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1. Introduction
Inequalities involving the classical Euler’s Gamma

function has gained the attention of researchers all over 
the world. Recent advances in this area include those 
inequalities involving ratios of the Gamma function. In 
[1,5,6,10] and [11-17], the authors established some 
interesting inequalities concerning such ratios, as well as 
some generalizations. By utilizing similar techniques, this 
paper seeks to present some new results generalizing the 
results of [11-17]. At the end, we pose some open 
problems involving the generalized Psi functions. In the 
sequel, we recall some basic definitions concerning the 
Gamma function and its generalizations. These definitions 
are required in order to establish our results. 

The well-known classical Gamma function, ( )tΓ  and 
the classical Psi or Digamma function ( )tψ  are usually 
defined for 0t >  as: 

1

0

( )( ) and ( ) .
( )

x t tt e x dx t
t

ψ
∞

− − ′Γ
Γ = =

Γ∫

The p-Gamma function, ( )p tΓ  and the p-Psi function 

( )p tψ  are defined for p N∈  and 0t >  as: 
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where ( ) ( )p t tΓ → Γ and ( ) ( )p t tψ ψ→  as p →∞ . For 
more information on this function, see [9] and the 
references therein. 

Also, the q-Gamma function, ( )q tΓ  and the q-Psi 

function ( )q tψ  are defined for (0,1)q∈  and 0t >  as: 
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where ( ) ( )q t tΓ → Γ and ( ) ( )q t tψ ψ→  as 1q −→ .
See also [4,5] and the references therein. 
Similarly, the k-Gamma function, ( )k tΓ  and the k-Psi 

function ( )k tψ  are defined for 0k >  and 0t >  as (see 
[2,7]): 
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where ( ) ( )k t tΓ → Γ and ( ) ( )k t tψ ψ→  as 1k → . 
Also, the (q,k)-Gamma function ( , ) ( )q k tΓ  and the 

(q,k)-Psi function ( , ) ( )q k tψ  are defined for (0,1)q∈ , 

0k >  and 0t >  as [3]: 
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= +∏ is the k-generalized Pochhammer

symbol and ( , ) ( ) ( )q k t tΓ → Γ , ( , ) ( ) ( )q k t tψ ψ→  as 1q −→ ,

1k → . 
Furthermore, the (p,q)-Gamma function ( , ) ( )p q tΓ  and 

the (p,q)-Psi function ( , ) ( )p q tψ  are defined for p N∈ , 

(0,1)q∈  and 0t >  as [8]: 
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, and ( , ) ( ) ( )p q t tΓ → Γ , ( , ) ( ) ( )p q t tψ ψ→  

as p →∞ , 1q −→ . 
As defined above, the generalized Psi functions: ( )p tψ , 

( )q tψ , ( )k tψ , ( , ) ( )q k tψ and ( , ) ( )p q tψ  possess the 
following series forms (see [16,17] and the references 
therein): 

 
0

1( ) In
p

p
n

t p
n t

ψ
=

= −
+∑  (1) 

 
1

( ) In(1 ) (In )
1

nt

q n
n

qt q q
q

ψ
∞

=
= − − +

−
∑  (2) 

 
1

In - 1( )
( )k

n

k tt
k t nk nk t
γψ

∞

=
= − +

+∑  (3) 

 ( , )
1

( ) In[ ] (In )
1

p nt

p q q n
n

qt p q
q

ψ
=

= +
−

∑  (4) 

 ( , )
1

-In(1 )( ) (In )
1

nkt

q k nk
n

q qt q
k q

ψ
∞

=

−
= +

−
∑  (5) 

with 
1

1lim In 0.5721566...
n

n k
n

k
γ

→∞ =

 
= − =  

 
∑ denoting the 

Euler-Mascheroni’s constant. 

2. Results 
We now present our results. Let us begin with the 

following Lemmas pertaining to the results.  
Lemma 2.1. Assume that 0λ µ≥ > , p N∈ , (0,1)q∈  

and ( ) 0g t > . Then, 
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Proof. By using equations (2) and (4) we obtain, 
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concluding the proof. 
Lemma 2.2. Assume that 0λ µ≥ > , (0,1)q∈ , 1k ≥  

and ( ) 0g t > . Then, 
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Proof. By using equations (2) and (5) we obtain, 
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concluding the proof.  
Lemma 2.3. Assume that 0λ > , 0µ > , 0k > , p N∈ , 

(0,1)q∈ and ( ) 0g t > . Then, 

 
( , )

InIn[ ]
( )

 ( ( )) ( ( )) 0.

q

k p q

kp
k k g t

g t g t

λ λγ λµ

λψ µψ

− + +

+ − >
 

Proof. By using equations (3) and (4) we obtain, 
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concluding the proof. 
Lemma 2.4. Assume that 0λ > , 0µ > , (0,1)q∈ , 

0k > and ( ) 0g t > . Then, 
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Proof. By using equations (3) and (5) we obtain, 
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concluding the proof. 
Theorem 2.5. Let ( )g t  be a positive, increasing and 

differentiable function, p N∈ and (0,1)q∈ . Then for 
positive real numbers λ  and µ  such that λ µ≥ , the 
inequalities: 
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hold true for 0 x y< < . 
Proof. Define a function G for p N∈  and (0,1)q∈  

by 
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Let ( ) InG( )u t t= . Then, 
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Then, 
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as a consequence of Lemma 2.1. That implies u  is non-
increasing on (0, )t∈ ∞ . Hence ( )u tG e=  is non-
increasing and for 0 x y< <  we have, 

 (0) ( ) ( )G G x G y≥ ≥  

establishing the inequalities in (6). 
Theorem 2.6. Let ( )g t  be a positive, increasing and 

differentiable function, (0,1)q∈ and 1k ≥ . Then for 
positive real numbers λ  and µ  such that λ µ≥ , the 
inequalities: 
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hold true for 0 x y< < . 
Proof. Define a function H for (0,1)q∈  and 1k ≥  by 
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Let ( ) In ( )v t H t= . Then, 
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as a consequence of Lemma 2.2. That implies v  is non-
increasing on (0, )t∈ ∞ . Hence ( )v tH e=  is non-
increasing and for 0 x y< <  we have, 

 (0) ( ) ( )H H x H y≥ ≥  

establishing the inequalities in (7). 
Theorem 2.7. Let ( )g t  be a positive, increasing and 

differentiable function, 0k > , p N∈ and (0,1)q∈ . Then 
for positive real numbers λ  and µ , the inequalities: 
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hold true for 0 x y< < . 
Proof. Define a function S for 0k > , p N∈  and 

(0,1)q∈  by 
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as a result of Lemma 2.3. That implies w  is increasing on 
(0, )t∈ ∞ . Hence ( )w tS e=  is increasing and for 

0 x y< <  we have, 
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 (0) ( ) ( )S S x S y< <  

establishing the inequalities in (8). 
Theorem 2.8. Let ( )g t  be a positive, increasing and 

differentiable function, 0k > and (0,1)q∈ . Then for 
positive real numbers λ  and µ , the inequalities: 
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hold true for 0 x y< < . 
Proof. Define a function T for 0k >  and (0,1)q∈  by 
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as a result of Lemma 2.4. That implies δ  is -increasing on 
(0, )t∈ ∞ . Hence ( )tT eδ=  is increasing and for 

0 x y< <  we have, 

 (0) ( ) ( )T T x T y< <  

establishing the inequalities in (9). 

3. Concluding Remarks 

In particular, if we let ( )g t tα β= +  for 0α > and 
0β >  on the interval 0 1t< < , then we recover the entire 

results of [17]. Also, by setting ( )g t tα= +  and 
1λ µ= =  on the interval 0 1t< < , we obtain the results 

of [16]. The results [11] – [17] are therefore special cases 
of the results of this paper. For example, let ( )g t tα β= +  
for , 0α β >  on the interval  

0 1t< < . Then;  
(i) by allowing 1q → in Theorem 2.5, we recover 

Theorem 3.7 of [13]. 
(ii) by allowing 1k → in Theorem 2.8, we recover 

Theorem 3.8 of [13]. 
(iii) by allowing 1q → in Theorem 2.6, we recover 

Theorem 3.9 of [13]. 
(iv) by allowing 1k → in Theorem 2.7, we recover 

Theorem 3.1 of [15]. 
This paper is a slightly modified version of preprint 

[18]. 

4. Open Problems 

For 0k > , p N∈ and (0,1)q∈ , let ( )p tψ , ( )q tψ , 

( , ) ( )p q tψ  and ( , ) ( )q k tψ  be the generalized Psi functions 
as defined in equations (1) – (5). 

Problem 1: Under what conditions will the statements: 
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Problem 2: Under what conditions will the statements: 
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be valid? 
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