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Abstract Droughts and floods are two opposite but

related hydrological events. They both lie at the extremes

of rainfall intensity when the period of that intensity is

measured over long intervals. This paper presents a new

concept based on stochastic calculus to assess the risk of

both droughts and floods. An extended definition of rainfall

intensity is applied to point rainfall to simultaneously deal

with high intensity storms and dry spells. The mean-

reverting Ornstein–Uhlenbeck process, which is a sto-

chastic differential equation model, simulates the behavior

of point rainfall evolving not over time, but instead with

cumulative rainfall depth. Coefficients of the polynomial

functions that approximate the model parameters are

identified from observed raingauge data using the least

squares method. The probability that neither drought nor

flood occurs until the cumulative rainfall depth reaches a

given value requires solving a Dirichlet problem for the

backward Kolmogorov equation associated with the sto-

chastic differential equation. A numerical model is devel-

oped to compute that probability, using the finite element

method with an effective upwind discretization scheme.

Applicability of the model is demonstrated at three ra-

ingauge sites located in Ghana, where rainfed subsistence

farming is the dominant practice in a variety of tropical

climates.

Keywords Point rainfall � Dry spell �
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1 Introduction

Droughts and floods are two opposite natural hazards, but

both fundamentally stem from precipitation irregularity. In

contrast to physical hydrology, stochastic hydrology

applies probability theory to represent the variability of

precipitation for engineering purposes. Rainfall at a par-

ticular site, i.e., point rainfall, is the most basic stochastic

hydrological quantity used to characterize floods and

droughts. Standard methodologies are well established to

deal with point rainfall data in terms of the relationship

between duration and intensity in rainfall events, the return

period of high intensity storms or dry spells, and time series

patterns of storms (Elliot 1995). However, these conventional

approaches do not consider point rainfall as a continuous

stochastic process. Since the 1990s, the Bartlett–Lewis

rectangular pulse model has become the prevalent method

to describe the statistical structure of continuous point

rainfall over the entire time domain on a wide range of

scales (Onof et al. 2000; Koutsoyiannis and Mamassis

2001), but it still considers the arrival of a storm and
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variation in rainfall intensity during the storm as separate

phenomena.

Bodo et al. (1987) reviewed stochastic differential

equations (SDEs) applicable to hydrology in perspective

and summarized fundamentals such as Markov processes,

Itô’s calculus, and forward and backward Kolmogorov

equations that can be applied in hydrology. Since then,

several authors have developed stochastic process models

for point rainfall with considerably different methodolo-

gies. This is partly due to a vast variety of climates across

the globe. Najem (1988) applied Markovian models to

alternating wet and dry periods in Lebanon. Gyasi-Agyei

and Willgoose (1999) examined a generalized hybrid

model consisting of a binary chain and an autoregressive

model in Australia. Gyasi-Agyei (1999) identified regional

parameters for this model, using second harmonic Fourier

series to represent the seasonal variation of some of the

parameters. The ideas of the hybrid model were further

explored for applications to diurnal cycles in point rainfall

(Gyasi-Agyei 2001) and to disaggregation of daily rainfall

into fine time scales (Gyasi-Agyei 2005; Gyasi-Agyei and

Parvez Bin Mahbub 2007). Wu et al. (2006) applied con-

tinuous and stochastic methods to temporal patterns of

rainfall events in Hong Kong. Mishra et al. (2009) char-

acterized droughts in India’s West Bengal. In a West

African context, Cowden et al. (2008) successfully applied

parsimonious stochastic process models to domestic rain-

water harvesting. These diverse models, implicitly or

explicitly, assume that sequential occurrence of wet and

dry periods and temporal variation in rainfall intensity

during each storm event are two independent stochastic

processes. We unify the two here as a single mean-

reverting Ornstein–Uhlenbeck (MROU) process. The

MROU process was originally applied in financial engi-

neering for modeling the temporal behavior of real interest

rates (Evans et al. 1994) and of asset prices (Chiang et al.

1995). Electrical load behavior is strongly time-dependent,

and Huang et al. (2003) modeled it as an MROU process

with an equilibrium assumed to be a smooth function of

time.

Practical applicability of SDEs is emphasized in con-

junction with boundary value problems for their associated

Kolmogorov equations. The backward Kolmogorov equa-

tion with appropriate Dirichlet boundary conditions gov-

erns first exit time distributions, which are key quantities in

many areas of risk management and option pricing (Patie

and Winter 2008). Spencer and Bergman (1993) compared

numerical results for first passage exit time problems

solving forward (Fokker–Planck) and backward Kol-

mogorov equations. In the field of climatology, Chu (2007)

used the first exit time concept to detect the temporal

variability of climate indices. However, no method is yet

established to apply that concept for a deeper understand-

ing of point rainfall.

Using an SDE as the principal model, this paper presents

a new concept that leads to better understanding of the

stochastic nature of point rainfall, in order to simulta-

neously assess the risk of droughts and floods. The concept

is based on an extended definition of rainfall intensity at the

full range of scale. The MROU process models behavior of

rainfall intensity, taking not time but the cumulative rain-

fall depth as the principal independent variable. Then the

risk of floods and droughts is assessed in terms of the

probability that the rainfall intensity exits from a prescribed

safety domain. The probability distributed over the domain

is given as the solution to a Dirichlet problem of a back-

ward Kolmogorov equation. A numerical model is devel-

oped to compute the probability, using the finite element

method. The model is applied to data obtained from three

raingauge sites under different agro-ecological climate

zones of Ghana, where the dominant industry is rainfed

subsistence farming and irregularity of rainfall is a prime

concern. There are several studies in the literature dealing

with West African point rainfall. Amani and Lebel (1998)

statistically considered the reference mean areal rainfall

that can be estimated from sparse raingauge networks.

Lebel et al. (2000) demonstrated spatio-temporal variabil-

ity of rainfall with different scales. However, this study

focuses on time series data observed at individual rainga-

uge sites. Computational methods are proposed to identify

model parameters and to solve the Dirichlet problem,

whose boundary condition in the time direction displays

annual periodicity.

2 Stochastic process model

The cumulative rainfall depth at a fixed observation site is

assumed to be a well-defined function of time t, and will be

denoted by the notation S = S(t) throughout this paper.

Rainfall intensity r = r(t) is understood to be the first

derivative of S with respect to t. This relation is written in

differential form

dS ¼ rdt: ð1Þ

For a specified rainfall increment d, the temporal

duration Td satisfying

SðtÞ � Sðt � TdÞ ¼ d ð2Þ

is another function of t and is referred to as the incremental

rainfall duration. From this Td, the temporal variable X is

defined as

X ¼ log
d
Td

ð3Þ
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and is considered stochastic. The relation between S and r

in Eq. 1 is inverted and approximated as

dt ¼ 1

r
dS � Td

d
dS ¼ expð�XÞdS ð4Þ

since d
Td

approaches r as d approaches 0. The stochastic

variable X becomes smaller or larger during a drought or a

flood but reverts to an average when such an event ends.

The MROU process is the simplest model having this

property of mean reversion and is the solution of the SDE

dX ¼ K b� Xð ÞdSþ
ffiffiffi

v
p

dBS ð5Þ

where K is the decay coefficient, b the mean reversion

level,
ffiffiffi

v
p

the volatility, and BS is the canonical Brownian

motion evolving with S.

3 Identification of model parameters

An explicit function �F; which is a P-periodic trigonometric

polynomial of t and a polynomial of X, approximates a

generic model parameter F as

�F t;Xð Þ ¼
X

nX

i¼0

fi;0 þ
X

nt

k¼1

fi;2k�1 cos
2pkt

P
þ fi;2k cos

2pkt

P

� �

( )

Xi

" #

ð6Þ

where nX is the degree of the polynomial, i the index for

terms of polynomial, nt the degree of trigonometric

polynomial, k the index for terms of trigonometric

polynomial, and the fi,* terms are coefficients for a

generic integer index *. Normally, one year is the

dominant period P for long-term precipitation series. The

coefficients fi,* are determined by the least squares method

JF ¼
1

2

X

n

j¼1

�F tj;Xj

� �

� F̂ tj;Xj

� �� �2 ð7Þ

where JF is the sum of squared residuals to be minimized, j

the index of data, n the number of available data, and F̂ is

the value of F estimated from the data.

The decay coefficient K, the mean reversion level b, and

the volatility
ffiffiffi

v
p

are model parameters to be identified.

Practically, however, logarithmic transformations are

applied and we seek to identify j = log K and w = log v

instead of pursuing the skewed model parameters K and
ffiffiffi

v
p

directly.

Firstly, assuming that X is reverting to its own average

value, approximation of b is implemented with

b̂ ¼ X: ð8Þ

Then, the other model parameters are approximated in the

context of a discrete version of Eq. 5, which is written as

Xþ � X ¼ K b� Xð Þ Sþ � Sð Þ þ
ffiffiffi

v
p

DBS ð9Þ

where the superscript ? denotes the value after an

incremental time Dt, and DBS is the corresponding

increment of BS. Applying the triangle inequality and

Itô’s rule to Eq. 9 results in

Xþ�Xj j�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v Sþ�Sj j
p

b�Xj j Sþ�Sð Þ �K� Xþ�Xj jþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v Sþ�Sj j
p

b�Xj j Sþ�Sð Þ ð10Þ

then ĵ is set as

ĵ ¼ log
Xþ � Xj j

�b� X
�

�

�

� Sþ � Sð Þ
: ð11Þ

On the other hand, squaring both sides of Eq. 9 with

Itô’s rule yields

ŵ ¼ log
Xþ � Xð Þ2

Sþ � S
: ð12Þ

4 The Dirichlet problem

The Dirichlet problem is formulated after Øksendal (2005).

The SDE (Eq. 5) and the ordinary differential equation

(Eq. 4) with the trivial relation dS = dS are summarized in

vector form as

dS
dt
dX

0

@

1

A ¼
1

expð�XÞ
K b� Xð Þ

0

@

1

AdSþ
0

0
ffiffiffi

v
p

0

@

1

AdBS: ð13Þ

The generator A is deduced as

A ¼ o

os
þ expð�xÞo

ot
þ K b� xð Þ o

ox
þ v

2

o2

ox2
ð14Þ

where s and x are the real numbers representing the values of

S and X, respectively. The domain D of s, t, and x is taken as

(-?, 0) 9 (-?, ?) 9 X, prescribing the domain X in the

x-direction as (Xinf, Xsup) where Xinf is the drought level and

Xsup is the flood level. The function u = u(s, t, x) satisfying

the backward Kolmogorov equation

Au ¼ ou

os
þ expð�xÞou

ot
þ K b� xð Þou

ox
þ v

2

o2u

ox2
¼ 0 ð15Þ

in D with the Dirichlet conditions

uð0; t; xÞ ¼ 1; ð16Þ

u s; t;Xinfð Þ ¼ u s; t;Xsup

� �

¼ 0; ð17Þ

and

uðs; t; xÞ ¼ uðs; t þ P; xÞ ð18Þ

is interpreted as the probability that the stochastic variable

X remains in its domain X until the cumulative rainfall

depth in the interval following the current time t reaches -

s = |s|.
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5 Numerical model

The finite element method is commonly used in numerical

modeling to address approximate solutions for partial dif-

ferential equations with boundary conditions. A finite

number of test functions are substituted for the weight in

the weak form of the partial differential equation. The

choice of test functions is referred to as the discretization

scheme and determines the performance of the numerical

model.

The partial differential equation Eq. 15 with the

boundary conditions prescribed in Eq. 17 is rewritten in the

weak form
Z

X

w
ou

os
þ w expð�xÞou

ot
þ wK b� xð Þou

ox
� 1

2

oðwvÞ
ox

ou

ox

� �

dx ¼ 0 ð19Þ

for any weight w 2 H1
0ðXÞ; which is the space of functions

having certain regularity properties in X and vanishing at

the boundary of X. An effective upwind discretization

scheme is proposed here, dividing the domain X into n sub-

domains of equal length Dx ¼ Xsup�Xinf

n : The kth node falls

on Xinf þ kDx and is denoted by xk. The weight w for the

generic kth node in the scheme is set as

w ¼ 1

v
uk ð20Þ

where uk is an upwind function defined as

uk ¼
x�xk�1

Dx

� �pl
k xk�1\x� xkð Þ

xkþ1�x
Dx

� �pr
k xk\x� xkþ1ð Þ

0 ðOtherwiseÞ

8

>

<

>

:

ð21Þ

with

pl
k ¼ expðPelÞ ð22Þ

and

pr
k ¼ expð�PerÞ ð23Þ

where the local Peclet numbers Pel and Per are evaluated at

xk�1
2
¼ xk�1þxk

2
and at xkþ1

2
¼ xkþxkþ1

2
as

Pel ¼
KðtÞ bðtÞ � xk�1

2

� �

Dx

v t; xk�1
2

� � ð24Þ

and

Per ¼
KðtÞ bðtÞ � xkþ1

2

� �

Dx

v t; xkþ1
2

� � ; ð25Þ

respectively. Examples of the upwind functions are

depicted in Fig. 1. This setting of weights results in

Z

X

Dx

v
uk

ou

os
þ expð�xÞDx

v
uk

ou

ot
þ Peuk

ou

ox
� Dx

2

ouk

ox

ou

ox

� �

dx ¼ 0: ð26Þ

Taking the signs of the coefficients into account, the

partial derivatives ou
os and ou

ot are implicitly approximated as

ou

os
� ui�1;jðxÞ � ui;jðxÞ

Ds
ð27Þ

ou

ot
� ui;jþ1ðxÞ � ui;jðxÞ

Dt
ð28Þ

where Ds is the increment in the s-direction, Dt is the

increment in the t-direction and is equal to P
m for a

prescribed temporal step number m, and u is linearly

interpolated in the x-direction as

ui;jðxÞ ¼ ui;j;k þ ui;j;kþ1 � ui;j;k

� �x� xk

Dx
ð29Þ

with

ui;j;k ¼ u �iDs; jDt; xkð Þ: ð30Þ

The linear interpolation Eq. 29 in the x-direction

discretizes the integrals in Eq. 26 as

Z

X

f ukui;jðxÞdx ¼ Dx

fk�1

ðpl
k
þ1Þðpl

k
þ2Þ

fk
pl

k
þ2
þ fk

pr
k
þ2

fkþ1

ðpr
k
þ1Þðpr

k
þ2Þ

0

B

B

@

1

C

C

A

;
ui;j;k�1

ui;j;k

ui;j;kþ1

0

@

1

A

* +

ð31Þ

where f is 1
v or

expð�xÞ
v and the superscript represents the

node number where f is evaluated,

Z

X

Peuk

o

ox
ui;jðxÞdx¼

� Pel

pl
k
þ1

Pel

pl
k
þ1
� Per

pr
k
þ1

Per

pr
k
þ1

0

B

B

@

1

C

C

A

;
ui;j;k�1

ui;j;k

ui;j;kþ1

0

@

1

A

* +

; ð32Þ

Pe= -4

Pe= -2

Pe= 0

Pe= 2

Pe= 4

ϕ

1

0 x

x x x

k

k-1 k k+1

Fig. 1 Upwind functions for different local Peclet numbers
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and

Z

X

ouk

ox

oui;jðxÞ
ox

dx ¼ 1

Dx

�1

2

�1

0

@

1

A;
ui;j;k�1

ui;j;k

ui;j;kþ1

0

@

1

A

* +

ð33Þ

where hv, wi denotes the inner product between generic

three-dimensional vectors v and w. Finally, Eq. 26 is

transformed into a linear equations system

Mu ¼ Gsu
sþ þ Gtu

tþ ð34Þ

where u, us?, and ut? are the n - 1-dimensional vectors

whose kth entries are ui,j,k, ui-1,j,k, and ui,j?1,k, respectively.

Corresponding to the conditions of Eqs. 16 and 18, Eq. 34

is solved with

u0;j;k ¼ 0 ð35Þ

and

ui;m;k ¼ ui;0;k: ð36Þ

6 Applications

Using the data obtained from the Ghanaian raingauge sites,

the model’s applicability is demonstrated. Since the pur-

pose here is to present a new concept, only the cases where

the minimum and the maximum observed values of X are

set as Xinf and Xsup, respectively, are considered.

6.1 Rain gauge sites

Figure 2 delineates the agro-ecological zones and river

drainage system of Ghana, which is a West African country

along the Gulf of Guinea. In general the climate is drier in

the northern parts of the country, but the south-eastern

coastal savanna receives the scantiest mean annual rainfall.

The dominant rainfall types in Ghana are squall line pre-

cipitation in the south and local convective rain in the north

(Jenkins et al. 2002). Owusu and Waylen (2009) have

reported statistics of annual rainfall totals at several Gha-

naian stations. A comparison of two periods: 1951–1970

and 1981–2000 for the Tamale and Accra stations is shown

in Table 1. Downward trends in annual rainfall totals were

confirmed at most of the stations.

The three raingauge sites considered in this paper are

referred to as Gung, Kade, and Legon, and their locations

are also shown in Fig. 2. The Gung and Legon sites are in

the suburbs of the Tamale and Accra metropolitan areas,

respectively. The raingauge installed at each site is of the

same tipping-bucket type and is connected to a pulse log-

ger, which records a series of t = t0, t1, … such that

tk?1 - tk = Td with d = 0.2 mm. However, the observa-

tion periods are different for the sites for technical reasons.

The next section contains a description of each site.

6.1.1 Gung

Gung is a rural community in the Tolon/Kumbungu Dis-

trict of the Northern Region of Ghana. It is situated in the

basin of the Bontanga River, a tributary of the White Volta

River. The area is in the Guinea savanna agro-ecological

zone, where annual rainfall pattern is monomodal with a

single rainy season from mid-March to October. The site is

located at coordinates 09�2905700N 000�5901700W, about

700 m distant from the Gung community. Rain gauge data

from September 1, 2005 to October 27, 2008 were used.

Figure 3 shows the monthly rainfall depths within this

period. There was almost no rain during the dry season

from November to mid-March. The total annual rainfall

depths were 666.4 mm in 2006, 861.4 mm in 2007, and

1008.0 mm in 2008. Based on statistics for the period from

1981 to 2000 shown in Table 1, the rainfall in 2008 was

within normal limits while that in 2006 was very low for

the area. In 2007, dry spells were prolonged in the early

stages of the growing season, but severe floods followed in

September. Unami et al. (2009) hydraulically analyzed the

runoff processes during the 2007 September floods in a
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Gung

Kade

Legon

Fig. 2 Agro-ecological zones and river drainage system of Ghana

with locations of raingauges

Table 1 Mean and standard deviation (SD) of annual rainfall totals

in different periods

Station 1951–1970 1981–2000

Mean (mm) SD (mm) Mean (mm) SD (mm)

Tamale 1,144 266 1,061 215

Accra 926 233 669 192
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nearby inland valley. The domain X of x is set as

Xinf ;Xsup

� �

¼ �9:70; 5:48ð Þ ¼ log d
137days

; 240 mm=h
� �

:

6.1.2 Kade

A raingauge was installed at the Agricultural Research

Centre (ARC)-Kade, University of Ghana. The site coor-

dinates are 06�0803200N 000�5305700W, falling on the

northwest side of Kade township, in the Eastern Region of

Ghana. ARC-Kade specializes in experimental research on

tree crops being cultivated in the deciduous forest agro-

ecological zone, where rainfall is more abundant than in the

savanna zones. According to Lawson et al. (1970), the

annual rainfall pattern peaks in July and October with a

yearly total of 1,686 mm. Rain gauge data from November

10, 2006 to August 23, 2008 were used, so the only calendar

year with complete data was 2007. Figure 4 shows the

monthly rainfall depths during the period. The total rainfall

depth in 2007 was 1,849.4 mm, though no rain was

observed in January. The domain X of x is set as Xinf ;Xsup

� �

¼ �8:32; 5:66ð Þ ¼ log d
34:4days

; 288mm=hour
� �

:

6.1.3 Legon

The main campus of the University of Ghana is at Legon, in

the northeastern area of Accra, the capital of Ghana. Accra

lies in the coastal savanna agro-ecological zone having a

bimodal rainfall pattern, with major and minor rainy sea-

sons from March to July and from September to November,
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Fig. 3 Monthly rainfall depths observed at the Gung site
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Fig. 4 Monthly rainfall depths observed at the Kade site
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Fig. 5 Monthly rainfall depths observed at the Legon site

Table 2 Dimensions and estimates of model parameters

F nX nt F̂ Dt

j = log K 0 2
jXþ�Xj

b�Xj jðSþ�SÞ Td

b 0 3 X 10 s

w = log v 2 2 log
ðXþ�XÞ2

Sþ�S 10 s

x

T
r

0.2
(m

m
/hour)

(day)

  7

  6

  5

  4

  3
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  0

 �1
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Fig. 6 Observed X (bullets) and identified model parameters for the

Gung site. The black curve represents j = log (K), the white curve b,

and the gray shading w = log (v)
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respectively. The raingauge was set in the students’

experimental plot area of the School of Agriculture, at

coordinates 05�3903500N 000�1103700W. Rain gauge data

from September 6, 2005 to May 15, 2008 were used, giving

two full calendar years of data, for 2006 and 2007. Figure 5

shows the monthly rainfall depths within the period. The

annual rainfall depth in 2006 was low at 499.4 mm, but

normal in 2007 at 828.2 mm. The domain X of x is set as

Xinf ;Xsup

� �

¼ �8:29; 6:17ð Þ ¼ log d
33:2 days

; 480 mm=h
� �

:

6.2 Results of parameter identification

The model parameters j = log (K), b, and w = log v for

each of the sites were identified from the observed data.

The period P is fixed as 365.25 days, because auto-corre-

lation functions based on daily and monthly data support

the notion that significant variations in rainfall for all the

sites are best understood as yearly patterns. The minimum

degrees of the polynomials are chosen as shown in Table 2,

so that spurious oscillation does not occur in the variation

of the model parameters. The incremental time Dt for

identification is taken as Td for j, but it is fixed as 10 s for

b and w since most of the data are lie in storm event

periods. The results are displayed in Figs. 6, 7, and 8 for

Gung, Kade, and Legon sites, respectively. All the model

parameters are functions of t for a one-year period, but w
depends on x as well. Being the average of X, b itself lies in

the x-domain.

The decay coefficient K is large during the dry season in

Gung and at the end of the major rainy season in Legon. It

is small throughout the year in Kade. The mean reversion

level b does not strictly follow the annual rainfall pattern at

any of the sites because it contains information about dry

spells as well. Volatility
ffiffiffi

v
p

is very small when X is close

to the minimum and is large when X is large during the

rainy seasons.

6.3 Numerical solution of Dirichlet problem

Using the numerical model, ui,j,k for 0 \ i B N = 50, 000

is computed with Ds = 0.02 mm, m = 365, and n = 100.

The results at i = N, which corresponds to s = -NDs = -

1,000 mm, for the Gung, Kade, and Legon sites are shown

in Figs. 9, 10, and 11, respectively. The mean reversion

level b and the observed X are also plotted. This uN,j,k is the

probability that the stochastic variable X, which is found to

be x at the current time t, becomes neither the drought level

Xinf nor the flood level Xsup until the cumulative rainfall
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Fig. 7 Observed X (bullets) and identified model parameters for the

Kade site. The black curve represents j = log (K), the white curve b,

and the gray shading w = log (v)
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Fig. 8 Observed X (bullets) and identified model parameters for the

Legon site The black curve represents j = log (K), the white curve b,

and the gray shading w = log (v)
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depth S in the interval following the current time t reaches

1,000 mm. Irrespective of the homogeneous boundary

condition of Eq. 17, the probability is high and almost

constant when x is close to or less than b, with values of

1.00, 0.86, and 0.95 for Gung, Kade, and Legon sites,

respectively. Conversely dry spells can be interpreted as

having occurred when the respective observation periods

are long. The probability is very low that high rainfall

intensity will actually be observed during the dry seasons,

as X is likely to reach Xsup because the volatility
ffiffiffi

v
p

is

large.

Two indices, J? and J2, representing the magnitude of

ui,j,k for a given i are defined as

J1 ¼ max
j;k

ui;j;k

�

�

�

� ð37Þ

and

J2 ¼
1

ðn� 1Þm
X

m�1

j¼0

X

n�1

k¼1

ui;j;k

�

�

�

�

2
; ð38Þ

respectively. Their variation with i is shown in Fig. 12. For

the Gung site, where the effect of mean reversion is strong

and the volatility
ffiffiffi

v
p

is small in the relevant domain of t

and x, the numerical solution uN,j,k is generally steady with

respect to i. This is not the case for the other two sites,

where ui,j,k gradually converges to the trivial steady solu-

tion u?,j,k = 0.

7 Conclusions

The SDE model, together with the computational methods

used here, provides a new stochastic approach to point

rainfall data. It is utilized for assessing the risk of droughts

and floods. The most innovative point is that the principal

independent variable is not time but the cumulative rainfall

depth. Drought and flood levels define a single computa-

tional domain, where the Dirichlet problem is solved in the

x-direction. The concept is so fundamental that only one

computational example is demonstrated for each raingauge

site. Characteristics of the rainfall at each site can be seen

from the distribution of the model parameters, although the

identification method still needs to be improved.

The concept could have a variety of applications besides

that demonstrated in this paper. Setting the domain X
differently may result in totally different behavior of the
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probability. If Xinf is large enough or Xsup is small enough,

the probability ui,j,k quickly converges to the trivial steady

solution u?,j,k = 0. The maximum rainfall intensity and

the maximum length of dry spell are often needed in design

problems, and they can be identified as the boundaries of

the smallest domain X such that a non-trivial steady solu-

tion of the probability exists. When the growing period of a

particular rainfed crop is set as the domain in the t-direc-

tion in place of imposing the periodic boundary condition,

the probability would measure the chance of having a

successful harvest not affected by a drought or flood. This

will be an important application for assessing food security

in subsistence farming areas where the length of the

growing season is limited.
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