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Testing the climate resilience of sorghum and 
millet with time series data
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Abstract:  Cereals are important in meeting the security needs of households and 
also as an industrial crop for the poultry and brewery industries. In recent times, 
climate change has been one of the great constraints to crop production and 
productivity including cereals. Among the various adaptation strategies is the 
choice and diversification of crops. Following this, there have been claims supported 
by various scientific disciplines to the effect that millet and sorghum are climate- 
resilient relative to other cereals. This study uses real production data to investigate 
whether indeed they are climate-resilient. The study used the Autoregressive 
Distributed Lag (ARDL) cointegration approach. The study employs time series data 
on sorghum and millet production spanning the period of 1970 to 2018 obtained 
from the Ministry of Food and Agriculture (MoFA). Further, rainfall and temperature 
data are obtained from the World Bank climate portal, and carbon dioxide (CO2) 
emission is obtained from Index Mundi, all spanning from the period 1970 to 2018. 
The results of the analysis confirm the claim that sorghum and millets are indeed 
climate-resilient and do not respond to changes in climatic parameters. Ljung Box 
test and the ARCH-LM reveals that the residuals in the models fitted are free from 
conditional heteroscedasticity as well as serial autocorrelation. The study joins the 
call for the promotion of these crops in the country for their resilience to climate, 
whiles continuous effort is made to make the other crops more climate-resilient.
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1. Introduction
The production of cereals feeds billions of households worldwide. Projections made by the OECD 
estimated that cereal consumption will reach 2818 MT by 2025 with an increasing rate of 14% per 
annum (OECD (Organization for Economic Co-operation and Development)-FAO (Food and 
Agriculture Organization), 2016). More also, cereal yield in the continent is argued to be lower 
relative to the world average Macauley (2015). In Ghana and many other parts of Africa, rice, 
maize, millet, and sorghum are essential cereals cultivated, and they contribute significantly to the 
Agricultural GDP of the country. These cereals also serve as staple food crops and are of great 
socio-economic importance.

In Ghana, cereal output for 2018 was projected at 3.4 million tons which is 9% higher than the 
2017 cereal output projection, however, despite the higher projection in 2018 cereal production 
output, the 1.4 million tons of cereals import was required to augment domestic consumption for 
2018/19 production years (FAO, IFAD, UNICEF, WFP and WHO, 2019). However, the outputs of 
these cereals in recent times have been negatively affected by climate change. This has been 
a great concern to many researchers as agricultural production in many ways is dependent on the 
weather especially in developing countries (Ben Zaied & Ben Cheikh, 2015). The relationship 
between agricultural production and climate change has been reported by empirical studies 
(Blanc, 2012; Chandio, Akram et al., 2022; Chandio, Gokmenoglu et al., 2022; Chandio, Jiang, 
Akram et al., 2021; Gbetibouo & Hassan, 2005; Lippert et al., 2009).

Although variations in climate change impacts exist globally, the adverse effect is particularly 
devastating in the global south countries, especially in terms of food insecurity (Chandio, Jiang, 
Amin et al., 2021). This can be linked to a myriad of factors such low adaptive capacity of farmers, 
variability in the start and end of the rainy seasons, variations in precipitation, low technological 
advancement in detecting and predicting weather conditions, variation in precipitation, and the 
over-dependence on natural resources (Kurukulasuriya & Rosenthal, 2013). In low-income coun-
tries, climate change impacts are more severe on the agricultural sector as compared with other 
sectors of the economy, and the quantum of such impact is expected to either intensity or at least, 
remain constant (McCarthy et al., 2001; Tol, 2002). Ghana as a country cannot be exempted from 
the negative impacts of climate change on agriculture. This invariably will have deleterious effects 
on the Ghanaian economy since it is agrarian. Ghana’s economy is very dependent on highly 
climate-sensitive sectors like forestry, hydropower, and agriculture. The agriculture sector grew by 
4.8% in 2018, which was lower than the 6.1% growth rate in 2017. Agriculture’s contribution to 
national GDP fell from 21.1% in 2017 to 19.7% in 2018 (GSS (Ghana Statistical Service), 2019).

At the Paris conference of the members of the UN Framework Convention on Climate Change 
(UNFCCC) in 2015, adaptation to climate change was the main outcome with over 90% of the 
participating countries including agriculture in their implementation plan (Lipper & Zilberman, 
2018). Various adaptation strategies have been proposed or implemented. Based on the literature, 
Abou et al. (2021), outlined 3 different categorizations of adaption strategies. These various 
categorizations of adaptation strategies vary across farming systems, varieties, and locations 
(Hassan & Nhemachena, 2008). Among the adaptation strategies, are conservation agriculture, 
change in the topography of the land, change in farming systems, change in the timing of farm 
operations, use of different crop varieties, diversification of crop production, crop and livestock 
integration, intensifying the use of agricultural inputs, drought, and climate-resilient crops, resort-
ing to early maturing varieties of crops, supplementary irrigation, protecting against soil erosion, 
tree planting, temporal or permanent migration, etc. (Akinnagbe & Irohibe, 2014; Asare-Nuamah 
et al., 2021; Belay et al., 2017; Fagariba et al., 2018; FAO & UNDP, 2020; Mushore et al., 2021; Sims 
et al., 2017). The integration of these adaptation strategies and mitigation with the sole aim of 
improving food security is what is referred to as Climate Smart Agriculture (CSA; Asfaw & Branca, 
2018). Furthermore, the adoption of these adaptation strategies is faced with challenges, espe-
cially in less developing countries like Ghana. These challenges are inherent in the individual, 
societal and institutional factors (Antwi-Agyei & Nyantakyi-Frimpong, 2021; Mccarl et al., 2016). 
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Within the context of Ghana, this climate change adaptive capacity is much lower in the northern 
regions of Ghana (CARE, 2013).

Under the adaptation strategies that border on crop diversification, the chosen crops are 
expected to be climate-resilient. Whiles cassava and sweet potato are labeled as climate- 
resilient among roots and tubers (Githunguri & Njiru, 2021), millet and sorghum are the most 
climate-resilient cereals (Dhankher & Foyer, 2018; Nciizah et al., 2021). These conclusions are as 
a result of rigorous scientific studies in agronomy. It has been found that these crops relative to 
other crops in the same category are more productive when subjected to high temperatures and 
drought. For this study, which focuses on cereals, millet and sorghum are found to exhibit these 
drought-tolerant characteristics compared with maize, rice, and soybean, hence their designation 
as climate resilience cereals (Armah et al., 2011; Nciizah et al., 2021).

The designation of millet and sorghum as climate resilience with the mountain of scientific and 
agronomic evidence has never been in doubt (Armah et al., 2011; Dhankher & Foyer, 2018; Nciizah 
et al., 2021; Wang et al., 2018). This designation is further strengthened by the fact that these 
crops are more indigenous, more nutritious, more pest-resistant, have low input requirements, and 
can be stored for a longer period compare with other cereals (Chazovachii et al., 2010; 
Mukarumbwa & Mushunje, 2010; Mutasa, 2011; Saleh et al., 2013).

The objective of this study is to investigate whether production data for these cereals supports 
the fact they are climate-resilient. Despite the scientific support for these crops as climate- 
resilient, this study attempts to subject it to data with climatic variables and outputs of millet 
and sorghum from 1970 to 2018 in the Ghanaian context. The results of this study will strengthen 
or otherwise the claim that millet and sorghum have been climate-resilient crops from the 
agronomic point of view.

2. Millet and sorghum resilience to climate change
Millet and sorghum are considered by many agronomists as important climate-resilient crops. This 
assertion often stems from the fact that these crops relative to other cereals (maize, rice, soybean, 
etc.) are productive in hot areas owing to their drought-tolerant characteristics (Armah et al., 
2011; Nciizah et al., 2021). In addition to the drought tolerance of these crops, Mutasa (2011), 
added that they are indigenous to African people and more importantly have more nutritional 
benefits than rice and maize. Furthermore, the ability of these crops to be stored for a relatively 
long time without perishing adds to the argument in favor of them being climate-resilient 
(Mukarumbwa & Mushunje, 2010). They have also been proven to be high temperature tolerant 
making them climate-resilient crops for arid and semiarid areas where rainfall is low (Dhankher & 
Foyer, 2018). In addition to the above, Chazovachii et al. (2010) found that millet and sorghum 
compared to other cereals are resistant to pests and diseases in both pre-harvest and post- 
harvest storage. They also have the lowest input requirements and relatively early maturing 
(Saleh et al., 2013). Another important aspect of these crops is that their production and con-
sumption are not only “good for the individual (nutritious and healthy) and good for the farmer 
(climate-resilient)” but “good for the planet (environmentally sustainable)” (Kane-Potaka et al., 
2021). Aside from individual empirical studies, Wang et al. (2018) made a global review of 
literature on the effects of climate change on cereal crop yields. On millet and sorghum, they 
concluded they are climate tolerant, and environmentally sustainable because they emit fewer 
greenhouse gases coupled with the fact that they require little or no input of fertilizer compared 
with other cereal crops.

Millet and sorghum have also been proven to reduce food insecurity which has an extricable link 
to climate change (Burke & Lobell, 2010). In a study across Africa, Taylor (2003) declared sorghum 
and millet as the most important cereal to achieve food security in Africa. Further details of this 
assertion is expanded by Muzerengi and Tirivangasi (2019), who stated that the basis for this 
relationship lies in the fact that millet and sorghum can be stored for over 5 years making them 
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readily available. They posited further that a small amount of these crops are needed when 
preparing meals, and they can give more energy and satisfy hunger much better.

Especially in the context of Ghana, we have not found a study that seeks to establish millet and 
sorghum as climate-resilient crops with time-series data. Those that have made attempts nor-
mally aggregate all cereals for the analysis, and have mostly concluded that cereals are not 
climate resistant. An example is the work of Amponsah et al. (2015), who found a negative long- 
run and short-run relationship between one of the climatic variables (Carbon dioxide 
concentration—CO2) and cereal yield. Even though they employed the same estimation techniques 
as this study (the Auto-Regressive Distributed Lag (ARDL) cointegration approach), they measured 
a single climatic variable against an aggregation of cereals. Lesk et al. (2016) also found a negative 
relationship between cereals and extreme weather disasters (droughts and extreme heat) which 
are found to be direct consequences of climate change. With combined cereal data, Ben Zaied and 
Ben Cheikh (2015), as well as Casemir and Diaw (2018), found a negative relation between annual 
temperature and cereal production.

For studies that segregated cereals, most of them relied on simulated predictive or historical 
data for the analysis. Using predictive data and models, Mohamed et al. (2002), Roudier et al. 
(2011), and Blanc (2012) found millet production to decrease under all climatic scenarios in Niger, 
West Africa, and SSA, respectively. Blanc (2012) however, was quick to add that this finding should 
be used with caution as “ . . . . . . predictions of the impact of climate change are beset by 
uncertainty.” In a study in Ghana and Senegal, MacCarthy et al. (2021) found a lower climate 
change impact on millet and sorghum relative to other cereals. Like the previous studies, it also 
employed simulated predicted data for the predictive analysis. Sultan et al. (2013) simulated 
sorghum and millet data subject to 35 possible future climate conditions in Senegal, Mali, 
Burkina Faso, and Niger, and found that in almost all the scenarios, these crops will be negatively 
affected if temperatures rise by +2°C. Furthermore, Sultan et al. (2019) employed historical climate 
simulations for the 2000–2009 decade and concluded that for millet and sorghum, climate change 
caused a reduction of 10–20% and 5–15%, respectively. They further monetized the crop loss as 
a result to be 2.33–4.02 billion USD for millet and 0.73–2.17 billion USD for sorghum.

Among studies that segregated the cereals, the following used real data as opposed to simu-
lated and predictive data. Amikuzino and Donkoh (2012) established a long-run relationship 
between rainfall and selected crops in various agroecological zones in northern Ghana. The 
relationship was not established for millet and sorghum at some locations, which the authors 
attributed to their drought tolerance. Compared with this study, the scope is narrow, and as such 
only one climatic variable is used as an approximation to climate variability. Similar to this study is 
the work of Baffour-Ata et al. (2021), except for the estimation technique and the inclusion of 
a second climatic variable (temperature). They found variations in temperature and rainfall not to 
have any influence on variations of millet and rice. This finding was attributed to the fact that the 
study did not control for several factors that could equally be responsible for the variations in these 
food crops. Jena and Kalli (2018) in the Indian context found increasing temperatures to be 
responsible for the loss of nearly 16% to 23% of millet output in the period 1992-to 2013. The 
yield of individual food crops which include millet is found to be influenced by climatic variables in 
Nepal under summer and winter conditions (Aryal et al., 2018; Maharjan & Joshi, 2013). Larsson 
(1996) found a relationship between rainfall and sorghum yield but not with millet and sesame in 
Sudan. He applied correlation analysis which rarely justifies a relationship, and as such depended 
on only one climatic variable (rainfall).

3. Materials and methods

3.1. Data types and sources
Time series data on millet and sorghum production, spanning from the period 1970 to 2018 were 
obtained from the MoFA. Further, data on the temperature and rainfall for the period 1970 to 2018 
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were obtained from the World Bank climate portal. Also, CO2 data were obtained from the Index 
Mundi.

3.2. Methodology

3.2.1. Trend analysis
Trend analysis shows the rise or decline of the series over time. Various trends viz the log-linear 
trend, linear and quadratic trends were estimated in this study. The three different models were 
estimated to examine which of the trends best characterizes the series.

A time trend in a time series is a linear function of time t. The model is given by;

Vt ¼ β0þβ1tþ et (1) 

Where Vt is the actual value at time t; t ¼ 1; . . . ; T; et is the error term and,β0 β1, are the regression 
coefficients to be estimated. A linear trend indicates that; the series is either increasing or 
decreasing at a steady rate.

If the production of sorghum or millet exhibits a linear trend, the empirical specification will be 
as follows;

Sorghumt ¼ β0þβ1tþ et (2)  

Millett ¼ β0þβ1tþ et (3) 

Empirically, if a climate variable (CO2 emission, temperature, rainfall) exhibits a linear trend, then 
the empirical specification will be given as;

CO2t ¼ β0þβ1tþ et (4) 

Temperaturet ¼ β0þβ1tþ et (5)  

Rainfallt ¼ β0þβ1tþ et (6) 

The model is given as follows if the series exhibit a quadratic trend;

Vt ¼ β0 þ β1tþ β2t2 þ et (7) 

Where Vt is the actual value for time t; t ¼ 1; . . . ; T; et is given as the error term and,β0 β1, β2 

represents the regression coefficients to be estimated. A quadratic trend in a series means that it 
lowers and increases at a non-constant pace.

Similarly, if a cereal production variable (millet and sorghum) exhibits a quadratic, the empirical 
specification will be as follows;

Millet productiont ¼ β0 þ β1tþ β2t2 þ et (8)  

sorghum productiont ¼ β0 þ β1tþ β2t2 þ et (9) 

Empirically, if a climate variable (CO2 emission, temperature, rainfall) exhibits a quadratic trend, 
the empirical specification will be as follows;

CO2t ¼ β0 þ β1tþ β2t2 þ et (10)  

Tempearturet ¼ β0 þ β1tþ β2t2 þ et (11)  

Abdullah et al., Cogent Food & Agriculture (2022), 8: 2088459                                                                                                                                         
https://doi.org/10.1080/23311932.2022.2088459                                                                                                                                                       

Page 5 of 19



Rainfallt ¼ β0 þ β1tþ β2t2 þ et (12) 

Log-linear representation of the model is presented as;

lnVt ¼ β0 þ β1tþ β2t2 þ et (13) 

Where Vt is the actual value for time t; t ¼ 1; . . . ; T; et is given as the error term and,β0 β1, β2 

represents the regression coefficients of the real values at any time.

Empirically, if a cereal production variable (millet and sorghum production) exhibits a log-linear 
trend, the empirical specification will be as follows;

lnMillett ¼ β0 þ β1tþ β2t2 þ et (14)  

lnSorghumt ¼ β0 þ β1tþ β2t2 þ et (15) 

Similarly, if a climate variable (CO2 emission, temperature, rainfall) exhibits a log-linear trend, the 
empirical specification will be as follows;

lnCO2t ¼ β0 þ β1tþ β2t2 þ et (16)  

lntemperaturet ¼ β0 þ β1tþ β2t2 þ et (17)  

lnrainfallt ¼ β0 þ β1tþ β2t2 þ et (18) 

3.2.2. Unit root test
The study employed the Augmented Dickey–Fuller Test (ADF) test and the Kwiatkowski-Phillips- 
Schmidt-Shin (KPSS) Test to examine the unit root properties of the series

3.2.3. Cointegration analysis
The Cointegration concept came to being through works by Granger (1981), Engle and Granger 
(1987), and Johansen (1988) as well as Johansen and Juselius (1990) after many researchers 
provided analytical results, showing the dangers inherent in regressions between non-stationary 
time series variables. Most often, co-integration is applied to situations where the time series 
variables in their levels exhibits a unit root. The presence of cointegration indicates that a group of 
time series variables has a long-run equilibrium connection, indicating that the variables advance 
in lockstep through time and are driven by a common stochastic trend. A set of variables might 
have a linear or non-linear cointegration relationship.

In instances when a variable is integrated into distinct orders, cointegration analysis, as defined 
by Granger (1981) and Engle and Granger (1987), is not applicable. Regardless of whether the 
primary variable is being integrated of order zero I (0), integrated of order one I (1), or a mix of the 
two, the Autoregressive Distributed Lag (ARDL) is utilized to determine a dynamic long-run 
relationship between series of other orders of integration (Pesaran & Shin, 1999; Pesaran et al., 
2001). The spontaneous and the long-run relationship of the variables under consideration are 
gotten from the parametrized results. As a result, the ARDL approach to estimating cointegration 
gives more realistic and efficient results. The Equilibrium Correction Model (ECM) is the reparame-
trized version of the ARDL method of cointegration if at least one cointegration vector is identified. 
Because the ARDL model is a dynamic single model equation with a comparable form to the Error 
Correction Model (ECM), its reparameterization is possible (Chandio, Jiang, Akram et al., 2021; 
Nkoro & Uko, 2016).

The ARDL model is specified below:
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Yt ¼ C0 þ C1 þ ∑
p

i¼1
ΦYt� i þ ∑

q

i¼1
β0Xt� i þ ut (19) 

t ¼ max p; qð Þ; . . . . . . ::T; assume the lag order q is equal for all variables. The variables Yt;Xt
� �

are 
then allowed to be only integrated of order zero, I (0), and integrated purely of order one, I (1), or 
a combination of different orders of integrations.

The optimal lag orders p and q can be obtained by minimizing a particular model selection 
criterion, e.g., AIC, BIC, HQIC.

Reparameterization in the condition of Error correction is given:

ΔYt ¼ C0 þ C1t � α Yt� 1 � ΦXt� 1ð Þ þ∑p� 1
i¼1 ΨYiΔYt� 1 þw0ΔXt þ∑q� 1

i¼1 Ψ0XiΔXt� 1 þ Ut (20) 

with the speed of adjustment coefficient α ¼ 1

4. Results and discussion

4.1. Summary statistics of data
As indicated in Table 1, the average production of millet is 149,898 Mt with a minimum and 
a maximum production value being 74,500 MT and 245,550 MT. Furthermore, the average annual 
production of sorghum is 233,673 MT with a minimum and maximum production being 106,000 MT 
and 387,400 MT, respectively. Sorghum has the highest production average over the study period 
followed by millet. The higher production average of sorghum can be inferred from the fact that 
there is a growing demand for sorghum both for domestic consumption and demand by beverage 
industries.

The production of sorghum has the highest variability followed by millet production with S. 
D. values of 35,442.6 and 81,115.

The skewness of the series shows that the series is positively skewed with a skewness value of 
millet and sorghum being 0.12 and 0.079, respectively. This indicates the production of millet and 
sorghum are leptokurtic.

In this section, the descriptive statistics of climatic variables are explored. CO2 emissions during 
the entire time averaged 0.344 tons per capita, with a minimum of 0.210 tons per capita and 
a maximum of 0.680 tons per capita, as shown in Table 2. In addition, the average annual rainfall 
for the entire study period is 95.546 mm, with the lowest and maximum rainfall of 68.863 mm and 
114.09 mm, respectively, during the entire period. Throughout the study period, the average yearly 

Table 1. Descriptive statistics of cereal production
Variable Millet Sorghum
Mean 149,898 233,673

Median 154,400 230,000

Min 74,500 106,000

Max 245,550 387,400

S.D 35442.6 81,115

C.V 0.23644 0.347

Skewness 0.152 0.079

Ex. Kurtosis −0.057 −1.346

No. Data points = 49

Source: Authors’ computation, 2021 
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temperature was 27.490°C, with minimum and highest values of 26.49°C and 28.24°C, respectively. 
Rainfall has the most variability of all the climatic variables studied, followed by temperature, and 
finally CO2 emissions. With a skewness value of 1.5, the CO2 emission for the study period indicates 
that it is positively skewed whiles rainfall and temperature have values of −0.523 and −0.486 
relatively, indicating that they are negatively skewed.

The CO2 and rainfall are Leptokurtic, having Excess Kurtosis values of 1.715 and 0.395, respec-
tively. Temperature, on the other hand, has an excess kurtosis score of −0.085, indicating that the 
series is platykurtic.

4.2. Trend analysis of cereal production
The findings of the cereal production trend analysis show that the log-linear trend best fits all 
cereals (millet and sorghum) since the AIC and BIC values were the lowest. As shown in Table 3. 
This shows that the trend fitted accounts for a larger proportion of variations in the series.

Millet production trends are seen to be fluctuating throughout the study period, recording 
a minimum in 1990 and a peak in 2010 (see, Figure 1). The fluctuating trend in millet production 
can be attributed to the erratic nature of rainfall since most millet production systems in Ghana 
are mostly rain-fed in nature.

The trend of sorghum production is indicated in Figure 2. There is generally a fluctuating trend in 
the production series of sorghum throughout the study period with an increasing spike after 1990. 
The rising spikes in sorghum production can be ascribed to its increasing demand as an industrial 

Table 3. Trend analysis of cereal production
Model R-Squared Adj.R2 AIC BIC
Millet

Linear 0.331 0.317 1158.935 1152.719

Quadratic 0.335 0.306 1152.296 1156.318

Semi-Log 0.326 0.296 −11.644 −5.968

Sorghum

Linear 0.409 0.397 1224.024 1227.807

Quadratic 0.499 0.478 1217.894 1223.57

Log-linear 0.5 0.47 12.796 18.471

Source: Authors’ Construct, 2021 

Table 2. Preliminary analysis of climate variable
Variable CO2 Rainfall Temperature
Mean 0.344 95.546 27.490

Median 0.307 97.410 27.480

Min 0.210 68.863 26.49

Max 0.680 114.090 28.24

S. D 0.114 9.0340 0.422

C.V 0.33022 0.095 0.015

Skewness 1.50 −0.523 −0.486

Kurtosis 1.7153 0.395 −0.085

Number of data 
points = 49

Source: Author’s Construct, 2021 
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crop by brewery industries. This fluctuating trend in the production of millet and sorghum is 
confirmed in studies by Baffour-Ata et al. (2021), Macauley (2015), and Luguterah et al. (2013).

Millet :lnMillet ¼ 11:615 (21)  

Sorghum :lnSorghum ¼ 11:651þ 0:0421t � 0:0005t2 (22) 

4.3. Trend analysis of climate variables
The trend analysis of climatic variables employed in this study is illustrated in Table 5. The best trend 
of CO2 emission is the log-linear trend because it has the lowest value of BIC. The log-linear trend best 
characterizes the rainfall and temperature series because it has the lowest values of AIC and BIC.

CO2 emission trends indicate a fluctuating but consistent trend up to the 1990s, then increases 
for the remainder of the time as indicated in Figure 3. The increasing trend of CO2 can be attributed 

Figure 1. Trend of millet output 
from 1970 to 2018.

Table 4. Estimated parameters for the best-fit trend of cereal production
Model Coefficient Std. Error t-ratio p-value
Millet

Constant 11.616 0.0932 124.700 0.000***

Time 0.013 0.008 1.503 0.1397

Time Squared 6.03247e-05 0.0001 0.3619 0.7191

Sorghum

Constant 11.655 0.119 97.48 0.000***

Time 0.042 0.011 3.817 0.004***

Time-squared −0.0005 0.0021 −2.326 0.0245**

***, **means significant at 1%, 5% significance level respectively 
Source: Authors’ construct, 2021 
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to the increase in anthropogenic activities such as extraction and burning of fossil fuels, defor-
estation, and unsustainable agricultural practices.

As indicated in Figure 4, rainfall exhibits a fluctuating trend in the series for the entire period 
with the lowest rainfall occurring in 1984. This finding is found to be consistent with that of Asante 
and Amuakwa-Mensah (2015), who found that rainfall in Ghana has exhibited an inconsistent and 
erratic pattern over the years.

Temperature generally exhibits an increasing trend throughout the study period with periodically 
fluctuating trends in some years as indicated in Figure 5. This finding is in line with the findings of 
Asante and Amuakwa-Mensah (2015), who found that temperature trends in Ghana are generally 
variable.

Figure 2. Trend of sorghum 
from 1970 to 2018. 
The estimated parameters of the 
best fit trend of the cereals are 
presented in Table 4.

Table 5. Trend analysis of climate variables
Model R-Squared Adj.R2 AIC BIC
CO2 emission

Linear 0.64 0.632 −121.095 117.311

Quadratic 0.872 0.867 −169.87 164.2

Log-linear 0.872 0.867 −78.495 72.82

Rainfall

Linear 0.01 −0.01 19.601 23.385

Quadratic 0.01 −0.02 358.851 364.526

Log-linear 0.021 −0.022 −84.438 78.762

Temperature

Linear 0.538 0.528 19.601 23.385

Quadratic 0.543 0.523 21.125 26.8

Semi-Log 0.543 0.523 −303.284 −297.608

Source: Authors’ Construct, 2021 
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The trend established in this finding of the three climatic variables (CO2 emission, rainfall, and 
temperature) has been confirmed by Baffour-Ata et al. (2021) and Asamoah and Ansah-Mensah 
(2020), who also found that rainfall is erratic and temperatures continue to increase over time. 
Aside from the manifestation of this trend in time series data, Antwi-Agyei et al. (2014) found that 
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over 80% of farmers in Ghana have perceived that, temperatures are on the rise and rainfall has 
become more unpredictable. A trend analysis of rainfall and temperature in neighboring Togo, 
which bears similar climate characteristics to Ghana also confirms the results of this study, using 
the Mann–Kendall Test (Gadedjisso-Tossou et al., 2021). In the case of CO2, the work of Owusu and 
Asumadu-Sarkodie (2017) established that it has been on the increase as found in this study.

The study calculates the parameters for the optimal trend of the climate variables after estab-
lishing the graphical trend, as indicated in Table 6.
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Figure 5. Trend of temperature 
from 1970 to 2018.

Table 6. Estimated parameters for the best trend of climate variables
Model Coefficient Std. Error t-ratio p-value
CO2

Constant −1.234 0.019 16.94 0.000***

Time −0.018 0.002 −5.144 0.0002***

Time-squared 0.001 3 × 10−05 9.146 0.0000***

Rainfall

Constant 4.559 0.044 102.8 0.000***

Time −0.002 0.004 −0.45 0.65

Time-squared 0.0000005 0.0000007 0.658 0.514

Temperature

Constant 4.559 0.044 102.8 0.000***

Time −0.001 0.004 −0.456 0.000***

Time Squared −6.125 × 10°6 8.50094 × 10−06 0.658 0.478

***means significant at 1% 
Source: Authors’ Construct, 2021 
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CO2 : CO2 ¼ � 1:23 � 0:0179tþ 0:001t2 (23) 

Rainfall :lnRainfall ¼ 4:706 (24) 

Temperature :lntempearture ¼ 4:55 � 0:001t (25) 

4.4. Unit root test
The null hypothesis of the KPSS test is that the series is stationary, while the alternative hypothesis 
is that it is not stationary. When doing a KPSS test, the decision rule is to reject the null hypothesis 
if the test statistic is greater than the critical value. The null hypothesis is not rejected if the critical 
value is less than the critical value.

PSS test was conducted to check the results of the ADF test of the undifferentiated series. For all 
the series, the KPSS test was fitted for constant as well as constant and trend. The results of the 
KPSS test as indicated in Table 7 reveals a significant test statistic that is greater than the critical 
value at 5% significance level for all the series except that of rainfall for the model fitted with 
constant as well as constant and time trend. This indicates that the null hypothesis that the series 
for each of the variables is stationary is rejected for all except rainfall. Rainfall, therefore, is the 
only variable among the series that is integrated of order zero, I (0).

The unit-roots properties of the series were further examined after first differencing since some 
of the series are not integrated of order zero, I (0). The results of the KPSS test of the first 
differentiated series as indicated in Table 8 reveals a significant test lower than the critical value 
for both the model fitted with constant and the model fitted with constant and time. This indicates 
that the CO2, temperature, millet production, and sorghum production, are integrated of order 
one, I (1).

Table 7. KPSS test of the series in levels
Test with constant Constant +Trend

Variable Test-statistic Critical value test-statistic critical value
CO2 1.02 0.471 0.266 0.149

Rainfall 0.136 0.471 0.06 0.149

Temperature 0.941 0.471 0.83 0.149

Millet 0.855 0.471 0.07 0.149

Sorghum 0.79 0.471 0.187 0.149

Source: Authors’ construct, 2021 

Table 8. KPSS test of the first difference of the series
Test with constant Constant +Trend

Variable Test-statistic critical value Test-statistic critical value
CO2 0.441 0.471 0.053 0.149

Rainfall 0.038 0.471 0.038 0.149

Temperature 0.086 0.471 0.064 0.149

Millet 0.046 0.471 0.042 0.149

Sorghum 0.106 0.471 0.099 0.149

Source: Authors’ construct, 2021 
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4.5. Auto-Regressive Distributed Lag (ARDL) cointegration
Haven examined the stationarity property of the series, the study proceeded to conduct the 
Autoregressive Distributed Lag cointegration test. The ARDL cointegration approach is employed in 
the study because some of the variables employed in the study are integrated of order zero, I (0) and 
hence the traditional Johansen and Juselius cointegration approaches are not applicable in this 
situation. The dynamic link relationship between cereal production series and climate variables is 
investigated using the Bounds test of Cointegration. If the F-computed value is larger than the upper 
bound of 5%, the null hypothesis is rejected. However, if the F-calculated value is less than the upper 
bound critical value at the 5% significance level, we are unable to reject the null hypothesis.

The results presented in Table 9 indicate no Cointegration between any of the cereal production 
series and the climatic variables. In addition, the F-statistics calculated in modeling the association 
between millet production and climatic variables is 2.781, which is lower than the upper bounds at 
5% and 1% significant levels. This designates that there exists no dynamic relationship between 
the climatic variables and millet production. Also, the F-calculated value obtained in examining the 
dynamic relationship between the sorghum production and the climatic variables is 0.625, which is 
found to be lower than the upper bound values at 10%, 5%, and 1% significance levels. This means 
the production of sorghum and the climatic variables are not cointegrated, given an indication that 
the null hypothesis that there is no long-run dynamic relationship between the production of millet 
and sorghum is not rejected, and hence there is no cointegration between the production of these 
cereals and climatic variables during the period under study.

The finding is found to be partially consistent with Blanc (2012), Houngbedji and Diaw (2018), 
and Ngoma (2008) who reported that there is no long-run dynamic relationship between climate 
change variables and cereals production as a whole. However, the finding is contrary to that of 
Amponsah et al. (2015) and Ben Zaied and Ben Cheikh (2015) who concluded that annual 

Table 9. ARDL cointegration test between cereals production and climate variables
90% level 95% Level 99% level

I (0) I (1) I (0) I (1) I (0) I (1)
Model 2.72 3.77 3.23 4.35 4.29 5.61

Computed F-Statistics Decision

Millet and 
Climate 
Variables

2.781 No Cointegration

Sorghum and 
climate 
variables

0.625 No Cointegration

Source: Authors’ construct, 2021 

Table 10. Ljung-box test and ARCH-LM test for models millet and sorghum production and 
climate variables

Ljung Box Test ARCH-LM Test

Model Test Statistic P-Value Test Statistics P-Value
Millet and Climate 
Variables

15.572 0.742 19.191 0.509

Sorghum and 
Climate variables

12.769 0.887 23.784 0.2519

Source: Authors’ Construct, 2021 
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temperature increase results in a decrease in the production of cereals in general, whiles annual 
rainfall has a positive impact on the production of cereals.

4.6. Model diagnostic test
Having conducted the cointegration test, the study proceeds to conduct the model diagnostic test. 
The results in Table 10 reveal that all the residuals in the model investigating the relationship 
between the cereals productions and the climatic variables in the study show that they are free 
from serial correlation and heteroscedasticity as the p-values for each of the models were insig-
nificant. This means that the resultant residuals from the models are free from autocorrelation and 
that the error term is declared homoscedastic. This indicates that the error terms in the model can 
be considered white noise.

5. Conclusion and recommendation
Crop diversification is a climate change adaptation strategy, and millet and sorghum have been 
promoted as climate-resilient, the study sets out to investigate this claim with time-series data. The 
results of the trend analysis for both the crops and the climatic variables exhibit trends not uniquely 
different from other studies. Though erratic, both millet and sorghum exhibited an increasing trend. 
Whiles the erratic nature is attributable to erratic rainfall patterns, the increasing trend is attributable to 
the increasing industrial demand for these cereals. On the climatic variables, CO2 emissions consistently 
increased from the 1990s which is attributable to increases in anthropogenic activities such as mineral 
extraction, burning fossil fuels, deforestation, and unsustainable agricultural practices. Rainfall over the 
period exhibited a fluctuating trend whiles temperature has been increasing consistently.

The ARDL estimation concludes that the production of millet and sorghum in Ghana is unhin-
dered by the effects of climate change, confirming the claim that they are climate-resilient. This 
finding goes to emphasize the fact that the climate resilience status of millet and sorghum is not 
only based on their agronomic properties but production data.

The study, therefore, recommends that efforts by the government and the citizenry should be 
geared towards maintaining and reducing the amount of CO2 which can lead to decreasing the 
rising temperatures. The erratic nature of the rain is a signal to the country to reduce its 
dependence on rain-fed agriculture by establishing irrigation dams for sustaining agricultural 
production. Further, the MoFA and the national buffer stock should give more attention to the 
production of millet and sorghum as climate-resilient crops in the short run. However, in the long 
run, whiles still promoting these crops, there should be efforts in scientific research to make the 
other cereals more climate-resilient.
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