
���� INTERNATIONAL JOURNAL OF FLUID MECHANICS

2(2) July-December 2010; pp. 123-132

On MHD Boundary Layer Flow of Chemically Reacting
Fluid with Heat and Mass Transfer Past a Stretching Sheet

S. Y. Ibrahim1 and O. D. Makinde2

1 Faculty of Computational and Developmental Mathematics, University for Development Studies – UDS,
Navrongo Campus, Ghana.

2 Faculty of Engineering, Cape Peninsula University of Technology, P. O. Box 1906, Bellville 7535, South Africa.

Abstract: In this paper, the boundary layer equations for the flow of a chemically reacting fluid over a
stretching sheet in the presence of a magnetic field and uniform heat source is solved numerically using
the most efficient numerical shooting technique with fourth order Runge-Kutta algorithm. The basic
equations governing the flow in the form of partial differential equations have been reduced to a set of
non-linear ordinary differential equations by applying similarity transformations. The effects of various
physical parameters such as Chandrasekhar number, Prandtl number, uniform heat source/sink parameter,
Schmidt number, Eckert number and the chemical reaction parameter as well as the heat transfer coefficient
are tabulated and plotted in figures. Our results reveal that both magnetic field and uniform heat source
have significant impact in controlling the rate of heat and mass transfer in the boundary layer region.
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1. INTRODUCTION

Many chemical engineering processes like metallurgical process and polymer extrusion
process involve cooling of a molten liquid being stretched into a cooling system. In such
processes the fluid mechanical properties of the penultimate product would mainly depend
on two things, one is the cooling liquid used and the other is the rate of stretching as
reported in [1-5]. Some of the polymer fluids such as Polyethylene oxide, polyisobutylene
solution in cetane, having better electromagnetic properties are recommended as their flow
can be regulated by external magnetic fields. Furthermore, boundary layer flow over a
stretching sheet also arises in many practical situations such as polymer extrusion process.
To name some of them; drawing, annealing and tinning of copper wires, continuous stretching,
rolling and manufacturing of plastic films and artificial fibres, materials manufactured by
extrusion process and heat treated materials travelling between a feed roll and windup rolls
or on conveyer belts, glass blowing, crystal growing, paper production, etc.

In his pioneering work, Sakiadis [1] investigated the boundary layer flow over a
continuous solid surface moving with constant speed. Crane [2] extended the works of
Sakiadis to that of an extensible surface and presented an analytical solution for the boundary
layer flow of an incompressible liquid caused solely by the linear stretching of an elastic
flat sheet which moves in its own plane with velocity proportional to the distance from the
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fixed point. Tsou et al. [3] reported both analytical and experimental results for the flow
and heat transfer aspects arising in stretching sheet problem. Gupta and Gupta [4] have
investigated heat and mass transfer in magneto-hydrodynamic (MHD) fluid flow over an
isothermal stretching sheet with suction/blowing effects. Chen and Char [5] extended the
works of Gupta and Gupta to that of non-isothermal stretching sheet. Vajravelu and Nayfeh
[6] studied the flow and heat transfer introducing the temperature dependent heat source
and sink. Makinde [7] presented computational results on the boundary layer flow with
heat and mass transfer past a moving vertical porous plate. The effect of thermal radiation
on the heat and mass transfer flow of a variable viscosity fluid past a vertical porous plate
permeated by a transverse magnetic field was reported in Makinde and Ogulu [8].

The present investigation is an extension of the work in [7, 8] to include MHD heat and
mass transfer with heat generation and first order homogeneous chemical reaction over a
continuous stretching sheet. The equations of conservation of mass, momentum, energy
and concentration that govern the flow are coupled and solved numerically. The effects of
various flow controlling parameters on the overall flow structure are presented graphically
and discussed quantitatively. It is hoped that the results obtained will not only provide
useful information for applications, but also serve as a complement to the previous studies.

2. MATHEMATICAL FORMULATION

Consider a steady two-dimensional flow of an incompressible, electrically conducting
viscous fluid past a flat, impermeable stretching sheet with heat generation or absorption
(see Figure 1 below).

Figure 1: Schematic Diagram of the Problem

 The x-axis is taken in the direction along which the stretching sheet is set to motion
while the y-axis is taken perpendicular to it. The flow is generated by the action of two
equal and opposite forces along the x-axis and the sheet is stretched in such a way that the
velocity at any instant is proportional to the distance from the origin (x = 0). The flow field
is exposed to the influence of an external transverse magnetic field of strength H

0
 and the
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induced magnetic field is negligibly small and the cooling fluid has weak electrical
conductivity so that any charge generated during the process gets accumulated on the
extrusion. A chemical species diffused into the ambient fluid, initiates a first-order irreversible
chemical reaction. With these assumptions the boundary layer equations governing the
flow are given by;
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Equations (1), (2), (3) and (4) represents the continuity, momentum, energy and
concentration equations respectively.

where u and v are the velocity components in x and y directions respectively, r is the density
of the liquid, υ is the kinematic viscosity, H

0
 is the strength of applied magnetic field, s is

the electrical conductivity of the fluid, C is the species concentration, T is the fluid
temperature, D is the mass diffusivity, γ chemical reaction coefficient, α is the fluid thermal
diffusivity and c

p
 specific heat at constant pressure. Here we make a note that the case

Q > 0 corresponds to internal heat generation and that Q < 0 corresponds to internal heat
absorption. The boundary conditions for the flow problem under study are given by:
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where A and B are constants, l is the characteristic length, T
w
 is the sheet surface temperature,

C
w
 is the species concentration at the sheet surface, T∞ is the temperature of the fluid far

away form the sheet, C∞ is the species concentration far away form the sheet, λ
1
 and λ

2
 are

the variable wall temperature and concentration parameter. Equations (1) - (4) admit a
self-similar solution of the form
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Substituting equation (6) into equations (1-4) we obtain the following nonlinear ordinary
differential equations:

f ′′′  – f ′2 + f f ′′ = Rf ′ (7)

2 2
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φ′′ – βScφ – Sc(λ
2
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where prime denotes differentiation with respect to η and R, Pr, N, Sc, Ec, β represent the
Chandrasekhar number, Prandtl number, uniform heat source/sink parameter, Schmidt
number, Eckert number and the chemical reaction parameter respectively. The boundary
conditions in equation (5) then become

 f(h)=0,  f ′(η) = 1, θ(η)=1, φ(η)=1, at η = 0, f ′(η) → 0, θ(η)→0, φ(η)→0, as η → ∞ (10)

Chang [9] and Rao [10] have obtained closed form solutions of equation (7) which
clearly reveals that the solution is not unique. However, we choose an appropriate solution
among them. Using the realistic solution, the velocity components are given by
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where 1m R= + . The local skin-friction coefficient or the frictional drag coefficient is
given by
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Other physical quantities of interest in this problem namely; the local Nusselt number
(Nu) and the Sherwood number (Sh) can be easily computed. These quantities are defined
in dimensionless terms as Nu = – θ′(0) and Sh = – φ′(0).

3. COMPUTATIONAL METHOD

The ordinary differential equations (7-9) with boundary conditions in equation (10) can be
solved by using Newton–Raphson shooting method along with fourth-order Runge–Kutta
integration algorithm. Let θ = x

1
, θ′ = x

2
, = φ = x

3
, φ′= x

4
. Equations. (7-9) are then transformed

into a system of first order differential equations as follows;
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subject to the following initial conditions,

x
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The unspecified initial conditions; s
1
and s

2 
are guessed systematically and equation

(13) is then integrated numerically as an initial value problem to a given terminal point.
The procedure is repeated until we get the results up to the desired degree of accuracy:
namely 10-7. A code is written in MAPLE package [11] and solutions are presented
graphically. The value of η∞ was found to each iteration loop by the assignment statement
η∞ = η∞ + ∆η. The maximum value of η∞ to each group of parameters R, Pr, N,β, Sc and Ec
is determined when the values of unknown boundary conditions at η = 0 do not change to
successful loop with error less than 10-7.

4. NUMERICAL RESULTS AND DISCUSSION

An MHD boundary layer flow and heat transfer of a chemically reacting fluid over a
stretching sheet with power law variable surface temperature and concentration in presence
of uniform heat source is investigated. Numerical computation have been carried out to
study the effect of various physical parameters such as Chandrasekhar number R, Prandtl
number Pr, Schmidt Sc, heat source/sink parameter N and the power law variable surface
temperature and concentration parameters (λ

1
 and λ

2
) on the boundary layer. The value of

Pr is taken to be 0.71 which corresponds to air and the values of Sc are chosen in such a
way that they represent the diffusing chemical species of most common interest in air like
H

2
, H

2
O, NH

3
 and Propyl Benzene whose Sc values are 0.24, 0.6, 0.78 and 2.62 respectively.

Results for wall temperature and concentration gradients are tabulated in Table 1 below.
Analyzing this table, we infer that the wall heat flux increases with increasing λ

1
 and

decreases with increasing R while the rate of mass transfer at the sheet surface increases
with increasing values of λ

2
 and R.

Table 1
Computations Showing the Wall Heat Transfer Rate (N=0.1,Pr =0.71, Sc = 0.6)

R Ec β λ
1

λ
2

– θ′(0) – φ′(0)

0.0 1.0 1.0 1.0 1.0 0.44783 1.10530

0.1 1.0 1.0 1.0 1.0 0.45482 1.11080

0.5 1.0 1.0 1.0 1.0 0.47043 1.13855

0.1 1.5 1.0 1.0 1.0 0.30684 1.11080

0.1 2.0 1.0 1.0 1.0 0.15886 1.11080

0.1 1.0 1.5 1.0 1.0 0.45482 1.24756

0.1 1.0 2.0 1.0 1.0 0.45482 1.36862

0.1 1.0 1.0 2.0 1.0 0.77928 1.11080

0.1 1.0 1.0 3.0 1.0 1.04679 1.11080

0.1 1.0 1.0 1.0 2.0 0.45482 1.29899

0.1 1.0 1.0 1.0 3.0 0.45482 1.47091
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Figure 2: Variation of the Dimensionless Velocity Profiles with Increasing Magnetic Field Strength

Figure 3: Variation of the Dimensionless Temperature Profiles with Increasing Magnetic Field strength
when λλλλλ1 = Ec = 1, Pr  =0.71, N = 0.1

The effect of transverse magnetic field on velocity and temperature profiles are depicted
in Figures 2 and 3. From these plots it is observed that the transverse magnetic field
contributes to the reduction in the velocity profile and thickening of thermal boundary
layer. This is evident form the fact that applied transverse magnetic field produces a body
force, to be precise the Lorentz force, which opposes the motion. The resistance offered to
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the flow is responsible in enhancing the temperature. Figure 4 illustrates the effect of Ec on
the fluid temperature. From this plot it is evident that large values of Eckert number due to
increasing viscous dissipation results in thickening of thermal boundary layer. Furthermore,
it is noteworthy that the fluid temperature increases with an increase in surface
temperature as shows in Figure 5. The chemical species concentration profiles are depicted

Figure 4: Variation of the Dimensionless Temperature Profiles with Increasing Eckert Number when
λλλλλ1 = 1, Pr = 0.71, N = 0.1, R = 0.1

Figure 5: Variation of the Dimensionless Temperature Profiles with Increasing Wall Temperature
Exponent λλλλλ1 when N = 0.1, R = 0.1, Pr = 0.71, Ec = 1.
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in Figures 6 to 8. We observed a general exponential decrease in the concentration profile.
Furthermore, it is interesting to note that concentration boundary layer decreases with
increasing values of the Schmidt number (Sc), heat absorption parameter (N) and reaction
rate parameter (β).

Figure 6: Variation of the Dimensionless Concentration Profiles with Increasing Reaction Parameter
when Sc = 0.6, λλλλλ2 = 1, R = 0.1

Figure 7: Variation of the Dimensionless Concentration Profiles with Increasing Schmidt Number when
β β β β β = 0.5, λλλλλ2, = 1, R = 0.1
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5. CONCLUSIONS

In this paper an analysis has been carried out to study the MHD boundary layer flow of
chemically reacting fluid with heat and mass transfer past a stretching sheet. Numerical
solutions are obtained for temperature and concentration boundary layer equations. The
effect of several parameters controlling the velocity and temperature profiles are shown
graphically and discussed. The study revealed that the cooling rate of a stretching sheet in
an electrically conducting fluid, subject to a magnetic filed and chemical reaction can be
controlled and a final product with desired characteristics can be achieved.
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