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1 Introduction

The Dirichlet beta function (also known as the Catalan
beta function or the Dirichlet’sL-function) is defined for
x> 0 by [4, p. 56]

β (x) =
1

Γ (x)

∫ ∞

0

tx−1

et +e−t dt (1)

=
∞

∑
n=0

(−1)n

(2n+1)x

where Γ (x) is the classical Euler’s Gamma function
defined as

Γ (x) =
∫ ∞

0
tx−1e−t dt

and satisfying the basic relation

Γ (x+1) = xΓ (x). (2)

Let K(x) be defined as

K(x) = β (x)Γ (x) =
∫ ∞

0

tx−1

et +e−t dt, x> 0. (3)

The Dirichlet beta function, which is closely related to the
Riemann zeta function, has important applications in
Analytic Number Theory as well as other branches of
mathematics. See for instance [2], [3] and the related
references therein. In particular,β (1) = π

4 andβ (2) = G,

whereG= 0.915965594177... is the Catalan constant [5].

For positive integer values ofn, the functionβ (x) may be
evaluated explicitly by

β (2n+1) =
(−1)nE2nπ2n+1

4n+1(2n)!

whereEn are the Euler numbers generated by

1
coshx

=
2

ex+e−x =
∞

∑
n=0

En
xn

n!
.

Also, in terms of the polygamma functionψ(m)(x), the
functionβ (x) may be written as [6]

β (n) =
1

22n(n−1)!

[

ψ(n−1)
(

1
4

)

−ψ(n−1)
(

3
4

)]

.

The main objective of this paper is to establish some
inequalities involving the Dirichlet Beta and Euler’s
Gamma functions. We begin by recalling the following
lemmas which shall be required in order to establish our
results.

2 Preliminaries

Lemma 1(Generalized Ḧolder’s Inequality). Let
f1, f2, . . . , fn be functions such that the integrals exist.
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Then the inequality

∫ b

a

∣

∣

∣

∣

∣

n

∏
i=1

fi(t)

∣

∣

∣

∣

∣

dt ≤
n

∏
i=1

(

∫ b

a
| fi(t)|

αi dt

)
1
αi

(4)

holds forαi > 1 such that∑n
i=1

1
αi

= 1.

Proof.See page 790-791 of [1].

Lemma 2(Generalized Minkowski’s Inequality). Let
f1, f2, . . . , fn be functions such that the integrals exist.
Then the inequality

(

∫ b

a

∣

∣

∣

∣

∣

n

∑
i=1

fi(t)

∣

∣

∣

∣

∣

u

dt

)
1
u

≤
n

∑
i=1

(

∫ b

a
| fi(t)|

u dt

)
1
u

(5)

holds for u≥ 1.

Proof.See page 790-791 of [1].

Lemma 3([9]). Let f and h be continuous rapidly
decaying positive functions on[0,∞). Further, let F and
H be defined as

F(x) =
∫ ∞

0
f (t)tx−1 dt and H(x) =

∫ ∞

0
h(t)tx−1dt.

If f (t)
h(t) is increasing, then so isF(x)

H(x) .

Lemma 4([7]). Let f and g be two nonnegative functions
of a real variable and m, n be real numbers such that the
integrals in (6) exist. Then

∫ b

a
g(t)( f (t))m dt ·

∫ b

a
g(t)( f (t))n dt

≥

(

∫ b

a
g(t)( f (t))

m+n
2 dt

)2

(6)

Lemma 5([8]). Let f : (0,∞)→ (0,∞) be a differentiable,
logarithmically convex function. Then the function

g(x) =
( f (x))α

f (αx)

is decreasing ifα ≥ 1, and increasing if0< α ≤ 1.

3 Main Results

We present the main findings of the paper in this section.

Theorem 1.For i = 1,2, . . . ,n, let αi > 1 such that
∑n

i=1
1
αi

= 1. Then the inequality

Γ
(

∑n
i=1

xi
αi

)

∏n
i=1 (Γ (xi))

1
αi

≤
∏n

i=1 (β (xi))
1

αi

β
(

∑n
i=1

xi
αi

) (7)

is valid for xi > 0.

Proof.Let K(x) be defined as in (3). Then by utilizing
Lemma1, we obtain

K

(

n

∑
i=1

xi

αi

)

=

∫ ∞

0

t
(∑n

i=1
xi
αi
)−1

et +e−t dt

=

∫ ∞

0

t∑n
i=1

xi−1
αi

(et +e−t)∑n
i=1

1
αi

dt

=
∫ ∞

0

n

∏
i=1

(

txi−1

et +e−t

)

1
αi

dt

≤
n

∏
i=1

(

∫ ∞

0

txi−1

et +e−t dt

)

1
αi

=
n

∏
i=1

(K(xi))
1
αi

which gives the required result (7).

Remark.If n= 2, α1 = a, α2 = b, x1 = x andx2 = y, then,
we have

K
(x

a
+

y
b

)

≤ (K(x))
1
a (K(y))

1
b

which implies thatK(x) is logarithmically convex. Also,
since every logarithmically convex function is convex, it
follows thatK(x) is convex.

Corollary 1.The inequality

[

β ′(x)
β (x)

]2

−
β ′′(x)
β (x)

≤ ψ ′(x) (8)

holds for x> 0, where ψ(x) = Γ ′(x)
Γ (x) is the Digamma

function.

Proof.SinceK(x) = β (x)Γ (x) is logarithmically convex,
then(lnK(x))′′ ≥ 0 which results to (8).

Theorem 2.Let xi > 0, i = 1,2, . . . ,n and u≥ 1. Then the
inequality

(

n

∑
i=1

β (xi)Γ (xi)

) 1
u

≤
n

∑
i=1

(β (xi)Γ (xi))
1
u (9)

holds.

Proof.Let K(x) be defined as in (3). Then by using the fact
that∑n

i=1au
i ≤ (∑n

i=1ai)
u, for ai ≥ 0, u≥ 1 in conjunction
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with Lemma2, we obtain

(

n

∑
i=1

K(xi)

) 1
u

=

(

n

∑
i=1

∫ ∞

0

txi−1

et +e−t dt

) 1
u

=

(

∫ ∞

0

n

∑
i=1

txi−1

et +e−t dt

) 1
u

=

(

∫ ∞

0

n

∑
i=1

[

t
xi−1

u

(et +e−t)
1
u

]u

dt

)

1
u

≤

(

∫ ∞

0

[

n

∑
i=1

t
xi−1

u

(et +e−t)
1
u

]u

dt

)

1
u

≤
n

∑
i=1

(

∫ ∞

0

[

t
xi−1

u

(et +e−t)
1
u

]u

dt

)

1
u

=
n

∑
i=1

(K(xi))
1
u

which yields the result (9).

Theorem 3.The functionβ (x) is monotone increasing on
(0,∞). That is, for0< x≤ y, we have

β (x)≤ β (y). (10)

Proof.Let F , H, f andh be defined as

F(x) =
∫ ∞

0

tx−1

et +e−t dt, H(x) =
∫ ∞

0
tx−1e−t dt = Γ (x),

f (t) =
1

et +e−t and h(t) = e−t
.

Then, f (t)
h(t) =

1
1+e−2t is increasing and by Lemma3, F(x)

H(x) is
increasing as well. Thus, for 0< x≤ y, we have

F(x)
H(x)

≤
F(y)
H(y)

⇐⇒ F(x)H(y)≤ F(y)H(x)

which implies

∫ ∞

0

tx−1

et +e−t dt ·
∫ ∞

0
ty−1e−t dt

≤

∫ ∞

0

ty−1

et +e−t dt ·
∫ ∞

0
tx−1e−t dt

which further implies

β (x)Γ (x)Γ (y)≤ β (y)Γ (y)Γ (x).

Thus
β (x)≤ β (y)

as required.

Corollary 2.Let xi > 0 for i = 1,2,3, . . . ,n. Then the
inequality

n

∏
i=1

β (xi)≤

[

β

(

n

∑
i=1

xi

)]n

(11)

is valid.

Proof.Let xi > 0 for i = 1,2,3, . . . ,n. Then sinceβ (x) is
increasing, we have

0< β (x1)≤ β

(

n

∑
i=1

xi

)

,

0< β (x2)≤ β

(

n

∑
i=1

xi

)

,

...
...

0< β (xn)≤ β

(

n

∑
i=1

xi

)

.

Taking products yields

n

∏
i=1

β (xi)≤

[

β

(

n

∑
i=1

xi

)]n

as required.

Remark.In particular, ifn= 2, x1 = x andx2 = y in (11),
then we obtain

β (x)β (y)≤ [β (x+ y)]2 .

Theorem 4.The inequality

(x+1)
β (x+2)
β (x+1)

≥ x
β (x+1)

β (x)
(12)

holds for x> 0.

Proof.Let x > 0, g(t) = 1
et+e−t , f (t) = t, m= x− 1, n =

x+1,a= 0 andb= ∞. Then by Lemma4, we have

∫ ∞

0

tx−1

et +e−t dt ·
∫ ∞

0

tx+1

et +e−t dt ≥

[

∫ ∞

0

tx

et +e−t dt

]2

which implies

β (x)Γ (x) ·β (x+2)Γ (x+2)≥ [β (x+1)Γ (x+1)]2 . (13)

By using the functional equation (2), the relation (13)
becomes

(x+1)β (x)β (x+2)≥ x(β (x+1))2

which gives the required result.
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Remark.We deduce from inequality (12) that the function

φ(x) = x
β (x+1)

β (x)

is increasing on(0,∞). This implies

β (x+1)
β (x)

+ x

[

β (x+1)
β (x)

]′

≥ 0

or equivalently,

β (x+1)

[

1− x
β ′(x)
β (x)

]

+ xβ ′(x+1)≥ 0

for x> 0.

Corollary 3.The inequality

4G
π

< x
β (x+1)

β (x)
<

π3

16G
(14)

holds for x∈ (1,2), where G is the Catalan’s constant.

Proof.Since φ(x) = xβ (x+1)
β (x) is increasing, then for

x ∈ (1,2), we haveφ(1) < φ(x) < φ(2) which results to
(14).

Theorem 5.Let α ≥ 1 and x∈ (0,1). Then,

Gα

β (1+α)Γ (1+α)
≤

[β (1+ x)Γ (1+ x)]α

β (1+αx)Γ (1+αx)
≤
(π

4

)α−1

(15)
where G is the Catalan’s constant. The inequality is
reversed if0< α ≤ 1.

Proof.Let f (x) = β (1 + x)Γ (1 + x). Then f (x) is
differentiable and by Remark3, it is logarithmically
convex. Then by Lemma 5, the function
g(x) = [β (1+x)Γ (1+x)]α

β (1+αx)Γ (1+αx) is decreasing forα ≥ 1. Hence for

x∈ (0,1), we haveg(1) ≤ g(x) ≤ g(0) yielding the result
(15). If 0 < α ≤ 1, then g(x) is increasing and for
x ∈ (0,1), we haveg(0) ≤ g(x) ≤ g(1) which gives the
reverse inequality of (15).

4 Conclusion

In this study, we have established some inequalities
involving the Dirichlet beta and Euler’s Gamma
functions. We have also discussed the monotonicity of the
Dirichlet beta function. The generalized forms of the
Hölder’s and Minkowski’s inequalities among other
analytical techniques were employed.
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