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ABSTRACT 
 

Background: The study examines the spatial distribution of low birth weight by the ten 
administrative Regions in Ghana using Area to Point Kriging method. Low birth weight babies, 
defined by World Health Organization as babies born at term who weigh less than 2.5 kg is an 
important indicator of reproductive health and general health status of population. The incidence of 
LBW is quite high in the sub region which has a public health concern. 
Methods: The study used a data set based on a Multiple Indicators Cluster Survey conducted by 
Ghana Statistical Service in 2011 with a sample of 10,963 women within the reproductive age. The 
geostatistical analysis applied in this study consists of three steps: filtering of noise in the data 
based on Poisson kriging, mapping of the corresponding risk at a fine scale and estimating 
geographical clustering of the low birth weight at the administrative units 
Results: This study has demonstrated how geostatistical method can be used to model low birth 
weight incidence by administrative units. The Area to Point method employed has given an insight 
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into a more localized potential “hot spots” for low birth weight incidence. The research showed a 
large range of spatial autocorrelation in the northern part than in the south in the incidence of low 
birth weight. The risk associated with low birth weight is centred broadly in the northern districts, 
districts in Central region and districts in the southern part of Ashanti region in the country which 
coincidentally are dominated by people of Sissala, Kassena, Mamprusi, Mole Dagbani, Wassa and 
Akan descends. 
The least affected areas are those settlements along the Volta lake who are predominantly Ewes. 
This suggests that low birth weight incidence in Ghana is more of an ethnic problem with some 
cultural undertones and parity as a main contributing factor than any other factor.  
Conclusion: The geostatistical method adopted has been able to identify a more localized 
potential “hot spots” for low birth weight incidence that may not be evident using other non 
geostatistical methods. The results further show that low birth weight incidence in Ghana is more of 
an ethno-cultural problem with parity as a driving factor.  
 

 
Keywords: Area to point kriging; low birth weight; geostatistical; autocorrelation; incidence. 
 
1. INTRODUCTION  
 
The aim of this study is to examine the spatial 
distribution of low birth weight (LBW) by the ten 
administrative Regions in Ghana using Area to 
Point Kriging method (ATP). To the best of our 
knowledge, the studies conducted so far in 
Ghana mostly describe the mean behaviour of 
individual mothers. That approach is completely 
unable to characterize the subjects which have 
extreme low birth weight levels of total LBW. In 
fact, a model (such as the normal distribution) 
can fit very well the central part of the distribution 
but be completely inadequate to represent the 
tails. In terms of public health, it is most 
important to have a better understanding of the 
extent and characteristics of the individuals who 
are most at risk of giving birth to a LBW baby. A 
more preferred way to deal with this problem is to 
use the Area to Point Kriging (ATP) or Extreme 
Value Theory (EVT) [1]. The geostatistical 
analysis applied in this study consists of three 
steps: filtering of noise in the data based on 
Poisson kriging, mapping of the corresponding 
risk at a fine scale and estimating geographical 
clustering of the LBW at the administrative units.  
 
This application was first employed by [2] to 
account for spatial heterogeneity in the 
population of children to estimate the 
semivariogram of the “risk of developing cancer” 
from semivariogram of observed mortality rates. 
[3] applied binomial cokriging to produce a map 
of the risk of childhood cancer in the west 
midlands of England. Following the successful 
application of this methodology, [4] employed the 
same methodology to map lung cancer mortality 
across the US. [5] examined the spatial 
distribution of account of sudden-infant-death 
syndromes for 100 countries of North California. 

In his approach, a two-step transformation of the 
data was taken into account by first removing the 
mean variance dependence of the data and next 
the heteroscedasticity.  
 
In order to address a real data problem in 
mapping of disease, [6,7] proposed an approach 
called Poisson Kriging that filters the data before 
mapping. Poisson Kriging is capable to be 
combined with stochastic simulation to come out 
with multiple realizations of the spatial 
distribution of phenomenon or disease risk. 
There has been remarkable geostatistical 
framework given to the analysis of a real data 
such as medial geography [8]. This has been 
implemented by several authors including [9] and 
[8] to predict area values. This approach is 
referred to as “area-to-point” (ATP) or “area-to-
area” (ATA) kriging according to [8]. The unique 
feature about ATP kriging is that it allows the 
mapping of variability within geographical unit 
(polygon) and at the same time ensuring the 
coherence of the prediction. For instance, 
disaggregated estimates of count data are non-
negative and the sum is equal to the original 
aggregated count. [10] applied ATP and ATA for 
analyzing the geography of offenses and for 
identifying significant clusters of crimes on car-
related thefts in the Baltic States. [11] applied 
ATP to introduce sex for cancer rates, and 
observed the difference between age-adjusted 
rates and age-sex-adjusted rates. [12] also used 
kriging strategy (area-to-point kriging) to                
solve the potential mismatch between 
environmental information that is both objective 
and subjective.  
 
In Ghana ATP kriging has not been used 
extensively [13,14] until recently where [15,16] 
applied it to Buruli ulcer and Breast cancer 
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incidence in Ashanti & Brong Ahafo Regions and 
Ashanti Region respectively. 
 
2. METHODOLOGY 
 
2.1 Data Source and Study Area 
 
The 2011 Multiple Indicator Cluster Survey 
(MICS) data was used in this study. This is a 
fourth round of the survey which is conducted 
every five years to monitor the situation of 
children and women in Ghana. In this survey 
about 10,963 women who were within the 
reproductive age (15 – 49 years) were selected 
across the ten administrative regions of Ghana. 
The subjects were interviewed reference to two 
years preceding the survey. The selection 
procedure was based on a representative 
probability sample of households nationwide 
from a frame of Ghana 2010 Population and 
Housing Census Enumeration Areas (EA’s). For 
comparability, the MICS used an internationally 
standardized sampling of two-stage stratified 
sample design. At the first stage, a number of 
EA’s were selected from the regions which were 
considered as clusters. The households in each 
region were then selected using systematic 
sampling with probability proportional to size in 
the second stage. Of the 12,150 households 
selected for the sample, 11, 925 households 
were contacted and duly interviewed. In the 
households interviewed, 10,963 women aged 15 
– 49 years were identified for interview. 
 
Estimated Population data for 2015 based on the 
2010 Population and Housing Census results by 
Ghana Statistical Service [17] was used in 
computing the raw rates of LBW (Table 3). Raw 
rates were calculated as the number of LBW 
cases in each region divided by the estimated 
Population in 2015. In order to better appreciate 
the risk of the LBW, the raw rates were rescaled 
by multiplying it by a factor of 100,000. This 
expresses the raw rates as per 100,000 people. 
 
2.2 Geostatistical Approach 
 
2.2.1 Area-to-point (ATP) poisson kriging 
 
The number of LBW cases follows a Poisson 
process. The LBW count in the regions can be 
viewed as a realization of a random variable 
which has a Poisson distribution. This Poisson 
process has a parameter that is the product of 
the population size by the local LBW risk [18]. A 
particular case of Area-to-area (ATA) kriging is 

when the prediction support is so small that it can 
be assimilated to a point ��. 
 
Let ��  represent the centroid coordinates for 
each areal supports v�  and �(��)  denote the 
(unknown) point value of the attribute �  at 
location ��  within a study domain 
.  In a 
geostatistical framework, the set of all point 
support values ��(��), �� ∈ 
�  is regarded as a 
joint particular realization of random variables ��(��), �� ∈ 
�. Area-to-point spatial interpolation 
is to predict any point value �(��) using � areal 
data ��(��), � = 1, … , ��: leading	to	the	following	area− to − point	Poisson	kriging	estimator	and	 kriging	variance. 
 

�̂/0(��) = 1 2�(��)3(��)																																	0
�45 				(1) 

 

67/08 (��) = 9:(0) − 1(��)9:̅
0

�45
(�� , ��) − =(��)	(2) 

 
where the areal supports ��  are disjoint                   
and the prediction locations are arbitrary, that is, 
they need not be located on a regular                               
grid and they can lie inside or outside ��                          
[8]. The weights 	2�(��)  are computed                            
to ensure the minimization of prediction mean 
square error under the condition of the un-
biasness of �̂/0(��), and they are the solution of 
equation (3). 
 
The kriging weights and the Lagrange parameter =(��) are computed by solving the following 
system of linear equations 

 

1 2?(��) @9:̅A�� , �?B + D�? E∗G(��)H + =(��)0
?45= 9:̅(�� , ��), 	�= 1, … , �																																																																	(3) 

 

1 2?(��) = 10
?45  

 
where =(��) is the Lagrange parameter, D�? = 1 if � = J  and 0 otherwise. E∗  is the population-
weighted mean, 9:̅A�� , �?B  is the covariance 
between area ��  and �? , and G(��)  is the 

population at risk in area �� .  The term
K∗

L(MN) 
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accounts for the variability resulting from the 
population size. The variance is   calculated as: 67/08 (��) = 9:(0) − ∑ 2�(��)9:̅0�45 (�� , ��) − =(��) 
 
where, 9:(0) = �P�(�(��))  and 9:̅(�� , ��)                      
is the covariance between ��  and                              

location ��and is inferred from the experimental 
semivariogram by using �̅Q:(ℎ) = 9:(0) − 9:(ℎ) 
when the variance �P�(�(��)) is finite. 
 
The ATP kriging system is similar to the ATA 
kriging system, which is given as; 

 

				1 2?[9:̅A�� , �?B + D�? E∗G(��)
T

?45 ] + =(��) = 9:̅(�� , ��), � = 1, … , V																																																									(4)	 
 
except for the right-hand-side term where the area-to-area covariances 9:̅(�� , ��)	are	replaced  by 
area-to-point covariances 9:̅(�� , ��) that are approximated as 
 

9:̅(�� , ��) = 1∑ XYY′/N�′45
	 1 XYY ′9:A��′, ��B																											/N

�′45
																																																																										(5) 

 
Where, [� is the number of points used to discretize the area �� and the weights XYY′ are computed as 
for expression;s 
 

												9:̅A�� , �?B = 1∑ ∑ XYY′\]�′45\N�45 	 1 XYY′9:(�� − ��′)
\]

� ′45
																																																																																										(6) 

 
where _� and _? are the numbers of points used to discretize the two areas �� and �?	, respectively. 
 
ATP kriging can be computed at each node of a grid covering the study area, resulting in a continuous 
(isopleth) map of LBW risk and reducing the visual bias that is typically associated with the 
interpretation of choropleth maps. Another interesting property of the ATP kriging estimator is its 
coherence. The population-weighted average of the risk values estimated at the [�	 points �� 
discretizing a given entity	��  yields the ATA risk estimate for this entity; 
 

�̅/0(��) = 1G(��) 1 G(��)�̅/0(��)/`
�45 																																																																																																																								(7) 

 
Constraint (7) is satisfied if the same K areal data are used for ATP kriging of the [�	risk values. 
 
2.3 Deconvolution of the Semivariogram of the Risk 
 
ATP kriging require knowledge of the point support covariance of the risk 9�(ℎ), or equivalently the 
semivariogram Q�(ℎ). This function cannot be estimated directly from the observed rates, since only 
areal data is available. Thus, only the regularized semivariogram of the risk can be estimated as: 
 

�̅Q:(ℎ) = 1
2 ∑ G(��)G(�b)G(��) + G(�b)c(d)�,b

1 e G(��)G(�b)G(��) + G(�b) 	[3(��) − 3A�bB]8 − E∗fc(d)
�,b 																																			(8) 

 
where, h(ℎ)  is the number of pairs of administrative units or areas (�� , �b)  whose population-

weighted centroids are separated by the vector h. The different spatial increments i3(��) − 3(�b)j8
are 

weighted by a function of their respective population sizes, G(��)GA�bB	/	[G(��) + G(�b)],		which is 
inversely proportional to their standard deviations, [7]. Derivation of a point-support variogram Q(ℎ) 
from the variogram Q:(ℎ) fitted to areal data is called the deconvolution. 
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Again, derivation of a point-support 
semivariogram from the experimental 
semivariogram Q7��(ℎ) computed from areal data 
is called “deconvolution”. An operation that has 
been the topic of much research; [9,8] has been 
adopted in this research. [18] explained how the 
iterative procedure could be introduced for rate 
data measured over irregular geographical units 
whereby one seeks the point-support model such 
that, once regularized, is the closet to the model 
fitted to areal data. The experimental variogram 
was fitted using weighted least square in Space 
Stats developed by Biomed ware in USA. The 
procedure for which the theoretical variogram 
was fitted into experimental variogram was 
based on the deconvolution as explained earlier. 
 

2.4 Cluster Analysis 
 
A common task in health analysis is to examine 
administrative units in adjacent geographical 
locations that are significantly similar or different. 
Similarity between the LBW incidence rate 
observed within area �b  and those recorded in 
the J(��)  neighbouring areas 	��  can be 
computed by the local Moran Statistic [19] as: 
 

l(��) = m3(��) − EY n × p 1 1J(��)
?(M`)
?45 × m3A�?B − EY nq			(9) 

 
where, m and s are the mean and standard 
deviation of the set of N area incident rates 
respectively. This local indicator of spatial 
association (LISA) is simply the product of the 
kernel rate and the average of the neighbouring 
rates. 
 
The distribution of the local Moran statistic under 
the null hypothesis of complete spatial 
randomness is usually obtained through a 
random of shuffling all the count(s) except at �� 
each time calculating (9) to get the distribution of 
simulated LISA values. 
 
The empirical values of (9) are compared with 
this distribution to compute the P value for the 
test. This randomization ignores the population 
size associated with each areal unit; [4]. 
 
3. RESULTS AND DISCUSSION 
 
The Fig. 1 indicates the omnidirectional 
variogram of Low birth weight using the risk 
computed from regional-level rates, using 
estimator (8). The experimental variogram was 
fitted using a Spherical model with a range 

201.71 kg (Table 1). The model was 
deconvoluted using the iterative procedure. 
 
The deconvoluted variogram model was then 
used to compute aggregated risk values at the 
regional level using ATP kriging, see Fig. 1. The 
estimation was based on k=32 closest 
observations, which were selected according to 
the population-weighted region for Area to area 
kriging. All maps are smoother than the map of 
raw rates since noise due to small population 
sizes is filtered. 
 
The LBW incidence rate at the various 
administrative regions (Fig. 1) shows that LBW is 
more endemic in the northern part of the country 
as well as central region than any part of the 
country. The ATP provides the variability within 
each administrative region which also shows that 
particular districts and communities have various 
rates. 
 
The districts that show high rates of incidence 
include almost all districts in Central region apart 
from Upper Denkyira West, including other 
districts that share boundary with the region 
moving into Assin South and North districts in 
Ashanti region, Birim district in Eastern region, 
Wassa districts in Western region and then 
Mamprusi West and East districts in the Northern 
region right into Upper East and Upper West 
regions which broadly have high rates. However, 
very high rates occur among the Kassena, 
Builsa, Bongo and Bolgatanga in Upper East and 
Sissala East and West, Daffiama and Lambussie 
districts of the Upper West region. 
 
There are however low incidence rates                      
recorded broadly in Volta, Greater Accra                        
with the exception of districts that share 
boundary with Central region, sections of                  
Eastern region closed to the Volta lake                        
including Afram Plains enclave, western part of 
Western region (such as Bia and Juaboso 
districts) and north-western part of Brong Ahafo 
region. Almost all the districts in Volta region 
have low rates especially Jasikan and Krachi 
districts. Greater Accra apart from districts 
bounded by Central region has low rates within 
the two Ada districts. Eastern region also 
recorded low rates along the Volta lake, 
particularly Kwahu Afram Plains North/South and 
Kwahu South districts. 
 
The Local Moran statistic (Fig. 3) shows that only 
few settlements within the two Wassa districts of 
the western region is significant. These 
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administrative units by implication                            
have high LBW incidence within the country. The 
fact that almost the entire administrative regions 
are not significant (p-value>0.05), does not imply 
they are free from the incidence of LBW 
especially as the phenomenon is shown by the 
results to be more of an ethno-cultural challenge 
than a region or area challenge. In fact, these 
settlements are predominantly people of Wassa 
descends who were classified as Akans in the 
MICS report. 

We further compare our results with the Poverty 
Map for Ghana by Ghana Statistical Service [20] 
(Table 2) to explore whether poverty has any 
impact on LBW incidence or otherwise within the 
various regions. According to [20] report, the 
incidence of poverty in Ghana shows a high 
concentration of poverty in the North Western 
part of the country. Though incidence in the 
districts of the South Western parts is very low, 
there are however few districts with relatively 
high incidence.  

 
Table 1. Semivariogram parameters for LBW 

 
Name Model type Sill Nugget Range (m) MSS error 
LBW Spherical 42.67 0.00000004 201705.676 7.267 

 
Table 2. Poverty head count by region (poverty line = GH₵1,314) 

 
Census GLSS 6 

Region Poverty 
head 
count 

Standard 
error 

Absolute 
difference 
(Census & 
GLSS6)  

Poverty 
head 
count  

Standard 
error  

95% confidence 
interval 

                                                                                             Lower limit upper limit 
Western  19.2  0.0040  1.7  20.9  0.0252  15.94  25.82  
Central  19.6  0.0072  0.8  18.8  0.0223  14.44  23.19  
Greater Accra  6.6  0.0015  1.0  5.6  0.0151  2.65  8.57  
Volta  33.3  0.0028  0.5  33.8  0.0343  27.12  40.57  
Eastern  22.0  0.0097  0.3  21.7  0.0242  16.91  26.4  
Ashanti  13.6  0.0035  1.2  14.8  0.0169  11.43  18.07  
Brong Ahafo  28.6  0.0036  0.7  27.9  0.0215  23.64  32.09  
Northern  44.2  0.0062  6.2  50.4  0.0318  44.12  56.59  
Upper East  45.9  0.0137  1.5  44.4  0.0388  36.8  52.01  
Upper West  69.4  0.0102  1.3  70.7  0.0275  65.29  76.07  

Source: Ghana Statistical Service, 2010 Population and Housing Census and GLSS6 
 

Table 3. Projected population in Ghana by LBW incidence by region 
 
Region 2010 2000 Growth 

rate 
Rate/100 2015 projected LBW 

incidence 
Ghana 24,658,823  18,912,079  2.5 0.025 27,899,195  183   (13.7) 
Western 2,376,021  1,924,577  2.0 0.020 2,623,319  8         (0.6) 
Central  2,201,863   1,593,823  3.1 0.031 2,564,978  30       (2.2) 
Greater 
Accra 

4,010,054  2,905,726  3.1 0.031 4,671,362  14       (1.0) 

Volta 2,118,252  1,635,421  2.5 0.025 2,396,608  8         (0.6) 
Eastern 2,633,154  2,106,696  2.1 0.021 2,921,494  11       (0.8) 
Ashanti 4,780,380  3,612,950  2.7 0.027 5,461,534  19       (1.4) 
B/A 2,310,983  1,815,408  2.3 0.023 2,589,256  13       (1.0) 
Northern 2,479,461  1,820,806  2.9 0.029 2,860,449  22       (1.6) 
U/E 1,046,545  920,089  1.2 0.012 1,110,863  29       (2.2) 
U/W 702,110 576,583 1.9 0.019 771,394 29       (2.2) 

Source: Authors 
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Distance (m) 

 
Fig. 1. Experimental variogram and model 
from areal data; theoretically regularized 

variogram and deconvoluted model for low 
birth weights at administrative units 

 

 
 

Fig. 2. ATP kriging map of LBW incidence at 
Regional administrative units estimated by 

LBW rate per 10,000 people 
 
The concentration of poor persons is                       
mainly observed in the northern than the 
southern districts of Ghana. Among the                  
districts in Ghana, East Gonja in the                    
Northern Region stands out as the                            
district with most of the poor persons. Districts in 
the Southern Ghana on the other hand                       
show very low concentration of poor persons, 
there are few districts with high number of poor 
persons, but these numbers cannot be compared 
to what pertains to districts in the northern part of 
Ghana.  
 
Comparing this results [16] with our findings we 
can infer that to some extent there is correlation 

between poverty incidence and LBW incidence at 
least in the North Western part and mostly 
northern Ghana but same cannot be said in other 
regions especially Central and Volta regions. 
Central region has high LBW incidence but low 
poverty incidence whilst Volta has very low rate 
of LBW incidence but high incidence of poverty 
(Tables 2 and 3). The results from the spatial 
analysis show that incidence of LBW are high 
among the Akans, Mole-Dagbanis, Grussis, 
Assins, Wassas, Fantis, Brongs, Akims, 
Mamprusis, Kassins, Sissalas and the Grunis. In 
fact, the share of Akans and Mole-Dagbanis 
alone was about 72.2% of the LBW                      
incidence and other ethnic groupings taking 
about 27.8%.  The rate is however low among 
the Sefwis, Ahantas, Efutus, Aouwins and Ewes. 
The results show that the rates are low along the 
Volta River and mostly in Ewe communities in all 
regions. The results further show that Ewes 
appear to be the ethnic group likely to have low 
incidence of LBW in Ghana than any ethnic 
group. This stands to reason that the incidence 
of LBW in Ghana is more of an ethnic problem 
with cultural undertone than maternal or any 
other factor. 
 

 
 

Fig. 3. Results of the local cluster analysis 
conducted by LBW incidence rate 

 

4. CONCLUSION 
 
This study has demonstrated how geostatistical 
method can be used to model LBW incidence by 
administrative units. The Area to Point kriging 
(ATP) method used in this study has given an 
insight into a more localized potential “hot spots” 
for LBW incidence that may not be evident when 
non geostatistical methods are employed. ATP 
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kriging is used to create continuous risk surface 
that reduces the visual bias associated with large 
administrative units.  
 
The study showed a large range of spatial 
autocorrelation in the northern part than in the 
south in the incidence of LBW. This has 
demonstrated that the risk associated with LBW 
is centred broadly in the northern districts, 
districts in Central region and districts in the 
southern part of Ashanti region in the country 
which coincidentally are dominated by people of 
Sissala, Kassena, Mamprusi, Mole Dagbani, 
Wassa and Akan descends. 
 
The study further revealed that the least                   
affected areas are those settlements                           
along the Volta lake who are predominantly 
Ewes. This means that Ewe women are less 
likely to give birth to LBW babies than any                  
ethnic group in Ghana. This stands to reason 
that LBW incidence in Ghana is more of an 
ethnic problem with some cultural undertones 
and parity as a main contributing factor than any 
other factor.  
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