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INEQUALITIES FOR THE (¢, k)-DEFORMED GAMMA
FUNCTION EMANATING FROM CERTAIN PROBLEMS
OF TRAFFIC FLOW

KwWARA NANTOMAH* AND EDWARD PREMPEH

Abstract. In this paper, the authors establish some double in-
equalities concerning the (g, k)-deformed Gamma function. These
inequalities emanate from certain problems of traffic flow. The
procedure makes use of the integral representation of the (g, k)-
deformed Gamma function.

1. Introduction

The celebrated classical Euler’s Gamma function, I'(x) is usually defined
for x > 0 by
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The k-deformed Gamma Function, I'y(x) (also known as the k-analogue
of the Gamma function or simply the k-Gamma function) is defined by
(see [3])

o°] k
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It satisfies the following properties (see [3]).

Ti(e + k) = aly(2),
(k) = 1.

Received March 20, 2015. Accepted December 22, 2015.

2010 Mathematics Subject Classification. 33B15, 33D05.

Key words and phrases. Gamma function, g-deformed Gamma function, k-
deformed Gamma function, (g, k)-deformed Gamma function, g-integral, Inequality.

*Corresponding author



10 Kwara Nantomah and Edward Prempeh

The Jackson’s g-integral from 0 to a and from 0 to oo are defined as
follows

/ 0 dg = (1 - a> flag"d",
n=0

| rwdt =0 3 sa

provided that the sums converge absolutely.

In a generic interval [a,b], the Jackson’s g-integral takes the following

form:
/abf(t)dqt = /Obf(t)dqt—/oaf(t)dqt_

For more information on this special integral, reference is made to [7].

The g-deformed Gamma function is also defined for g € (0,1) and > 0
by
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where [z], = %, and B}, =Y q 2 ﬁq, =(—(1—=¢)t;q) is a

g-analogue of the classical exponential function. See also [1], [2], [5], [6]

and the references therein. For a € C, the set of complex numbers, we

have the following notations.
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Just as the k-deformed Gamma function, the ¢g-deformed Gamma func-

tion also satisfies the following properties:

Ly(z +1) = [2]T(2),
Iy(1) =1.

Similarly, the (g, k)-deformed Gamma function, I'y (¢) was defined by
Diaz and Teruel [4] for 2 > 0, ¢ € (0,1) and k£ > 0 as (See also [9])
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