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Abstract. The time-dependent hydromagnetic boundary layer flow across a vertical surface with 
internal heat regeneration in porous media is investigated. The flow problem has been modelled 
mathematically in partial differential equations along with appropriate defined boundary conditions. 
These equations were expressed in dimensionless form using suitable similarity variables. The 
resulting dimensionless equations along with the conditions defined at the boundaries are solved by 
means of the Laplace transform methods. Results of the study are graphically illustrated for various 
quantities of practical importance. It was concluded that time positively influence the flow as a 
reduced skin friction coefficient was observed. Furthermore, the magnetic parameter, the radiation 
parameter, the heat absorption parameter and the permeability of the porous media can be used to 
influence the characteristics of a flow in porous media.  

Introduction 
Heat transfer is said to occur when there exist temperature differences between two bodies. When 
there exists temperature difference between two bodies, heat tends to move from the body with higher 
temperature to the lower temperature body. Heat and mass transfer processes are time-dependent and 
are generally referred to as unsteady processes. Research into unsteady processes has led to 
improvements in industrial practices and performance of systems. It is encountered in the design of 
streamlined objects such as helicopter blades, turbine blades, compressors and start-up processes 
involving periodic fluid motion as well as in the area of convective heat and mass transfers [1]. Other 
areas of relevance include petroleum exploration, thermal oil recovery, geophysics and astrophysics.  
Unsteady processes are encountered in industrial and environmental processes. It occurs during the 
evaporation of open water reservoirs to cooling and heating processes and in the combustion of fossil 
fuels. Many researchers have used different methods to study the unsteady flow problem. The 
perturbation method [2] has been used to investigate various convection flow processes with viscous 
dissipation [3], Newtonian heating [4], and accelerated vertical surfaces [5]. Other used the Laplace 
transform techniques to investigate the free unsteady convective flow across surface with impulsive 
starting in Newtonian fluid media [6]. The permeability and radiation of MHD flow in a uniform heat 
flux [7] contribute to heat dissipation. Radiation from isothermally accelerated vertical surface with 
internal heating and chemical reaction [8] reveals a direct correlation between the Grashof number, 
𝐺𝐺𝐺𝐺 and the velocity of flow. With variable temperature [9], the fluid temperature increased with the 
radiation.   
The hydromagnetic boundary layer flow due to exponential stretching surface, radiation and chemical 
reaction has been extensively reported [10-13] with observations that the rate of heat transfer at the 
surface diminishes with high parameter values of magnetic field strength and radiation. A reduction 
in the velocity profiles due to increasing magnetic field strength, Prandtl number and Eckert number 
has been observed [14] with the reverse for increasing Grashof numbers.  
The Newton Raphson shooting method [15] along with the Fourth-Order Runge - Kutta algorithm 
[16] has been used to investigate the free unsteady hydromagnetic boundary layer problem. The 
Laplace transform techniques has also been used to analyse the unsteady flow of Casson fluid near a 
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vertical oscillating surface under the influence of Newtonian heating [17] and observed that the 
velocity of flow diminished with the Casson parameter. However, the thickness of the thermal 
boundary enlarged with increasing Newtonian heating. The technique has also been used to analyse 
the effects of the Soret number [18] on the mixed convective flow with heat and mass transfer in 
porous media [19, 20].   
This study incorporates the nonlinear velocity term in the energy equation due to its practical 
relevance in many industrial applications. The Laplace transform technique is used in this study due 
to its robustness in solving highly nonlinear problems.    

Problem Formulation 
Consider a time-dependent magnetohydrodynamic boundary layer flow across surface vertically 
aligned in a porous medium undergoing internal heat generation. Assuming a negligible induced 
magnetic field with a small Reynolds number and a negligible viscous dissipation. Assuming that the 
flow is in the direction of 𝑥𝑥∗ − 𝑎𝑎𝑥𝑥𝑎𝑎𝑎𝑎  directed along the vertical plate in the upward direction. Taking 
the 𝑦𝑦∗ −axis as normal to the surface, with the temperature of the plate and the ambient fluid being  
𝑇𝑇𝑤𝑤∗(𝑥𝑥) and 𝑇𝑇∞∗  respectively.  
 

 

  

 

 

  

 

 
 

Fig. 1: Flow Configuration. 

Furthermore, assuming that the plate and the fluid are in thermal equilibrium with temperature 𝑇𝑇∞∗  
and concentration level 𝐶𝐶∞∗  at all points. At time 𝑡𝑡∗ > 0, the plate is assumed to accelerate 
exponentially with velocity  𝑢𝑢 = 𝑈𝑈0𝑒𝑒𝑎𝑎

∗𝑡𝑡∗ in its own plane with the temperature raised linearly whilst 
the concentration levels near the surface is raised to 𝐶𝐶𝑤𝑤∗ . Assuming the fluid is a gray gas, which 
absorbs or emits heat. The physical properties of the fluid such as the viscosity and thermal 
conductivity are assumed constant, while Boussinesq approximation is invoked for the density 
variation in the body force term of the momentum equation. Under these assumptions, the governing 
equations of the process are: 
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With boundary conditions 

𝑢𝑢∗ = 0, 𝑇𝑇∗ = 𝑇𝑇∞∗  𝐶𝐶∗ = 𝐶𝐶∞∗  𝑓𝑓𝑓𝑓𝐺𝐺 𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦∗,  𝑡𝑡∗ ≤ 0; 

𝑢𝑢∗ = 𝑈𝑈0𝑒𝑒𝑎𝑎∗𝑡𝑡∗, 𝑇𝑇∗ = 𝑇𝑇∞∗ + (𝑇𝑇𝑤𝑤∗ − 𝑇𝑇∞∗ )𝐴𝐴𝑡𝑡∗, 𝐶𝐶∗ = 𝐶𝐶𝑤𝑤∗   𝑎𝑎𝑡𝑡 𝑦𝑦∗ = 0, 𝑡𝑡∗ > 0; 

𝑢𝑢∗ → 0, 𝑇𝑇∗ → 𝑇𝑇∞∗ , 𝐶𝐶∗ → 𝐶𝐶∞∗   𝑎𝑎𝑎𝑎 𝑦𝑦∗ → ∞, 𝑡𝑡∗ > 0.                                           (5) 

where 𝑢𝑢∗ and 𝑣𝑣∗ are the horizontal and vertical velocity components; 𝑈𝑈0 denotes the velocity of the 
plate; 𝑦𝑦∗ denotes the coordinate axis normal to the surface; 𝑡𝑡∗ is time; 𝑣𝑣 is kinematic viscosity; 𝛽𝛽𝑇𝑇 is 
thermal expansion coefficient; 𝛽𝛽𝐶𝐶 is concentration expansion co-efficient; 𝜌𝜌 is fluid density; 𝑇𝑇∗ is the 
fluid temperature near the surface; 𝑇𝑇𝑤𝑤∗  is the fluid temperature at the surface; 𝑇𝑇∞∗  is the temperature of 
the free stream; 𝐶𝐶∗ is the concentration in the fluid; 𝐶𝐶∞∗  is the concentration far away from the 
surface;  𝐶𝐶𝑤𝑤∗  is the concentration at the surface; 𝑎𝑎 is the acceleration parameter; D is the chemical 
molecular diffusivity; ∝ is thermal diffusivity; 𝑐𝑐𝑝𝑝 is specific heat at constant pressure; 𝐾𝐾𝑐𝑐∗ is rate of 
chemical reaction; k* is permeability co-efficient of the porous medium, 𝑞𝑞𝑟𝑟 is the radiation heat flux, 
𝑄𝑄 is the heat source parameter. 
The following dimensionless variables and parameters as used in [8] are introduced: 

  𝑢𝑢 = 𝑢𝑢∗
𝑈𝑈0

,        𝑦𝑦 = 𝑈𝑈0𝑦𝑦∗
𝑣𝑣

,        𝑄𝑄 = 𝑣𝑣𝑄𝑄0
𝑈𝑈02𝜌𝜌𝐶𝐶𝑝𝑝

,        𝜃𝜃 = 𝑇𝑇∗−𝑇𝑇∞∗

𝑇𝑇𝑤𝑤∗−𝑇𝑇∞∗
 ,   𝑡𝑡 = 𝑡𝑡∗𝑈𝑈02

𝑣𝑣 
 ,        𝑘𝑘 = 𝑈𝑈02𝑘𝑘∗

𝑣𝑣 2
,   𝜙𝜙 = 𝐶𝐶∗−𝐶𝐶∞∗

𝐶𝐶𝑤𝑤∗ −𝐶𝐶∞
, 

    𝑃𝑃𝑟𝑟 = 𝜇𝜇𝐶𝐶𝑝𝑝
𝑘𝑘

= 𝑣𝑣
∝
,      𝑀𝑀 = 𝜎𝜎𝐵𝐵02𝑣𝑣 

𝜌𝜌𝑈𝑈02
,  𝐺𝐺𝐺𝐺 = 𝑣𝑣 𝑔𝑔𝛽𝛽𝑇𝑇(𝑇𝑇𝑤𝑤∗−𝑇𝑇∞∗ )

𝑈𝑈03
,  𝐺𝐺𝑐𝑐 = 𝑣𝑣 𝑔𝑔𝛽𝛽𝑐𝑐(𝐶𝐶𝑤𝑤∗ −𝐶𝐶∞∗ )

𝑈𝑈03
, 𝑘𝑘𝑐𝑐 = 𝑣𝑣 𝑘𝑘𝑐𝑐∗

𝑈𝑈02
 ,   𝐻𝐻 = 𝑄𝑄𝑣𝑣 2

𝑘𝑘𝑈𝑈02
 ,  

   𝑎𝑎 = 𝑎𝑎∗𝑣𝑣 
𝑈𝑈02

 ,  𝐴𝐴 = 𝑈𝑈02

𝑣𝑣
,    𝐹𝐹 = 16𝜎𝜎𝑎𝑎∗𝑣𝑣 2𝑇𝑇∞∗3

𝐾𝐾𝑈𝑈02
, 𝐸𝐸𝑐𝑐 = 𝑢𝑢2

𝐶𝐶𝑝𝑝(𝑇𝑇𝑤𝑤 
∗ −𝑇𝑇∞∗ ).    (6) 

where 𝑦𝑦 is a dimensionless coordinate axis normal to the surface; 𝑢𝑢 is the dimensionless velocity in 
the 𝑥𝑥 direction; 𝜃𝜃 is the  dimensionless temperature; 𝑡𝑡 is dimensionless time; 𝑘𝑘 is dimensionless 
permeability of the porous medium;   𝐹𝐹 is the radiation parameter; M is the magnetic parameter; H is 
the heat absorption parameter; A is a constant; 𝐵𝐵0 is the uniform external magnetic field; 𝜇𝜇 is the 
dynamic viscosity; 𝑆𝑆𝑐𝑐 is the Schmidt number; 𝑃𝑃𝐺𝐺 is the Prandtl number; Gr is the thermal Grashof 
number; Gc is the solutal Grashof number; 𝑄𝑄 is the heat source parameter; 𝜎𝜎 is the electrical 
conductivity; 𝜙𝜙 is the dimensionless concentration in the fluid; 𝑔𝑔 is the acceleration due to gravity; 𝐾𝐾 
is the thermal conductivity of the fluid; 𝐾𝐾𝐶𝐶 is dimensionless rate of chemical reaction; 𝐸𝐸𝑐𝑐 is the Eckert 
number. 
Using the Rosseland approximation;  

𝜕𝜕𝑞𝑞𝑟𝑟
𝜕𝜕𝑦𝑦∗

= −4𝑎𝑎∗𝜎𝜎∗(𝑇𝑇∞∗4 − 𝑇𝑇∗4).        (7) 

where 𝑎𝑎∗ = Rosseland mean absorption co-efficient, 𝜎𝜎∗ =Stefan-Boltzmann constant and  
𝑞𝑞𝑟𝑟 = radiative heat flux. 
Assuming that the temperature difference within the flow are sufficiently small such that 𝑇𝑇∗4 is 
expressed as a linear function of the temperature. By Taylor’s series expansion and neglecting the 
higher order terms, 𝑇𝑇∗4 is expressed as a linear function of the temperature in the form; 

   𝑇𝑇∗4 ≈ 4𝑇𝑇∞∗3𝑇𝑇∗ − 3𝑇𝑇∞∗4.      (8) 
Substituting equation (8) into equation (7) gives;  

𝜕𝜕𝑞𝑞𝑟𝑟
𝜕𝜕𝑦𝑦∗

= −16𝑎𝑎∗𝜎𝜎𝑇𝑇∞∗3(𝑇𝑇∞∗ − 𝑇𝑇∗).      (9) 

Using equations (6) and (9), equations (2) to (4) are reduced to:  

 𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡

=  𝜕𝜕
2𝑢𝑢

𝜕𝜕𝑦𝑦2
+  𝐺𝐺𝐺𝐺𝜃𝜃 + 𝐺𝐺𝑐𝑐𝜙𝜙 −𝑀𝑀1𝑢𝑢.               (10) 

 where 
K

MM 1
1 += . 
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𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

= 1
𝑃𝑃𝑟𝑟

𝜕𝜕2𝜕𝜕
𝜕𝜕𝑦𝑦2

− 1
𝑃𝑃𝑟𝑟
𝐹𝐹1𝜃𝜃 + 𝑀𝑀𝐸𝐸𝑐𝑐𝑢𝑢2.       (11) 

where HFF +=1 . 

φφφ Kc
ySct

−
∂
∂

=
∂
∂

2

21
.         (12) 

With boundary conditions; 

𝑢𝑢 = 0, 𝜃𝜃 = 0, ∅ = 0   𝑓𝑓𝑓𝑓𝐺𝐺 𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦, 𝑡𝑡 ≤ 0; 
𝑢𝑢 = 𝑒𝑒𝑎𝑎𝑡𝑡 , 𝜃𝜃 = 1, ∅ = 1   𝑎𝑎𝑡𝑡   𝑦𝑦 = 0, 𝑡𝑡 > 0; 

            𝑢𝑢 → 0,       𝜃𝜃 → 0,     ∅ → 0     𝑎𝑎𝑎𝑎    𝑦𝑦 → ∞,    𝑡𝑡 > 0.  (13) 

Analytical Solution 
The non-linear partial differential equations (10) to (12) along with the boundary conditions (13) are 
solved exactly using the Laplace transform techniques. These equations are transformed as follow:  

From equation (11);   𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

= 1
𝑃𝑃𝑟𝑟

𝜕𝜕2𝜕𝜕
𝜕𝜕𝑦𝑦2

− 1
𝑃𝑃𝑟𝑟
𝐹𝐹1𝜃𝜃 + 𝑀𝑀𝐸𝐸𝑐𝑐𝑢𝑢2.  

Re-arranging    1
𝑃𝑃𝑟𝑟

𝜕𝜕2𝜕𝜕
𝜕𝜕𝑦𝑦2

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

+ 1
𝑃𝑃𝑟𝑟
𝐹𝐹1𝜃𝜃 −𝑀𝑀𝐸𝐸𝑐𝑐𝑢𝑢2.  

Taking the Laplace transform of both sides; 
1
𝑃𝑃𝑟𝑟
ℒ[𝜕𝜕

2𝜕𝜕
𝜕𝜕𝑦𝑦2

] = ℒ[𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

] + 1
𝑃𝑃𝑟𝑟
𝐹𝐹1ℒ[𝜃𝜃] −𝑀𝑀𝐸𝐸𝑐𝑐ℒ[𝑢𝑢2]. 

Using the Laplace transforms of derivatives from tables; 
1
𝑃𝑃𝑟𝑟

𝜕𝜕2𝜕𝜕�

𝜕𝜕𝑦𝑦2
− 𝑎𝑎�̅�𝜃(𝑦𝑦, 𝑎𝑎) + 𝜃𝜃(𝑦𝑦, 0) = 𝐹𝐹1

𝑃𝑃𝑟𝑟
�̅�𝜃(𝑦𝑦, 𝑎𝑎) −𝑀𝑀𝐸𝐸𝑐𝑐ℒ[𝑢𝑢2]   (14) 

where s is a Laplace transform parameter. 
𝑢𝑢 ≠ constant, since 𝑢𝑢 is a function of space and time. i.e. 𝑢𝑢(𝑦𝑦, 𝑡𝑡).   
The boundary condition in Laplace domain as: 

𝜃𝜃(𝑦𝑦, 0) = 0   𝑓𝑓𝑓𝑓𝐺𝐺 𝑎𝑎𝑎𝑎𝑎𝑎   𝑦𝑦 ≥ 0, 𝑡𝑡 ≤ 0, �̅�𝜃(𝑦𝑦, 0) = 0; 
𝜃𝜃(0, 𝑡𝑡) = 1     𝑎𝑎𝑡𝑡   𝑦𝑦 = 0,   𝑡𝑡 > 0,   𝜃𝜃���(0, 𝑎𝑎) = 1

𝑠𝑠
 ;     (15) 

        𝜃𝜃(𝑦𝑦, 𝑡𝑡) → 0    𝑎𝑎𝑎𝑎    𝑦𝑦 → ∞,    𝑡𝑡 > 0 . �̅�𝜃(𝑦𝑦, 𝑎𝑎) → 0.   
The solution to the LHS of equation (14) is expressed as;  

�̅�𝜃ℎ(𝑦𝑦, 𝑎𝑎) = 𝐴𝐴(𝑎𝑎)𝑒𝑒−𝑦𝑦�𝑃𝑃𝑟𝑟𝑠𝑠+𝐹𝐹1 + 𝐵𝐵(𝑎𝑎)𝑒𝑒𝑦𝑦�𝑃𝑃𝑟𝑟𝑠𝑠+𝐹𝐹1.        (16) 

Adding the particular solution of the  𝑃𝑃𝑟𝑟𝑀𝑀𝑀𝑀𝑐𝑐
𝑃𝑃𝑟𝑟𝑠𝑠+𝐹𝐹1

ℒ[𝑢𝑢2(𝑦𝑦, 𝑡𝑡)] to equation (16) gives the general solution 
as;  

�̅�𝜃(𝑦𝑦, 𝑎𝑎) = 𝐴𝐴(𝑎𝑎)𝑒𝑒−𝑦𝑦�𝑃𝑃𝑟𝑟𝑠𝑠+𝐹𝐹1 + 𝐵𝐵(𝑎𝑎)𝑒𝑒𝑦𝑦�𝑃𝑃𝑟𝑟𝑠𝑠+𝐹𝐹1 + 𝑃𝑃𝑟𝑟𝑀𝑀𝑀𝑀𝑐𝑐
𝑃𝑃𝑟𝑟𝑠𝑠+𝐹𝐹1

ℒ[𝑢𝑢2(𝑦𝑦, 𝑡𝑡)].    (17) 

Since 𝜃𝜃(𝑦𝑦, 𝑡𝑡) → 0 𝑎𝑎𝑎𝑎  𝑦𝑦 → ∞,   𝑡𝑡 > 0 ⟹ 𝜃𝜃(𝑦𝑦, 𝑎𝑎) = 0 and 𝐵𝐵(𝑎𝑎) = 0 
Equation (17) then reduces to;   

 �̅�𝜃(𝑦𝑦, 𝑎𝑎) = 𝐴𝐴(𝑎𝑎)𝑒𝑒−𝑦𝑦�𝑃𝑃𝑟𝑟𝑠𝑠+𝐹𝐹1 + 𝑃𝑃𝑟𝑟𝑀𝑀𝑀𝑀𝑐𝑐
𝑃𝑃𝑟𝑟𝑠𝑠+𝐹𝐹1

ℒ[𝑢𝑢2(𝑦𝑦, 𝑡𝑡)].              (18) 

𝜃𝜃(0, 𝑡𝑡) = 1  𝑎𝑎𝑡𝑡   𝑦𝑦 = 0, 𝑡𝑡 > 0  ⟹  𝜃𝜃�(0, 𝑎𝑎) = 1
𝑎𝑎
 

From equation (18),   1
𝑠𝑠

= 𝐴𝐴(𝑎𝑎) + 𝑃𝑃𝑟𝑟𝑀𝑀𝑀𝑀𝑐𝑐
𝑃𝑃𝑟𝑟𝑠𝑠+𝐹𝐹1

ℒ[𝑢𝑢2(𝑦𝑦, 𝑡𝑡)], 
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Thus,          �̅�𝜃(𝑦𝑦, 𝑎𝑎)=�1
𝑠𝑠
− 𝑃𝑃𝑟𝑟𝑀𝑀𝑀𝑀𝑐𝑐

𝑃𝑃𝑟𝑟𝑠𝑠+𝐹𝐹1
ℒ[𝑢𝑢2(𝑦𝑦, 𝑡𝑡)]� 𝑒𝑒−�𝑃𝑃𝑟𝑟𝑠𝑠+𝐹𝐹1 𝑦𝑦 +𝑃𝑃𝑟𝑟𝑀𝑀𝑀𝑀𝑐𝑐

𝑃𝑃𝑟𝑟𝑠𝑠+𝐹𝐹1
𝐿𝐿[𝑢𝑢2(𝑦𝑦, 𝑡𝑡)] 

                 �̅�𝜃(𝑦𝑦, 𝑎𝑎)=1
𝑠𝑠
𝑒𝑒−�𝑃𝑃𝑟𝑟𝑠𝑠+𝐹𝐹1 𝑦𝑦 + 𝐿𝐿[𝑢𝑢2(𝑦𝑦, 𝑡𝑡)]𝑃𝑃𝐺𝐺𝑀𝑀𝐸𝐸𝑐𝑐 � 1

𝑃𝑃𝑟𝑟𝑠𝑠+𝐹𝐹1
− 1

𝑃𝑃𝑟𝑟𝑠𝑠+𝐹𝐹1
𝑒𝑒−�𝑃𝑃𝑟𝑟𝑠𝑠+𝐹𝐹1 𝑦𝑦�.  

                (19) 
Equation (19) is the general solution of the temperature model in Laplace domain whose inverse will 
be determined later when the velocity function 𝑢𝑢2(𝑦𝑦, 𝑡𝑡) is known. 
The dimensionless concentration equation (12) is  

 φφφ Kc
ySct

−
∂
∂

=
∂
∂
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21
.       

In Laplace domain, boundary conditions are: 

𝜙𝜙(𝑦𝑦, 0) = 0   𝑓𝑓𝑓𝑓𝐺𝐺 𝑎𝑎𝑎𝑎𝑎𝑎   𝑦𝑦 ≥ 0,    𝑡𝑡 ≤ 0 𝜙𝜙�(𝑦𝑦, 0) = 0;  

𝜙𝜙(0, 𝑡𝑡) = 1 𝑎𝑎𝑡𝑡   𝑦𝑦 = 0, 𝑡𝑡 > 0  𝜙𝜙�(0, 𝑎𝑎) = 1
𝑠𝑠
 ;    (20) 

                     𝜙𝜙(𝑦𝑦, 𝑡𝑡) → 0    𝑎𝑎𝑎𝑎    𝑦𝑦 → ∞,    𝑡𝑡 > 0,     𝜙𝜙�(𝑦𝑦, 𝑎𝑎) → 0.  
The Laplace transform of each term in equation (12) gives;  

1
𝑆𝑆𝑐𝑐

𝜕𝜕2𝜙𝜙�

𝜕𝜕𝑦𝑦2
− 𝑎𝑎𝜙𝜙�(𝑦𝑦, 𝑎𝑎) + 𝜙𝜙(𝑦𝑦, 0)=𝐾𝐾𝑐𝑐𝜙𝜙�,      (21) 

Since  𝜙𝜙(𝑦𝑦, 0) = 0,   
𝜕𝜕2𝜙𝜙�

𝜕𝜕𝑦𝑦2
− 𝑆𝑆𝑐𝑐(𝑎𝑎 + 𝐾𝐾𝑐𝑐)𝜙𝜙� = 0.        (22)

  
Equation (22) is a homogenous linear second order ode whose solution is in the form; 

𝜙𝜙�(𝑦𝑦, 𝑎𝑎) = 𝐴𝐴(𝑎𝑎)𝑒𝑒−𝑦𝑦�𝑆𝑆𝑐𝑐𝑠𝑠+𝑆𝑆𝑐𝑐𝐾𝐾𝑐𝑐 + 𝐵𝐵(𝑎𝑎)𝑒𝑒𝑦𝑦�𝑆𝑆𝑐𝑐𝑠𝑠+𝑆𝑆𝑐𝑐𝐾𝐾𝑐𝑐 .    (23) 

Since,  𝜙𝜙(𝑦𝑦, 𝑡𝑡) → 0 𝑎𝑎𝑎𝑎    𝑦𝑦 → ∞,   𝑡𝑡 > 0 𝜙𝜙�(𝑦𝑦, 𝑎𝑎) = 0 and 𝐵𝐵(𝑎𝑎) = 0  
Then equation (23) reduces to;   

                𝜙𝜙�(𝑦𝑦, 𝑎𝑎) = 𝐴𝐴(𝑎𝑎)𝑒𝑒−𝑦𝑦�𝑆𝑆𝑐𝑐𝑠𝑠+𝑆𝑆𝑐𝑐𝐾𝐾𝑐𝑐.         (24) 

But  𝜙𝜙(0, 𝑡𝑡) = 1  𝑎𝑎𝑡𝑡   𝑦𝑦 = 0,    𝑡𝑡 > 0  𝜙𝜙�(0, 𝑎𝑎) = 1
𝑠𝑠
, 

From equation (24),         1
𝑠𝑠
 = 𝐴𝐴(𝑎𝑎) 

                                        𝜙𝜙�(𝑦𝑦, 𝑎𝑎) = 1
𝑠𝑠
𝑒𝑒−�𝑆𝑆𝑐𝑐𝑠𝑠+𝑆𝑆𝑐𝑐𝐾𝐾𝑐𝑐 𝑦𝑦.        (25) 

The standard inverse Laplace transform of (25) using convolution theorem is  

                 𝜙𝜙(𝑦𝑦, 𝑡𝑡) = 1
2
�𝑒𝑒−𝑦𝑦�𝑆𝑆𝑐𝑐𝐾𝐾𝑐𝑐𝑒𝑒𝐺𝐺𝑓𝑓𝑐𝑐 �2𝑡𝑡�𝐾𝐾𝑐𝑐−𝑦𝑦√𝑆𝑆𝑐𝑐

2√𝑡𝑡
� + 𝑒𝑒𝑦𝑦�𝑆𝑆𝑐𝑐𝐾𝐾𝑐𝑐𝑒𝑒𝐺𝐺𝑓𝑓𝑐𝑐 �2𝑡𝑡�𝐾𝐾𝑐𝑐+𝑦𝑦√𝑆𝑆𝑐𝑐

2√𝑡𝑡
��           (26) 

Equation (26) is the general solution representing the chemical concentration profile at 𝑡𝑡 > 0. 
Similarly, from the dimensionless momentum equation given in (10) as; 

 𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡

=  𝜕𝜕
2𝑢𝑢

𝜕𝜕𝑦𝑦2
+  𝐺𝐺𝐺𝐺𝜃𝜃 + 𝐺𝐺𝑐𝑐𝜙𝜙 −𝑀𝑀1𝑢𝑢, 

Subject to the boundary conditions in Laplace domain as: 

𝑢𝑢(𝑦𝑦, 0) = 0   𝑓𝑓𝑓𝑓𝐺𝐺 𝑎𝑎𝑎𝑎𝑎𝑎    𝑦𝑦 ≥ 0,   𝑡𝑡 ≤ 0 𝑢𝑢�(𝑦𝑦, 0) = 0; 
𝑢𝑢(0, 𝑡𝑡) = 𝑒𝑒𝑎𝑎𝑡𝑡 𝑎𝑎𝑡𝑡   𝑦𝑦 = 0,   𝑡𝑡 > 0  𝑢𝑢�(0, 𝑎𝑎) = 1

𝑠𝑠−𝑎𝑎
 ;   (27) 

𝑢𝑢(𝑦𝑦, 𝑡𝑡) → 0 𝑎𝑎𝑎𝑎    𝑦𝑦 → ∞,   𝑡𝑡 > 0 𝑢𝑢�(𝑦𝑦, 𝑎𝑎) → 0.      

Defect and Diffusion Forum Vol. 409 21



The Laplace transform of (10) results in;  
𝜕𝜕2u�
𝜕𝜕𝑦𝑦2 − (𝑎𝑎+𝑀𝑀1)𝑢𝑢� = −𝐺𝐺𝐺𝐺�̅�𝜃 − 𝐺𝐺𝑐𝑐𝜙𝜙�        (28)   

The general solution of equation (28) is;         

𝑢𝑢�(𝑦𝑦, 𝑎𝑎) = � 1
𝑠𝑠−𝑎𝑎

− 𝐺𝐺𝑟𝑟
𝑠𝑠+𝑀𝑀1

�̅�𝜃 − 𝐺𝐺𝑐𝑐
𝑠𝑠+𝑀𝑀1

𝜙𝜙�� 𝑒𝑒−𝑦𝑦�𝑠𝑠+𝑀𝑀1+ 𝐺𝐺𝑟𝑟
𝑠𝑠+𝑀𝑀1

�̅�𝜃 + 𝐺𝐺𝑐𝑐
𝑠𝑠+𝑀𝑀1

𝜙𝜙� , 

𝑢𝑢�(𝑦𝑦, 𝑎𝑎) = 1
𝑠𝑠−𝑎𝑎

𝑒𝑒−𝑦𝑦�𝑠𝑠+𝑀𝑀1 + 𝐺𝐺𝐺𝐺�̅�𝜃 � 1
𝑠𝑠+𝑀𝑀1

− 1
𝑠𝑠+𝑀𝑀1

𝑒𝑒−𝑦𝑦�𝑠𝑠+𝑀𝑀1� + 𝐺𝐺𝑐𝑐𝜙𝜙� � 1
𝑠𝑠+𝑀𝑀1

−
1

𝑠𝑠+𝑀𝑀1
𝑒𝑒−𝑦𝑦�𝑠𝑠+𝑀𝑀1�.         (29) 

The inverse Laplace transform (29) using the convolution theorem gives the general solution as; 

𝑢𝑢(𝑦𝑦, 𝑡𝑡) = −1
2
𝑒𝑒𝑎𝑎𝑡𝑡−𝑦𝑦�𝑎𝑎+𝑀𝑀1𝑒𝑒𝐺𝐺𝑓𝑓𝑐𝑐 �2𝑡𝑡�𝑎𝑎+𝑀𝑀1−𝑦𝑦

2√𝑡𝑡
� + 1

2
𝑒𝑒𝑎𝑎𝑡𝑡+𝑦𝑦�𝑎𝑎+𝑀𝑀1𝑒𝑒𝐺𝐺𝑓𝑓𝑐𝑐 �2𝑡𝑡�𝑎𝑎+𝑀𝑀1+𝑦𝑦

2√𝑡𝑡
� +

�𝐺𝐺𝐺𝐺𝜃𝜃(𝑦𝑦, 𝑡𝑡) + 𝐺𝐺𝑐𝑐𝜙𝜙(𝑦𝑦, 𝑡𝑡)� �𝑒𝑒−𝑀𝑀1𝑡𝑡 − 𝑒𝑒−𝑀𝑀1𝑡𝑡𝑒𝑒𝐺𝐺𝑓𝑓𝑐𝑐 � 𝑦𝑦
2√𝑡𝑡
��.      (30) 

Equation (30) is the general solution for the velocity profile at 𝑡𝑡 > 0. 
The general solution of the temperature model is then obtained as; 

 𝜃𝜃(𝑦𝑦, 𝑡𝑡) = 1
2
�−𝑒𝑒−𝑦𝑦�𝐹𝐹1𝑒𝑒𝐺𝐺𝑓𝑓𝑐𝑐 �

2𝑡𝑡�𝐹𝐹1𝑃𝑃𝑟𝑟−𝑦𝑦√𝑃𝑃𝑟𝑟

2√𝑡𝑡
� + 𝑒𝑒𝑦𝑦�𝐹𝐹1𝑒𝑒𝐺𝐺𝑓𝑓𝑐𝑐 �

2𝑡𝑡�𝐹𝐹1𝑃𝑃𝑟𝑟+𝑦𝑦√𝑃𝑃𝑟𝑟

2√𝑡𝑡
�� +

                                       𝑢𝑢2(𝑦𝑦, 𝑡𝑡)𝑀𝑀𝐸𝐸𝑐𝑐 �𝑒𝑒−
𝐹𝐹1
𝑃𝑃𝑟𝑟𝑡𝑡 − 𝑒𝑒−

𝐹𝐹1
𝑃𝑃𝑟𝑟𝑡𝑡𝑒𝑒𝐺𝐺𝑓𝑓𝑐𝑐 �𝑦𝑦�𝑃𝑃𝑟𝑟

2√𝑡𝑡
��.                        (31) 

On substituting 𝑢𝑢2(𝑦𝑦, 𝑡𝑡) into equation (31), the non-linear term 𝜃𝜃2(𝑦𝑦, 𝑡𝑡) is considered negligible since 
the temperature difference in the flow is sufficiently small. Hence the general solution of the 
temperature model at 𝑡𝑡 > 0 is;  

𝜃𝜃(𝑦𝑦, 𝑡𝑡) = �1 −𝑀𝑀𝐸𝐸𝑐𝑐𝑒𝑒−
𝐹𝐹1
𝑃𝑃𝑟𝑟
𝑡𝑡 �1 − 𝑒𝑒𝐺𝐺𝑓𝑓𝑐𝑐 �𝑦𝑦�𝑃𝑃𝑟𝑟

2√𝑡𝑡
�� �2𝐺𝐺𝐺𝐺𝐺𝐺𝑐𝑐𝜙𝜙(𝑦𝑦, 𝑡𝑡)𝑒𝑒−2𝑀𝑀1𝑡𝑡 �1 −

2𝑒𝑒𝐺𝐺𝑓𝑓𝑐𝑐 � 𝑦𝑦
2√𝑡𝑡
� + �𝑒𝑒𝐺𝐺𝑓𝑓𝑐𝑐 � 𝑦𝑦

2√𝑡𝑡
��

2
� + 𝐺𝐺𝐺𝐺 �𝑒𝑒−𝑀𝑀1𝑡𝑡 −

𝑒𝑒−𝑀𝑀1𝑡𝑡𝑒𝑒𝐺𝐺𝑓𝑓𝑐𝑐 � 𝑦𝑦
2√𝑡𝑡
�� �−𝑒𝑒𝑎𝑎𝑡𝑡−𝑦𝑦�𝑎𝑎+𝑀𝑀1𝑒𝑒𝐺𝐺𝑓𝑓𝑐𝑐 �2𝑡𝑡�𝑎𝑎+𝑀𝑀1−𝑦𝑦

2√𝑡𝑡
� +

𝑒𝑒𝑎𝑎𝑡𝑡+𝑦𝑦�𝑎𝑎+𝑀𝑀1𝑒𝑒𝐺𝐺𝑓𝑓𝑐𝑐 �2𝑡𝑡�𝑎𝑎+𝑀𝑀1+𝑦𝑦
2√𝑡𝑡

����
−1

�− 1
2
𝑒𝑒−𝑦𝑦�𝐹𝐹1𝑒𝑒𝐺𝐺𝑓𝑓𝑐𝑐 �

2𝑡𝑡�𝐹𝐹1𝑃𝑃𝑟𝑟−𝑦𝑦�𝑃𝑃𝑟𝑟

2√𝑡𝑡
� +

1
2
𝑒𝑒𝑦𝑦�𝐹𝐹1𝑒𝑒𝐺𝐺𝑓𝑓𝑐𝑐 �

2𝑡𝑡�𝐹𝐹1𝑃𝑃𝑟𝑟
+𝑦𝑦�𝑃𝑃𝑟𝑟

2√𝑡𝑡
� + 𝑀𝑀𝐸𝐸𝑐𝑐𝑒𝑒−

𝐹𝐹1
𝑃𝑃𝑟𝑟
𝑡𝑡 �1 −

𝑒𝑒𝐺𝐺𝑓𝑓𝑐𝑐 �𝑦𝑦�𝑃𝑃𝑟𝑟
2√𝑡𝑡

�� �1
4
𝑒𝑒2�𝑎𝑎𝑡𝑡−𝑦𝑦�𝑎𝑎+𝑀𝑀1� �𝑒𝑒𝐺𝐺𝑓𝑓𝑐𝑐 �2𝑡𝑡�𝑎𝑎+𝑀𝑀1−𝑦𝑦

2√𝑡𝑡
��

2

+

1
4
𝑒𝑒2�𝑎𝑎𝑡𝑡+𝑦𝑦�𝑎𝑎+𝑀𝑀1� �𝑒𝑒𝐺𝐺𝑓𝑓𝑐𝑐 �2𝑡𝑡�𝑎𝑎+𝑀𝑀1+𝑦𝑦

2√𝑡𝑡
��

2

+ 𝐺𝐺𝑐𝑐2𝜙𝜙2(𝑦𝑦, 𝑡𝑡)𝑒𝑒−2𝑀𝑀1𝑡𝑡 �1 − 2𝑒𝑒𝐺𝐺𝑓𝑓𝑐𝑐 � 𝑦𝑦
2√𝑡𝑡
� +

�𝑒𝑒𝐺𝐺𝑓𝑓𝑐𝑐 � 𝑦𝑦
2√𝑡𝑡
��

2
� − 1

2
𝑒𝑒2𝑎𝑎𝑡𝑡𝑒𝑒𝐺𝐺𝑓𝑓𝑐𝑐 �2𝑡𝑡�𝑎𝑎+𝑀𝑀1−𝑦𝑦

2√𝑡𝑡
� 𝑒𝑒𝐺𝐺𝑓𝑓𝑐𝑐 �2𝑡𝑡�𝑎𝑎+𝑀𝑀1+𝑦𝑦

2√𝑡𝑡
� +
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𝐺𝐺𝑐𝑐𝜙𝜙(𝑦𝑦, 𝑡𝑡) �𝑒𝑒−𝑀𝑀1𝑡𝑡 − 𝑒𝑒−𝑀𝑀1𝑡𝑡𝑒𝑒𝐺𝐺𝑓𝑓𝑐𝑐 � 𝑦𝑦
2√𝑡𝑡
�� �−𝑒𝑒𝑎𝑎𝑡𝑡−𝑦𝑦�𝑎𝑎+𝑀𝑀1𝑒𝑒𝐺𝐺𝑓𝑓𝑐𝑐 �2𝑡𝑡�𝑎𝑎+𝑀𝑀1−𝑦𝑦

2√𝑡𝑡
� +

𝑒𝑒𝑎𝑎𝑡𝑡+𝑦𝑦�𝑎𝑎+𝑀𝑀1𝑒𝑒𝐺𝐺𝑓𝑓𝑐𝑐 �2𝑡𝑡�𝑎𝑎+𝑀𝑀1+𝑦𝑦
2√𝑡𝑡

����.      (32) 

where,  

𝜙𝜙(𝑦𝑦, 𝑡𝑡) = 1
2
�𝑒𝑒−𝑦𝑦�𝑆𝑆𝑐𝑐𝐾𝐾𝑐𝑐𝑒𝑒𝐺𝐺𝑓𝑓𝑐𝑐 �2𝑡𝑡�𝐾𝐾𝑐𝑐−𝑦𝑦√𝑆𝑆𝑐𝑐

2√𝑡𝑡
� + 𝑒𝑒𝑦𝑦�𝑆𝑆𝑐𝑐𝐾𝐾𝑐𝑐𝑒𝑒𝐺𝐺𝑓𝑓𝑐𝑐 �2𝑡𝑡�𝐾𝐾𝑐𝑐+𝑦𝑦√𝑆𝑆𝑐𝑐

2√𝑡𝑡
��. 

Letting; 

𝑏𝑏0 = 1 −𝑀𝑀𝐸𝐸𝑐𝑐𝑒𝑒−
𝐹𝐹1
𝑃𝑃𝑟𝑟
𝑡𝑡 �1

− 𝑒𝑒𝐺𝐺𝑓𝑓𝑐𝑐 �
𝑦𝑦√𝑃𝑃𝐺𝐺
2√𝑡𝑡

��  �𝐺𝐺𝐺𝐺𝐺𝐺𝑐𝑐𝑒𝑒−2𝑀𝑀1𝑡𝑡 �𝑒𝑒−𝑦𝑦�𝑆𝑆𝑐𝑐𝐾𝐾𝑐𝑐𝑒𝑒𝐺𝐺𝑓𝑓𝑐𝑐 �
2𝑡𝑡�𝐾𝐾𝑐𝑐 − 𝑦𝑦√𝑆𝑆𝑐𝑐

2√𝑡𝑡
�

+ 𝑒𝑒𝑦𝑦�𝑆𝑆𝑐𝑐𝐾𝐾𝑐𝑐𝑒𝑒𝐺𝐺𝑓𝑓𝑐𝑐 �
2𝑡𝑡�𝐾𝐾𝑐𝑐 + 𝑦𝑦�𝑆𝑆𝑐𝑐

2√𝑡𝑡
��  �1 − 2𝑒𝑒𝐺𝐺𝑓𝑓𝑐𝑐 �

𝑦𝑦
2√𝑡𝑡

� + �𝑒𝑒𝐺𝐺𝑓𝑓𝑐𝑐 �
𝑦𝑦

2√𝑡𝑡
��

2

�

+ 𝐺𝐺𝐺𝐺 �𝑒𝑒−𝑀𝑀1𝑡𝑡 − 𝑒𝑒−𝑀𝑀1𝑡𝑡𝑒𝑒𝐺𝐺𝑓𝑓𝑐𝑐 �
𝑦𝑦

2√𝑡𝑡
���−𝑒𝑒𝑎𝑎𝑡𝑡−𝑦𝑦�𝑎𝑎+𝑀𝑀1𝑒𝑒𝐺𝐺𝑓𝑓𝑐𝑐 �

2𝑡𝑡�𝑎𝑎 + 𝑀𝑀1 − 𝑦𝑦
2√𝑡𝑡

�

+ 𝑒𝑒𝑎𝑎𝑡𝑡+𝑦𝑦�𝑎𝑎+𝑀𝑀1𝑒𝑒𝐺𝐺𝑓𝑓𝑐𝑐 �
2𝑡𝑡�𝑎𝑎 + 𝑀𝑀1 + 𝑦𝑦

2√𝑡𝑡
���. 

Equation (32) represents the general solution of the temperature profile for 𝑡𝑡 > 0. However, there are 
other possible solutions if 𝜃𝜃2(𝑦𝑦, 𝑡𝑡) ≠ 0 but the presence of the discriminant, 𝑏𝑏2 − 4𝑎𝑎𝑐𝑐 in the solution 
of the resulting quadratic equation makes 𝜃𝜃(𝑦𝑦, 𝑡𝑡) not defined for high parameter values.    
With known temperature field, the Nusselt number which is proportional to the rate of heat transfer 
can be analysed. The effects of 𝑡𝑡, 𝑀𝑀,𝐹𝐹,𝐻𝐻,𝐸𝐸𝑐𝑐 and 𝑃𝑃𝐺𝐺 on the rate of heat transfer will be discussed. In 
dimensionless form, the Nusselt number is given by; 

𝑁𝑁𝑢𝑢 = −𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦
�
𝑦𝑦=0

 =𝑏𝑏0−2 �
𝑀𝑀1𝑀𝑀𝑐𝑐
2√𝜋𝜋3𝑡𝑡7

𝐺𝐺𝑐𝑐 𝑒𝑒−2𝑀𝑀1𝑡𝑡−
𝐹𝐹1𝑡𝑡
𝑃𝑃𝑟𝑟 �√𝜋𝜋𝑡𝑡(8𝑀𝑀1𝑡𝑡 + 12)� 𝑒𝑒𝐺𝐺𝑓𝑓𝑐𝑐 �2𝑡𝑡�𝐾𝐾𝑐𝑐

2√𝑡𝑡
� −

     �𝑆𝑆𝑐𝑐
√𝜋𝜋𝑡𝑡

𝐺𝐺𝑐𝑐2 𝑒𝑒−4𝑡𝑡𝐾𝐾𝑐𝑐−2𝑀𝑀1𝑡𝑡 + �𝑆𝑆𝑐𝑐𝐾𝐾𝑐𝑐𝐺𝐺𝑐𝑐2 𝑒𝑒−2𝑀𝑀1𝑡𝑡𝑒𝑒𝐺𝐺𝑓𝑓𝑐𝑐 �2𝑡𝑡�𝐾𝐾𝑐𝑐
2√𝑡𝑡

� + �𝑆𝑆𝑐𝑐
√𝜋𝜋𝑡𝑡

𝑒𝑒−
2𝑡𝑡�𝐾𝐾𝑐𝑐+𝑀𝑀1𝑡𝑡

4𝑡𝑡 +

      �𝑆𝑆𝑐𝑐𝐾𝐾𝑐𝑐𝑒𝑒𝑀𝑀1𝑡𝑡𝑒𝑒𝐺𝐺𝑓𝑓𝑐𝑐 �2𝑡𝑡�𝐾𝐾𝑐𝑐
2√𝑡𝑡

��.                                                                                  (33) 

The rate of mass transfer coefficient at the vertical plate described by the Sherwood number can also 
be analysed. The effects of 𝑡𝑡, 𝑆𝑆𝑐𝑐 and 𝐾𝐾𝑐𝑐 on Sherwood number will be examined. In dimensionless 
form, the Sherwood number is given by; 

𝑎𝑎ℎ = −�𝜕𝜕∅
𝜕𝜕𝑦𝑦
�
𝑦𝑦=0

 =−�𝑆𝑆𝑐𝑐
√𝜋𝜋𝑡𝑡

𝑒𝑒−4𝑡𝑡𝐾𝐾𝑐𝑐 + �𝑆𝑆𝑐𝑐𝐾𝐾𝑐𝑐 �
2𝑡𝑡�𝐾𝐾𝑐𝑐
2√𝑡𝑡

�.          (34) 

Finally, it is significant to analysed the effects on the skin friction due to changes in the physical 
parameters 𝑡𝑡,𝐹𝐹,𝐻𝐻,𝑀𝑀,𝑃𝑃𝐺𝐺,𝐾𝐾𝑐𝑐 and 𝑘𝑘. In dimensionless form, the skin friction is given by; 

𝜏𝜏 = −𝜕𝜕𝑢𝑢
𝜕𝜕𝑦𝑦
�
𝑦𝑦=0

= − 1
√𝜋𝜋𝑡𝑡

𝑒𝑒
−𝑀𝑀1
4 𝑒𝑒𝐺𝐺𝑓𝑓𝑐𝑐 �

2𝑡𝑡�𝐹𝐹1𝑃𝑃𝑟𝑟
2√𝑡𝑡

� + 1
√𝜋𝜋𝑡𝑡

𝑒𝑒
−𝑀𝑀1
4 𝑒𝑒𝐺𝐺𝑓𝑓𝑐𝑐 �2𝑡𝑡�𝐾𝐾𝑐𝑐

2√𝑡𝑡
� +   1

√𝜋𝜋𝑡𝑡
𝑒𝑒
−𝑀𝑀1𝑡𝑡
4𝑡𝑡2 �𝐺𝐺𝐺𝐺𝜃𝜃(𝑦𝑦, 𝑡𝑡) +

𝐺𝐺𝑐𝑐𝜙𝜙(𝑦𝑦, 𝑡𝑡)�.           (35) 
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Results and Discussion 

The effects of the physical controlling parameters on the Temperature (𝜃𝜃), Concentration(𝜙𝜙) and 
Velocity (𝑢𝑢) profiles were obtained using MATLAB codes and displayed graphically for various 
conditions of the flow. These results are illustrated and discussed in sub-sections A, B and C.  

A. Temperature Profiles 

Fig. 2 depicts the influence of Prandtl number (𝑃𝑃𝐺𝐺) on the temperature distribution in the flow. It is 
observed that 𝑃𝑃𝐺𝐺 has the effects of increasing the temperature profile of the fluid as a result of 
increased fluid viscosity. In Fig. 3., the effects of heat absorption parameter (𝐻𝐻) on the temperature 
profile is depicted. It was observed that the heat absorption parameter increases the temperature of 
the fluid at away location from the surface since the internal heat of the fluid is retained as the fluid 
absorbs the atmospheric temperature.  Similar observation was made for the radiation parameter in 
Fig. 4. 
The effects of the magnetic parameter (𝑀𝑀) and Eckert number (Ec) on the temperature profiles are 
depicted in Figs. 5 and 6. It is instructive to not that the presence of the magnetic parameter creates 
an induced force known as the Lorenz force which act to retard the flow and hence the temperature.  
 
 
 
 
 
 
 

                                        
 
 
 
 

Fig. 2: Effects of 𝐏𝐏𝐏𝐏 on the temperature profiles when 𝐆𝐆𝐏𝐏 = 𝟓𝟓,𝐆𝐆𝐆𝐆 = 𝟓𝟓, 
t = 0.2, k = 1, Kc = 1, Sc = 2.01, a = 0.2, Ec = 1, M = 2, F = 2  and H = 2. 

 

 

  

  

 

 

  

 
 
 
 
 

Fig. 3: Effects of 𝐇𝐇 on the temperature profiles when 𝐆𝐆𝐏𝐏 = 𝟓𝟓,𝐆𝐆𝐆𝐆 = 𝟓𝟓, 
t = 0.2, k = 1, Kc = 1, Sc = 2.01, a = 0.2, Ec = 1, M = 2, F = 2  and Pr = 0.71. 
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Fig. 4: Effects of 𝑭𝑭 on the temperature profiles when Gr= 𝟓𝟓,𝑮𝑮𝑮𝑮 = 𝟓𝟓, 

𝑡𝑡 = 0.2,𝑘𝑘 = 1,𝐾𝐾𝑐𝑐 = 1, 𝑆𝑆𝑐𝑐 = 2.01,𝑎𝑎 = 0.2,𝐸𝐸𝑐𝑐 = 1,𝑀𝑀 = 2,𝑃𝑃𝐺𝐺 = 0.71  and 𝐻𝐻 = 2. 
 

 
 
 
 
 
 
 

 
 

 

 

 

 

Fig. 5: Effects of 𝑴𝑴on the temperature profiles when 𝑮𝑮𝑮𝑮 = 𝟓𝟓,𝑮𝑮𝑮𝑮 = 𝟓𝟓, 
𝑡𝑡 = 0.2,𝑘𝑘 = 1,𝐾𝐾𝑐𝑐 = 1, 𝑆𝑆𝑐𝑐 = 2.01,𝑎𝑎 = 0.2,𝐸𝐸𝑐𝑐 = 1,𝑃𝑃𝐺𝐺 = 0.71,𝐹𝐹 = 2  and 𝐻𝐻 = 2. 
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Fig. 6: Effects of 𝑬𝑬𝑮𝑮 on the temperature profiles when 𝑮𝑮𝑮𝑮 = 𝟓𝟓,𝑮𝑮𝑮𝑮 = 𝟓𝟓, 𝒕𝒕 = 𝟎𝟎.𝟐𝟐,𝒌𝒌 = 𝟏𝟏,𝑲𝑲𝑮𝑮 =
𝟏𝟏,𝑺𝑺𝑮𝑮 = 𝟐𝟐.𝟎𝟎𝟏𝟏,𝒂𝒂 = 𝟎𝟎.𝟐𝟐,𝑷𝑷𝑮𝑮 = 𝟎𝟎.𝟕𝟕𝟏𝟏,𝑴𝑴 = 𝟐𝟐,𝑭𝑭 = 𝟐𝟐 and 𝑯𝑯 = 𝟐𝟐. 

B. Concentration Profiles 
The main factors that affect the concentration of chemical species in the flow are the reaction rate 
parameter and the Schmidt number. These are depicted graphically in Figs 7 and 8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.7: Effects of 𝑲𝑲𝑮𝑮 parameter on the concentration profiles when 𝒕𝒕 = 𝟎𝟎.𝟐𝟐 and 𝑺𝑺𝑮𝑮 = 𝟐𝟐.𝟎𝟎𝟏𝟏. 
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Fig. 8: Effects of 𝑆𝑆𝑐𝑐 on the concentration profiles when 𝐾𝐾𝑐𝑐 = 1 and 𝑡𝑡 = 0.2. 

Figs. 7 and 8 depict the effects of chemical reaction parameter (𝐾𝐾𝑐𝑐) and Schmidt number (𝑆𝑆𝑐𝑐) 
respectively on the concentration profiles. It is observed that increasing the chemical reaction 
parameter, 𝐾𝐾𝑐𝑐 decreases the concentration boundary layer due to the fact that the chemical reaction is 
destructive leading to a reduced species concentration in fluid. It is also observed in Fig 8 that that 
the concentration of chemical species increases at all points of the flow particularly close to the 
surface with increasing values of the Schmidt number. 
C. Velocity Profiles 

Velocity profiles are illustrated in Figs. 9 – 14 for controlling parameters of 𝐾𝐾𝑐𝑐 , 𝑆𝑆𝑐𝑐,𝐺𝐺𝑐𝑐, 𝑃𝑃𝐺𝐺, 𝑀𝑀 and 
Gr respectively. It is observed that increasing values of 𝐾𝐾𝑐𝑐, 𝑀𝑀 and Gc retards the motion of the fluid 
whereas increases in Gr, Pr and Sc hastens the flow.  

 
Fig. 9: Effects of 𝑲𝑲𝑮𝑮 on the velocity profiles when 𝑮𝑮𝑮𝑮 = 𝟓𝟓,𝑮𝑮𝑮𝑮 = 𝟓𝟓,𝑬𝑬𝑮𝑮 = 𝟏𝟏 
𝑡𝑡 = 0.2,𝑘𝑘 = 1, 𝑆𝑆𝑐𝑐 = 2.01, 𝑎𝑎 = 0.2,𝑃𝑃𝐺𝐺 = 0.71,𝑀𝑀 = 2,𝐹𝐹 = 2 and 𝐻𝐻 = 2. 

 

 
 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
 

0.5 

1 

 2 

  3 

  4 

y 

u 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

1 

2 

3 

4 

5 

6 

7 

y 

𝑆𝑆𝑐𝑐 = 1, 5, 10, 15 

∅ 

𝐾𝐾𝑐𝑐 = 0.5, 1.0, 1.5, 2.0 

Defect and Diffusion Forum Vol. 409 27



 
Fig. 10: Effects of 𝑴𝑴on the velocity profiles when 𝑮𝑮𝑮𝑮 = 𝟓𝟓,𝑮𝑮𝑮𝑮 = 𝟓𝟓, 

𝑡𝑡 = 0.2,𝑘𝑘 = 1,𝐾𝐾𝑐𝑐 = 1, 𝑆𝑆𝑐𝑐 = 2.01,𝑎𝑎 = 0.2,𝑃𝑃𝐺𝐺 = 0.71,𝐸𝐸𝑐𝑐 = 2,𝐹𝐹 = 2 and 𝐻𝐻 = 2. 
 

 
Fig. 11: Effects of 𝑮𝑮𝑮𝑮on the velocity profiles when 𝑴𝑴 = 𝟐𝟐,𝑮𝑮𝑮𝑮 = 𝟓𝟓, 

𝑡𝑡 = 0.2,𝑘𝑘 = 1,𝐾𝐾𝑐𝑐 = 1, 𝑆𝑆𝑐𝑐 = 2.01,𝑎𝑎 = 0.2,𝑃𝑃𝐺𝐺 = 0.71,𝐸𝐸𝑐𝑐 = 2,𝐹𝐹 = 2 and 𝐻𝐻 = 2. 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

0.5 

1 

2 

3 

4 

5 

 6 

  7 

y 

𝑀𝑀 = 2, 4, 6 ,8 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2  

 1 

2 

  3 

  4 

  5 

 6 

  7 

y 

Gr=5, 10, 15, 25 

u 

u 

28 Engineering Fluid Flows and Heat Transfer Analysis II



 
Fig. 12: Effects of Gc on the velocity profiles when 𝑴𝑴 = 𝟐𝟐,𝑮𝑮𝑮𝑮 = 𝟓𝟓, 

𝑡𝑡 = 0.2,𝑘𝑘 = 1,𝐾𝐾𝑐𝑐 = 1, 𝑆𝑆𝑐𝑐 = 2.01,𝑎𝑎 = 0.2,𝑃𝑃𝐺𝐺 = 0.71,𝐸𝐸𝑐𝑐 = 2,𝐹𝐹 = 2 and 𝐻𝐻 = 2. 
 

 
Fig. 13: Effects of Pr on the velocity profiles when 𝑴𝑴 = 𝟐𝟐,𝑮𝑮𝑮𝑮 = 𝟓𝟓, 

𝑡𝑡 = 0.2,𝑘𝑘 = 1,𝐾𝐾𝑐𝑐 = 1, 𝑆𝑆𝑐𝑐 = 2.01,𝑎𝑎 = 0.2,𝐺𝐺𝑐𝑐 = 5,𝐸𝐸𝑐𝑐 = 2,𝐹𝐹 = 2 and 𝐻𝐻 = 2. 
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Fig. 14: Effects of 𝑺𝑺𝑮𝑮 on the velocity profiles when 𝑴𝑴 = 𝟐𝟐,𝑮𝑮𝑮𝑮 = 𝟓𝟓, 

𝑡𝑡 = 0.2,𝑘𝑘 = 1,𝐾𝐾𝑐𝑐 = 1,𝑃𝑃𝐺𝐺 = 0.71,𝑎𝑎 = 0.2,𝐺𝐺𝑐𝑐 = 5,𝐸𝐸𝑐𝑐 = 2,𝐹𝐹 = 2 and 𝐻𝐻 = 2. 

D. Nusselt Number 

Figs. 15 - 19 show the effects of Prandtl number (𝑃𝑃𝐺𝐺), Magnetic parameter (𝑀𝑀), Eckert number (𝐸𝐸𝑐𝑐), 
Radiation parameter (𝐹𝐹) and Heat absorption parameter (𝐻𝐻) on Nusselt number respectively. It is 
observed that increases in 𝑀𝑀 or 𝐸𝐸𝑐𝑐 causes a reduction in the Nusselt number which is proportional to 
the rate of heat transfer from the surface whilst increasing Pr,  𝐹𝐹 and 𝐻𝐻 results in increased rate of 
heat transfer. 

 
Fig. 15: The effects of 𝑷𝑷𝑮𝑮 on the Nusselt number profiles when 𝑴𝑴 = 𝟐𝟐, 
𝑡𝑡 = 0.2,𝑘𝑘 = 1,𝐾𝐾𝑐𝑐 = 1, 𝐺𝐺𝐺𝐺 = 5,𝐺𝐺𝑐𝑐 = 5,𝐸𝐸𝑐𝑐 = 2,𝐹𝐹 = 2 and 𝐻𝐻 = 2. 
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Fig. 16: The effects of M on the Nusselt number profiles when 𝑷𝑷𝑮𝑮 = 𝟎𝟎.𝟕𝟕𝟏𝟏, 

𝑡𝑡 = 0.2,𝑘𝑘 = 1,𝐾𝐾𝑐𝑐 = 1, 𝐺𝐺𝑐𝑐 = 5,𝐺𝐺𝐺𝐺 = 5,𝐸𝐸𝑐𝑐 = 1,𝐹𝐹 = 2 and 𝐻𝐻 = 2. 
 

 
Fig. 17: The effects of Ec on the Nusselt number profiles when 𝑷𝑷𝑮𝑮 = 𝟎𝟎.𝟕𝟕𝟏𝟏, 

𝑡𝑡 = 0.2,𝑘𝑘 = 1,𝐾𝐾𝑐𝑐 = 1, 𝐺𝐺𝐺𝐺 = 5, 𝐺𝐺𝑐𝑐 = 5,𝑀𝑀 = 2,𝐹𝐹 = 2 and 𝐻𝐻 = 2. 
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Fig. 18: The effects of F on the Nusselt number profiles when 𝑬𝑬𝑮𝑮 = 𝟎𝟎.𝟕𝟕𝟏𝟏, 
𝑡𝑡 = 0.2,𝑘𝑘 = 1,𝐾𝐾𝑐𝑐 = 1, 𝐺𝐺𝑐𝑐 = 5, 𝐺𝐺𝐺𝐺 = 5,𝐸𝐸𝑐𝑐 = 2,𝐹𝐹 = 2 and 𝐻𝐻 = 2. 

 
Fig. 19: The effects of 𝑯𝑯 on the Nusselt number profiles when 𝑷𝑷𝑮𝑮 = 𝟎𝟎.𝟕𝟕𝟏𝟏, 

𝑡𝑡 = 0.2,𝑘𝑘 = 1,𝐾𝐾𝑐𝑐 = 1, 𝐺𝐺𝑐𝑐 = 5,𝐺𝐺𝐺𝐺 = 5,𝐸𝐸𝑐𝑐 = 1,𝐹𝐹 = 2 and 𝑀𝑀 = 2. 
E. Sherwood Number Profiles 
Figs. 20 and 21 illustrate the effects of Schmidt number (Sc) and Chemical reaction parameter (Kc) 
on the Sherwood number respectively. It is observed that an increase in Sc increases the Sherwood 
Number which is proportional to the rate of mass transfer whilst increasing Kc reduces the rate of 
mass transfer for obvious reasons.  
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Fig. 20: Effects of on the Sherwood number profiles when 𝑡𝑡 = 0.2 and 𝐾𝐾𝑐𝑐 = 1. 

 
Fig. 21: Effects of Kc on the Sherwood number profiles when 𝒕𝒕 = 𝟎𝟎.𝟐𝟐 𝐚𝐚𝐚𝐚𝐚𝐚 𝑺𝑺𝑮𝑮 = 𝟐𝟐.𝟎𝟎𝟏𝟏. 

F. Skin Friction Profiles 

Figs. 22 and 23 depicts the effects of permeability of the porous medium (𝑘𝑘) and magnetic parameter 
(𝑀𝑀) on the skin friction coefficient respectively. It is noticed that an increase in 𝑀𝑀 results in decrease 
in the Skin Friction coefficient whilst increase in 𝑘𝑘 results in increase in the Skin Friction coefficient 
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Fig. 22: Effects of k on the Skin Friction coefficient when 𝑡𝑡 = 0.2, 𝐾𝐾𝑐𝑐 = 1,𝐻𝐻 = 2, 𝐹𝐹 = 2,𝑃𝑃𝐺𝐺 =

0.71 and 𝑀𝑀 = 2. 

 
Fig. 23: Effects of 𝑀𝑀on the Skin Friction coefficient profiles when 

𝑡𝑡 = 0.2, 𝐾𝐾𝑐𝑐 = 1,𝐻𝐻 = 2, 𝐹𝐹 = 2,𝑃𝑃𝑟𝑟 = 0.71 and 𝑘𝑘 = 1. 

Numerical Results 

Table 1 – 3 depict the numerical results for the skin friction coefficient,−𝑢𝑢′(0), the Sherwood 
number, −∅′(0) and the Nusselt number, –𝜃𝜃′(0) for varying parameter values of the controlling 
parameters. In Table 1, it is noted that the skin friction coefficient, −𝑢𝑢′(0) decreases for increasing 
values of  𝑡𝑡,𝑀𝑀,𝑃𝑃𝐺𝐺 and 𝐾𝐾𝑐𝑐 but increases with increasing values of 𝑘𝑘,𝐹𝐹 and 𝐻𝐻.  
The skin friction co-efficient reduces with time as the layer of fluid flows on each other serving as 
lubricants. The magnetic field parameter introduces the Lorenz force which acts to oppose the motion. 
However, the absorption and radiation parameters as well as the reaction parameter increase the 
molecular activity within the flow leading to increase internal energy, thereby increasing the skin 
friction on the surface. 
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Table 1:The Skin friction coefficient, -u' (0) at the wall for varying values of 𝒕𝒕,𝑴𝑴,𝒌𝒌,𝑭𝑭,𝑯𝑯,𝑷𝑷𝑮𝑮  
and 𝑲𝑲𝑮𝑮. 

𝒕𝒕 𝑴𝑴 𝒌𝒌 𝑭𝑭 𝑯𝑯 𝑷𝑷𝑮𝑮 𝑲𝑲𝑮𝑮 −𝒖𝒖′(𝟎𝟎) 

0.2 1.0 1.0 1.0 1.0 1.0 1.0 0.1194 

0.4 1.0 1.0 1.0 1.0 1.0 1.0 0.0894 

0.6 1.0 1.0 1.0 1.0 1.0 1.0 0.0671 

0.2 1.5 1.0 1.0 1.0 1.0 1.0 0.1053 

0.2 2.0 1.0 1.0 1.0 1.0 1.0 0.0930 

0.2 2.5 1.0 1.0 1.0 1.0 1.0 0.0820 

0.2 1.0 2 1.0 1.0 1.0 1.0 0.1353 

0.2 1.0 4 1.0 1.0 1.0 1.0 0.1440 

0.2 1.0 6 1.0 1.0 1.0 1.0 0.1469 

0.2 1.0 1.0 2 1.0 1.0 1.0 0.1942 

0.2 1.0 1.0 2.5 1.0 1.0 1.0 0.2222 

0.2 1.0 1.0 3 1.0 1.0 1.0 0.2458 

0.2 1.0 1.0 1.0 2 1.0 1.0 0.1942 

0.2 1.0 1.0 1.0 2.5 1.0 1.0 0.2222 

0.2 1.0 1.0 1.0 3 1.0 1.0 0.2458 

0.2 1.0 1.0 1.0 1.0 0.71 1.0 0.1826 

0.2 1.0 1.0 1.0 1.0 1.0 1.0 0.1194 

0.2 1.0 1.0 1.0 1.0 1.5 1.0 0.0473 

0.2 1.0 1.0 1.0 1.0 1.0 0.4 0.2434 

0.2 1.0 1.0 1.0 1.0 1.0 0.6 0.1937 

Table 2 depicts the numerical results for the Sherwood number, −∅′(0) for varying controlling 
parameter values of 𝑡𝑡 Sc and 𝐾𝐾𝑐𝑐. It revealed that the rate of mass transfer decreases with increasing 
time and chemical reaction parameter but increases with increasing Schmidt number. At low Sc, 
particles exhibit greater diffusivity and are very small to be conditioned by the viscosity of the 
medium. At high Sc, particles are giant with small diffusivity and the deposition becomes less and 
less relevant.  
The reaction rate parameter essentially indicates the effectiveness of the chemical reaction. It is 
directly affected by the rate of mixing. A higher reaction rate parameter means that molecules are 
mixing at a faster rate thereby decreasing the rate of mass transfer as a result of the destructive 
chemical reaction. 
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Table 2: Sherwood number -∅′(0) for various values of 
𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 (𝒕𝒕),𝑺𝑺𝑮𝑮𝑺𝑺𝒕𝒕𝒕𝒕𝑺𝑺𝒕𝒕 𝒏𝒏𝒖𝒖𝒕𝒕𝒏𝒏𝒕𝒕𝑮𝑮 (𝑺𝑺𝑮𝑮) 𝒂𝒂𝒏𝒏𝑺𝑺 and reaction rate parameter (𝑲𝑲𝑮𝑮). 

𝒕𝒕 𝑺𝑺𝑮𝑮 𝑲𝑲𝑮𝑮 −∅′(𝟎𝟎) 

0.2 1.0 1.0 1.0141 

0.4 1.0 1.0 0.8126 

0.6 1.0 1.0 0.8047 

0.2 0.2 1.0 0.4535 

0.2 0.4 1.0 0.6414 

0.2 0.6 1.0 0.7855 

0.2 1.0 0.2 1.1645 

0.2 1.0 0.4 1.0950 

0.2 1.0 0.6 1.0490 

In Table 3, numerical results for the Nusselt number  –𝜃𝜃′(0) is presented. It is observed that the rate 
of heat transfer decreases with time magnetic parameter and Eckert number. The magnetic parameter 
causes and induced force to act opposing the flow thereby reducing the rate of heat transfer at the 
surface. Conversely, 𝑃𝑃𝐺𝐺,𝐹𝐹,𝐺𝐺𝑐𝑐,𝐾𝐾𝑐𝑐and 𝑆𝑆𝑐𝑐 contributes to the rate of heat transfer. 

Table 3: The local Nusselt number, -θ' (0) for varying values of 𝒕𝒕,𝑴𝑴,𝑬𝑬𝑮𝑮,𝑮𝑮𝑮𝑮,𝑭𝑭,𝑷𝑷𝑮𝑮,𝑲𝑲𝑮𝑮, Sc when 
𝒌𝒌 = 𝟏𝟏 and 𝑯𝑯 = 𝟏𝟏. 

𝒕𝒕 𝑴𝑴 𝑬𝑬𝑮𝑮 𝑮𝑮𝑮𝑮 𝑭𝑭 Pr 𝑲𝑲𝑮𝑮 𝑺𝑺𝑮𝑮 −𝜽𝜽′(𝟎𝟎) 

0.2 1 1 1 1 1 1 1 1.7623 

0.4 1 1 1 1 1 1 1 0.6154 

0.6 1 1 1 1 1 1 1 0.2877 

0.2 2 1 1 1 1 1 1 0.6075 

0.2 4 1 1 1 1 1 1 0.0482 

0.2 6 1 1 1 1 1 1 0.0037 

0.2 1 0.2 1 1 1 1 1 1.0574 

0.2 1 0.4 1 1 1 1 1 0.7049 

0.2 1 0.6 1 1 1 1 1 0.3525 

0.2 1 1 5 1 1 1 1 0.6611 

0.2 1 1 7 1 1 1 1 0.6943 

0.2 1 1 9 1 1 1 1 1.3111 

0.2 1 1 1 2 1 1 1 0.0005 

0.2 1 1 1 4 1 1 1 0.0056 
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0.2 1 1 1 6 1 1 1 0.6075 

0.2 1 1 1 1 0.7 1 1 0.0898 

0.2 1 1 1 1 1.0 1 1 0.6075 

0.2 1 1 1 1 1.2 1 1 0.3251 

0.2 1 1 1 1 1 0.2 1 0.0458 

0.2 1 1 1 1 1 0.4 1 0.1192 

0.2 1 1 1 1 1 0.6 1 0.2338 

0.2 1 1 1 1 1 1 2 0.3372 

0.2 1 1 1 1 1 1 3 0.4107 

0.2 1 1 1 1 1 1 4 0.4778 

Conclusion 
The time-dependent hydrodynamic boundary layer flow in the presence of internal heat generation in 
porous media has been investigated. The non-linear partial differential equations have been modelled 
and transformed using similarity variables. The Laplace transform techniques has been employed to 
solve the resulting dimensionless differential equations exactly and results illustrated graphically and 
numerically in tables. From the results obtained, the following conclusions can be drawn: 

i. The thermal boundary layer thickness can be controlled with the application of a transverse 
magnetic field. The boundary layer can however be enhanced with viscous fluids and the heat 
absorption (H) or radiation (F) parameters. 

ii. The solutal boundary layer thickness increases with the Schmidt number (𝑆𝑆𝑐𝑐) whilst the 
chemical reaction parameter (𝐾𝐾𝑐𝑐) causes a reduction in the species concentration in the fluid. 

iii. The speed of flow is reduced with increasing chemical reaction parameter (𝐾𝐾𝑐𝑐),  magnetic 
field parameter (M) and solutal Grashof number (Gc) but increases with increasing thermal 
Grashof number (Gr) and the Schmidt number (Sc).  

iv. The Nusselt number is decreased with higher values of the magnetic parameter (M) and Eckert 
number (Ec) but increases with higher values of the Prandtl number (Pr), the radiation 
parameter (F) and the heat absorption parameter (H). 

v. The rate of mass transfer in the fluid is decreased with time (t) and chemical reaction 
parameter (𝐾𝐾𝑐𝑐) but increases with the Schmidt number (Sc). 

vi. The skin friction coefficient decreases with increasing time (t), magnetic field parameter (M), 
Prandtl number (Pr), and chemical reaction parameter (𝐾𝐾𝑐𝑐) but increased with increasing 
permeability of porous medium (k), radiation parameter (F) and heat absorption parameter 
(H). 
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