

o0

(1)1 *kOr (o + DT(O(K + V)T(r + D"
My (t) =
x (t) j,k,Zr:Or!k!(j + DT (o — k)I'(B(k +1) - j)[BjJrl(l_e—k)]r

. (18)
Proof. The moment generating function is obtained using the definition
My (t) = E(e%) = J: e frw-eTe(X @, 6, B, 1)dx. (19)

Using the Taylor series expansion of e, (19) can be written as

© tr S - tr '
My (t) = Zr—!jo X frw-ETE(X @, 6, B, L)dx = Zﬁ“r
-0 r=0

B S C L CE T (S (R
jreo MK+ DIT(@ — Tk + D = ) [Bj @- )]

This completes the proof.

3.4. Incomplete moment

In this subsection, the incomplete moment for a random variable X
having a Kw-ETE(a, 0, B, A) distribution was derived. The incomplete

moment is useful in caculating the mean and median deviations, and
measures of inequalities such as the Lorenz and Bonferroni curves.
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Proposition 3. If X has Kw-ETE(q, 6, B, ) distribution, then the
incomplete moment M, (z) hasthe form

2 (-)IRer(o + Dr(O(k + V)y(r +1, Bj,1(1-€™)2)
M (2) = Z . . A \Tr
o KG+D(a - K)T(OK +1) = ))[Bj21-e7")]
r=212.., (20

where y(9, z) = j()zxs‘le‘xdx is the lower incomplete gamma function.

Proof. Let X be a random variable having density function (4). The
incomplete moment of the Kw-ETE(a., 0, B, A) distribution is given by

z
MI’(Z) = IO Xr fKW-ETE(X; a, 9, B, 7\.)dX
Using (9),

< ()itker(a + re(k + 1)
M, (2) = jéo K'(j+D!'T(a - k)T(6(k +1) - )

z
X Io X' fere (X i1, A)dx

~ i (-1)!*Kor(a + DOk + 1))
- = K(j+1) T(o.—K)ITOK+D -]

e
x JozxrBj R e‘k)e_B jr=e g, (21)

Using similar concept for proving the moments

= (<D *Rer(a + )r(e(k + 1)
M, (2) = Z KI(j+D)!T(a — K)T(O(k +1) - j)

i, k=0

r
Bjs1-e )z y _y
« Y | ey
IO L&jﬂ(l_ e_k)]
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Thus,
ML (2) = i (_1)J.+ker(a + 1Tk + 1)) y(r JTL Bjad- ik)rz)
o K+ = k)r(O(k +1) = [)[Bj1(1-e")]

r=12, ...

This completes the proof.
3.5. Mean and median deviations

Let X ~ Kw-ETE(«, 0, B, A). The amount of scatter in X is evidently

measured by the totality of deviations from the mean and median. They are
known as the mean deviation and median deviation defined by

o0
31(X) = Jo | X = p| fxw-gTe (X 00\ 6, B, A)dx

and
32(X) = Io | X =@ fxw-gTE(X 00\ 6, B, X)X,

respectively, u = E(X) and ¢ is the median of X. The measures ,(X) and
82()() can be determined by 61()() = ZMFEETE(M) - ZMl(u) and 82()() =
p — 2M4 (o). Itiseasy to compute M4(n) and M1(p) from (20).

3.6. Inequality measures

The Lorenz and Bonferroni curves have many applications not only in
economics to study income and poverty but also in other fields like
reliability, medicine and insurance. The Lorenz curve, Lg(x) can be defined

as the proportion of total income volume accumulated by those units with
income lower than or equa to the volume, and the Bonferroni curve, Bg (x)

is the scaled conditional mean curve, that is the ratio of group mean income
of the population.

Proposition 4. If a random variable X has a Kw-ETE(a, 6, B, 1)
distribution, then the Lorenz curve Lg (x) isgiven by

L=t i (1)) **6r(a + DI(B(k + D)Y(2, Bj41(l-€7)2)

. _ = (@)
u i’k=0 K(j+D)!'T (a0 — k)T(O(k + 1) — J)Bj+1(l—e )
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Proof. By definition, the Lorenz curve can be obtained using the
relationship

ontf(t)dt

Le () = m

The integra j(;(tf(t)dt is the first incomplete moment which can be

obtained from (20). Thus, this proof is complete.

Proposition 5. If a random variable X has a Kw-ETE(q, 6, B, 1)

distribution, then the Bonferroni curve Bg (x) is given by

1
uFkw-eTE(X @, 6, B, 1)

Br (x) =

. (23)

3 (D7 0r (e + Dok + D)7(2 pj.al-e™)2)
X

(40 K+ DT - krOk +1) - j)Bj,a1-e")
Proof. The proof can easily be obtained from the relationship

BF (X) = Llf((x);) )

where F(x) isthe CDF. This completes the proof.

3.7. Entropy

Statistical entropy is a probabilistic measure of uncertainty or ignorance
about the outcome of a random experiment and is a measure of reduction in
that uncertainty. Various entropy and information indices exist, among them
the Rényi entropy has been developed and used in many disciplines and
context. For a random variable X having a PDF f(x), the Rényi entropy is

defined by
I(3) = ﬁlog[ | . fé(x)dx} (24)

for >0 and & = 1.
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Proposition 6. If a random variable X has a Kw-ETE(a, 6, B, 1)
distribution, then the Rényi entropy is given by

IR(3) = +log(a0) - loglp(1— &)

1 [i (-1 K T(8(a—1) + ) T(0(8 + K) - 5+1) ]
1+8 j )

+——log s T+ T (e -D)-K+DI(6(-+K)—5-] +1)

(25)
Proof. Using (24), the Rényi entropy is given by

1 © % _—B(1—e M (e M) 10—
I r(8) :mlog[jo {a0p(1l-e x)e B(l-e )X[l—e B(l-€ )x]e 1
<L-- e_B(l‘ek)X)e]“‘l}sdx}' (26)
Using the binomial expansion, (26) can be written as

IR() = Iog{(oce)8 pa-e™)p

0

> (-1)I K T(8(a = 1) + DT(O(5 + k) — & + 1)
JTKIT(8(a —1) -k + DT(O(E + k) — 8 — j +1)

X
i, k=0

N J“’ eB(6+k)(1e7‘)de]
0

1 —
— -~ log (00)°[B(-e )P

0

. (~1)IKD(8(0 — 1) + DT(O(5 + K) - 5 +1)
{0 KB )3+ (B 1)~ k+DT(O(5 + k) =5 - j+1) |
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Thus,

|R(8) = 7><100(00) — log[B(1 - & )]

1 S (1)K D(8(0 = 1) + D) T(O(5 + K) — 8 +1)
t15'09 _%o K+ ) T(E(c—1)-k+)Ir(0B+ k)-8 +1) |

This completes the proof.
3.8. Reliability

The estimation of reliability isimportant in stress-strength models. If X;
is the strength of a component and X, is the stress, then the component fails
when X, > X;. Then the estimation of the reliability of the component Ris
P(X5 < X1). When X; and X, aredistributed independently as

Xl ~ KW-ETE(O(.]_, 91, Bl! 7\,1) and X2 ~ KW—ETE(Otz, 92, Bz, 7\,2),

then the reliability is given by
R= j J OR (=1 j o (0 (x)d 27)

Proposition 7. If X; and X, are the strength and stress of a component,
respectively, and are distributed independently as
X1 ~ Kw-ETE(0y, 61, B1, A1) and X, ~ Kw-ETE(ap, 65, Bo, Ao),
then the reliability of the component is given by
gy % 1
R=1-0h-e )i, j,kz,:g:owi, bt [B1(j +D (21— e‘xl) +Bol(1- e 2 )] ’

(28)

where

()R (g + DT(By(k + D) T (0 + DT (01 + 1)
@ikt = KA T (o — K)D(0g(k + 1) — Do — 1 + DT — £ +1)°
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Proof. Using (27),

R=1- j : £1(X) Sy(x)dx,

1) = a0y (1 — e 1)e Prll-e "X g Pall-e X0

K [L— (1— & Prl-€"1)x)01 o1 (29)
and
-
S(x) = [1- (- e Plt-e 2 )xhaps, (30)
Using the binomial series expansion, (27) can be written as
R=1-0f1-¢™) 3 o s I " e (i) e M) eBor1-e )] x g,

i, jk, (=0 0
(31)

where

()R (g + DT(By(k + D) T (0 + DT (01 + 1)
@ikt = KA T (o — K)D(0g(k + 1) — Do — 1 + DT — £ +1)°

Thus,

R=1-08,(1-€ ) 3 ik, : 1 —
' i,j%_o ks [B(j +D(@-e)+por(l—e2)]

This completes the proof.
3.9. Probability weighted moments
In this subsection, the probability weighted moments (PWMs) of the

Kw-ETE(a, 6,3, 1) distribution were derived. The PWMs method can be

used generaly to estimate parameters of a distribution whose inverse form
cannot be expressed explicitly. For arandom variable X with PDF f(x) and

CDF F(x), the (r,s)th PWM of X (for r > 1, s > 0) isformally defined as
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pr.s = EIX", F200 = [ xRS0 f (9o (32)

Proposition 8. If a random variable X has a Kw-ETE(a,6,,1)
distribution, then the (r, s)th PWM of X (for r > 1, s > 0) isgiven by

o 53 (=) IR (s + )Mok + 1) T(O(j +1)I(r +1)
Pr.s B+ 1) KT (s— K+ DN (a(k+)— HI(O( +D-1)[BI +DA-e )]
(33
Proof. Using (32),
pr.s = EIX", F00] = [ X F00 £ (0
F3() = [1- (- @- e Pexep,
Using the binomial series expansion, (32) can be written as
Pr,s = aBB(1- e™)
- (1)K (s + DT (alk + 1)T(0(] + 1))
ig;dHWWG—k+DHMk+D—DF®U+D—D
x I;O X e Bl+1) (=€) x g (34)

Now, define the following substitution:

y=Bli+D(1-e7)x = BL-e ")k~ ; iyl).

Clearly,

_ y
= Bi+)(1-e™)
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~ i (-1 Ik (s + D (a(k + )T(O(j +1)
Pr.s =4 it J1KIT(s— K + )T (ou(k + 1) — )T(0(j + 1) i)

i, ] k=0

k) e
0\ B +1)(1—e*) (i+1)

w0 i (=)' R (s + )T (ak + 1) T(O(j +D)I(r +1)
o+ DN (s—k+ DT ek +1) - )I(O(j +1)-i)[B( +1)(a-e ™))"

This completes the proof.
4. Distribution of Order Statistics

In this subsection, the PDF of the ith order statistic was derived. Let
X1, Xo, ...y X be a random sample from an EETE distribution and

X1n £ Xo.p < -+- < Xy denote the corresponding order statistics obtained
from the sample. Then the PDF, f;.,(x), of the ith order statistic X;., is
given by

fin() = g7y PO T FOOP ()

where F(x) and f(x) are the CDF and PDF given by (3) and (4),
respectively, and B(;, -) isthe beta function. Since 0 < F(x) <1 for x > O,

by using the binomial series expansion of [1— F(x)]”_i, given by
- PO = nf,(—l)k[” | JiFoor
) k=0 K |
we have

fin(x) = m kz;;)(_l)k(n; ij [F(X)]i+k_l f(x), (35)
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therefore substituting (3) and (4) into (35), one gets

n—ii+k-1 i+k .
(1)K T(n + DG + k)
fin0 = 2, jZ;) G DTG =D (=T = k)

x frw-TE(X @ j41, 0, B, 1), (36)
where fyuw-eTe (X oji1, 0, B, 1) is the PDF of the Kw-ETE distribution

with parameters aj,q = a(j +1), 6,  and A. Relation (36) revealed that

fi.n(x) is the weighted average of the Kw-ETE distribution with different
shape parameters.

Proposition 9. The rth non-central moment of the ith order statistic X;.,

isgiven by
o n-ii+k-1
f(iin) _ _ r(r+1) _
et =0 Dmr, j,k —_r=12.. (37)
m,ZZ;0k=O i=0 [Bm+D@-e™)
where

(D)0 4 )G+ K)o g +DT(O(C +1))
Om Lk S M (DN - D! (-1 — K)oy - OTO(C+1)—m)’

Remark. The proof for Proposition 9 can be derived by using the
concept for the rth non-central moment of the Kw-ETE distribution.

5. Estimation and Inference

In this section, the method of maximum likelihood estimation was
established for estimating the parameters of the Kw-ETE distribution
developed. Let Xj, X5, ..., X, be arandom sample with observed vaues

X1, X2, ..., Xn from Kw-ETE distribution with parameters o, 6, B and L. Let

O = (o, 6, B, X)T be the parameter vector. The log-likelihood function is
given by
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(38)

(39)

(40)

(41)

(42)
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The maximum likelihood estimate of ©, say ©, is obtained by equating
(39), (40), (41) and (42) to zero and solving the non-linear system of
equations numerically. For interval estimation and hypothesis tests on the
model parameters, the information matrix is required. The information matrix
isgiven by
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Under conditions that are fulfilled for parameters in the interior of the
parameter space but not on the boundary, the asymptotic distribution of

Vn(© - ©) is Ny (o, Jn(®)_1), where J,(®) is the expected information
matrix. This asymptotic behavior is valid if J,(®) is replaced by 1,(®),
that is, the observed information matrix is evaluated at ®. The asymptotic

multivariate normal N4(0, In(@))_l) distribution can be used to construct

approximate confidence intervals and confidence regions for the individual
parameters. A 100(1-y)% asymptotic confidence interval for each parameter

®; isgiven by

ACH = (&; -z, iy, & - z\/_)
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where [;; isthe (i, i) diagonal element of In((:))_1 fori=123 ad Z,

N

isthe quantile 1 — % of the standard normal distribution. The likelihood ratio

(LR) test can be used to compare the fit of the Kw-ETE distribution with its
sub-model for a given data set. For example, totest a = 1, the LR statisticis

o = 2008, 6, B, ) - £(1, 0, B, V)],

where @, 5, E A are the unrestricted estimates, and 5, E % are the
restricted estimates. The LR test rejects the null hypothesisif o > xé, where

xé denotes the upper 100d% point of the XZ distribution with one degree of
freedom.

6. Application

In this section, real data set was analyzed to illustrate the desirable
performance of the Kw-ETE model in practice. The data set was cited from
Lawless [7]. The data set consists of failure times for 36 appliances subjected
to an automatic life test and are given as: 11, 35, 49, 170, 329, 381, 708, 958,
1062, 1167, 1594, 1925, 1990, 2223, 2327, 2400, 2451, 2471, 2551, 2565,
2568, 2694, 2702, 2761, 2831, 3034, 3059, 3112, 3214, 3478, 3504, 4329,
6367, 6976, 7846, 13403. Here to illustrate that the Kw-ETE distribution can
be a reasonable model, we compared it with modified Weibull distribution
(MWD), exponentiated Weibull distribution (EWD), new generalized linear
exponentia distribution (NGLED), Erlang-truncated exponential distribution
(ETE) and exponentiated Erlang-truncated exponential distribution (EETE).
Table 1 displays the maximum likelihood estimates (MLES) of the parameters
of the fitted models, their standard errors and their log-likelihood (/).
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Table 1. Maximum likelihood estimates of the parameters of the fitted
models

Model Parameter estimates  Standard error !
NGLED & = 12.093x 10t 0.196
A =3.480x104 6.233x 1072 -358.99

p=12209x10"1  4668x1072

7=6263x10°  7.466x10°3

EWD & = 4587 1.003
B =1.306 0.234 -367.73
vy = 0.079 1.437 x 1072
MWD A=3452x10"%  6.208x107°
B =1.700 1714 x10°° 38195
7=4540x10°  5390x10°°
ETE B=3620x10"  6049x10°° 321,19
A =9.342 1.922 x 10712
EETE 6 = 0.960 0.205
B=3535x10"°  7.699x107° -321.17
A =10.706 2.258 %107/
Kw-ETE & = 3.474 2631x 1073
0=0321 6.165 x 1072 —303.56
B =1.055 9.193x 1073

A =3.718x107° 1.256 x 107>

The variance-covariance matrix of the MLEs under the Kw-ETE
distribution is computed as

6.920x10°% 1.622x10™* -2.418x107° 1.709x10°8
1.622x10%  3.800x10°° -5.667x10"% 4.005x10°’
~2.418x107° -5667x10% 8451x10° -5973x10°|
1.709x108  4.005x1077 -5.973x10° 1.578x107°

(@)L=



298 Suleman Nasiru, Albert Luguterah and Mohammed Muniru Iddrisu

Therefore, 95% confidence intervals for o, 0, and A are [3.469, 3.479],

[0.200, 0.442], [1.037, 1.073] and [1.256 x 10, 6.180 x 10°], respectively.
In order to compare the fitted distributions, criteria like the Akaike
Information Criterion (AIC), Corrected Akaike Information Criterion (AlCc),
Bayesian Information Criterion (BIC) and -2/ were used. The better
distribution corresponds to smaller AIC, AICc, BIC and -2/ vaues. The

values in Table 2 indicate that the Kw-ETE distribution leads to a better fit
than the other models.

Table 2. Criteriafor comparison

Model =2/ AlC AlCc BIC
NGLED 717.986 725.986 727.276 732.320
EWD 735.457 741.457 742.225 746.208
MWD 763.898 769.898 770.648 774.649
ETE 642.372 646.372 646.736 649.539
EETE 642.335 648.335 649.085 653.086
Kw-ETE 607.114 615.114 616.404 621.448

Further, the likelihood ratio test was performed to compare the Kw-ETE
distribution with its sub-models (EETE and ETE). The results from Table 3,
clearly revealed that the Kw-ETE distribution provides a better fit than its
sub-models.

Table 3. Likelihood ratio test

Model Test statistics P-value
ETE versus Kw-ETE 35.260 0.000
EETE versus Kw-ETE 35.220 0.000

7. Simulation

Simulation studies were performed in this section to investigate the
performance of the accuracy of point estimates of Kw-ETE(a, 6, B, 1)

distribution. The simulation studies were performed with sample sizes
n =100, 200, 300, 400 and 500. For each of the true parameter vaue



Generalized Erlang-truncated Exponential Distribution 299

a=10 6=05 p=15and A = 0.8 wesimulate 1000 samples. Table 4

displays the Average Estimate (AE) and the Root Mean Square Error
(RMSE). From the results, it was clear that as the sample size increases, the
AE of the parameters approaches the true parameter values and the RMSE

decay towards zero.
Table 4. Simulation results (AE and RM SE)

n Parameters AE RMSE
a 1.380 0.399
0 0.420 0.796

100
B 0.662 0.838
A 0.541 0.259
a 1.313 0.314
0 0.439 0.608

200
B 0.963 0.807
A 0.603 0.224
a 1.297 0.295
0 0.536 0.438

300
B 1.205 0.713
A 0.672 0.135
a 1.256 0.214
0 0.524 0.311

400
B 1.443 0.543
A 0.775 0.119
a 1.013 0.187
0 0.511 0.251

500
B 1.467 0.411
A 0.813 0.103

Also, we simulated random numbers of size n = 30 and employed the
techniques of maximum likelihood estimate to compare the performance of
Kw-ETE distribution with NGLED, EWD, MWD, ETE and EETE. Table 5
displays the parameter estimates of the various models with their standard
errors in bracket. It was obvious that the Kw-ETE distribution performs
better than the other candidate models since it has the highest log-likelihood
value and smallest AIC value.
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Table 5. Estimates of model parameters for ssmulated data

Model a A o Y 0 ! AIC
NGLED 0.025 0.058 5.991 0.012 - -329.18 666.36
(0.017)  (0.023) (0.008)  (0.003)
EWD 0.013 - 4.204 0.244 - -330.88 667.76
(0.0026) (0.0071)  (0.104)
MWD - 1.133 0.086 2477 - -327.16 660.32
(0.00163) (0.036)  (0.102)
ETE 0.042 0.356 - - -321.51 647.02
(0.0013)  (0.113)
EETE - 0.0004 1735 - 0.175 -320.80 647.60
(0.000006)  (0.339) (0.043)
Kw-ETE 0.914 6.345 0.245 - 0.595 -314.80 637.60
(0.0051) (0.0001) (0.0005) (0.128)

8. Conclusion

We introduced and studied a new lifetime model called the
Kumaraswanmy Erlang-truncated exponential distribution. The structural
properties of this new model, including the expressions for the moments,
moment generating functions and order statistics were derived. The method
of maximum likelihood was employed for estimating the model parameters.
We demonstrated the application of the new model using real data set. The
new model provided a better fit than its sub-models and other competing
models. It is our hope that the new model will attract wider application in
different areas such as engineering and economics.
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