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A B S T R A C T   

The radius dependence of the electrical conductivity of metallic and semiconducting zigzag carbon nanotubes 
(CNTs) is theoretically studied. The investigation was done semiclassically by solving the Boltzmann transport 
equation to derive current density as a function of a homogenous axial dc field and radius of the tube. The 
analysis was numerically carried out by varying the radius of the materials at a constant temperature. Plots of the 
normalized current density versus dc field applied along the axis of both materials are presented. We observed 
that in the case of the metallic zigzag CNTs as the radius increases, the electrical conductivity decreases. On the 
other hand, in the semiconducting zigzag CNT there was an increase as radius increases. This research shows that 
thinner metallic zigzag CNTs and thicker semiconducting zigzag CNTs are better conductors of electricity. This 
investigation therefore offers way of obtaining higher electrical conductivity in both materials without doping. 
This study therefore shows applications in the development of current conducting nano-devices for scientific 
systems.   

1. Introduction 

The structure of carbon nanotube (CNT) consists of enrolled cylin-
drical graphitic sheet (called graphene) rolled up into a seamless cyl-
inder with diameter of the order of a nanometre [1]. Depending on the 
arrangement of carbon atoms in a given CNT or how the 
two-dimensional graphite sheet is rolled up, they can be classified as 
chiral (n, m) CNT, armchair (n, n) CNT, n = m and zigzag (n, 0) CNT, m =
0 [2,3]. The integers n and m are called chiral indices of CNT which 
denote the numbers of unit vectors along two directions in the hexag-
onal lattice of graphite sheet (or graphene) rolled up seamlessly to form 
the CNT [1–4]. For a given (n, m) CNT, if 2n + m = 3i or n-m = 3i, (where 
i is an integer and n ≥ m), then the CNT is a metal, otherwise the CNT is a 
semiconductor [5]. This leads to the cases that all armchairs (n, n) CNTs 
are metallic or conducting, and zigzag (n, 0) CNTs are only metallic or 
conducting if n is a multiple of 3. The thinness of any type of CNT which 
is a function of the radius of CNT depends on the integers n and m [6]. It 

has been reported that CNTs conduct electricity better than copper [7]. 
Due to the impressive list of attributes of CNTs [8], they have a wide 
variety of possible applications [9–15]. 

There are various reports on Negative Differential Conductivity 
(NDC) in CNTs [16–19]. However, to the best of our knowledge, a report 
on impact of the radius of zigzag (n, 0) CNT on its electrical conductivity 
is limited. Thus, in this paper, we present theoretical framework in-
vestigations of radius dependence of the electrical conductivity of either 
metallic or semiconducting zigzag (n, 0) CNT using the semiclassical 
Boltzmann’s transport equation to derive current density along the 
tube’s axis. 

2. Theory 

The effect of space charge inside CNT was neglected since space 
charge injection and accumulation are suppressed to a large extent 
under 400 kV/cm [20] and so relatively low maximum dc field of 150 
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kV/cm was used throughout the study. If a homogenous dc field Eax is 
applied along the axis of an undoped single-walled zigzag (n, 0) CNT, the 
electrons obey semiclassical Newton’s law when scattering is neglected 
[21], we obtained 

dPax

dt
= eEax (1)  

where Pax , t and e are the axial component of the quasimomentum, time 
taken and the electronic charge of the propagating electrons respec-
tively. For a CNT, the energy level spacing Δε is given by Ref. [16], 

Δε= πℏVF/L (2)  

where ℏ = h/2π, h is Planck constant, VF is Fermi velocity and L is the 
length of the nanotube. The investigation is done within the semi-
classical approximation in which the motion of the π-electrons is 
considered as classical motion of free quasiparticles in the field of the 
crystalline lattice with dispersion law extracted from the quantum the-
ory [16]. Taking into account the hexagonal crystalline structure of a 
rolled graphene in a form of CNT and using the tight binding approxi-
mation, the energy for zigzag (n, 0)CNT is expressed as in equation (3) 
[22], 

ε(sΔpφ, pax) ≡ εs(pax)

= ±γ0

[

1 + 4cos(apax)cos
(

a
̅̅̅
3

√ sΔpφ

)

+ 4cos2
(

a
̅̅̅
3

√ sΔpφ

)]1 /

2 (3)  

where a is the lattice constant of the zigzag (n, 0) CNT, γ0 ≈ 3.0eV is the 
overlapping integral, pax is the axial component of quasimomemtum. 
Δpφ is transverse quasimomentum level spacing and s is an integer. The 
expression for lattice constant a in equation (3) is given by 

a=
3ac− c

2ħ
(4)  

where ac− c = 0.142 nm is the C–C bond length. 
The - and + signs correspond to the valence and conduction bands 

respectively. Due to the transverse quantization of the quasimomentum 
P, its transverse component pφ can take n discrete values [16], 

pφ = sΔpφ = s
π

̅̅̅
3

√

an
, (s = 1,…, n) (5) 

Unlike transverse quasimomentum, pφ, the axial quasimomentum pax 

is assumed to vary continuously within the range 0 ≤ pax ≤ 2π/ a, which 
corresponds to the model of infinitely long CNT (L= ∞). This model is 
applicable to the case under consideration because we are restricted to 
temperatures and/or voltages well above the level spacing [16], i.e. 
kBT > εc,Δε, where kB is Boltzmann constant, T is the temperature; εc is 
the charging energy. Considering the motion of quasiparticles in an 
external axial electric field which is described by the Boltzmann kinetic 
equation is given by [16,21] 

∂f (p, t)
∂t

+ vax
∂f (p, t)

∂ax
+ eE(t)

∂f (p, t)
∂pax

= −
[f (p, t) − f0(p)]

τ (6)  

where f0(p) is equilibrium Fermi distribution function, f(p, t) is the 
distribution function, vax is the quasiparticle group velocity along the 
axis of CNT and τ is the relaxation time. The relaxation term of equa-
tion(6) describes the electron-phonon scattering, electron-electron col-
lisions etc. Using the method originally developed in the theory of 
quantum semiconductor superlattice [16]. an exact solution of equation 
(6) can be constructed without assuming a weak electric field. 
Expanding the distribution functions of interest in Fourier series as [16, 
23] 

f (p, t)=Δpφ

∑n

s=1
δ(pφ − sΔpφ)

∑

r∕=0
frseiarpax ψυ(t) (7)  

and 

f0(p)=Δpφ

∑n

s=1
δ(pφ − sΔpφ)

∑

r∕=0
frseiarpax (8)  

for zigzag CNTs. 
where, δ(pφ − sΔpφ) is the Dirac delta function, frs is the coefficients of 

the Fourier series and ψυ(t) is the factor by which the Fourier transform 
of the nonequilibrium distribution function differs from its equilibrium 
distribution counterpart. We now determine the electric current density 
of the zigzag CNT. 

By substituting equations (7) and (8) into equation (6), the below 
expression is obtained  

∂ψυ(t)
∂t

+

(

iearEax +
1
τ

)

ψυ(t)=
1
τ (9) 

Solving the homogeneous differential equation corresponding to 
equation (9), ψυ(t) is obtained as 

ψυ(t)=
ℏ

(ℏ + iraeEaxτ)
(10) 

The expression for the coefficients frs of equations (7) and (8) is found 
to be 

frs =
a

2πΔpφ

∫2π/a

0

exp− iarpax

1 + exp{εs(pax)/kBT)}
dpax (11) 

The surface current density is defined by 

jax =
2e

(2πℏ)2

∫∫

f (p, t)υax(p)d2p

or

jax =
2e

(2πℏ)2

∑n

s=1

∫

0

2π
a f (pax , sΔpφ,ψυ(t))υax(pax , sΔpφ)dpax

(12)  

where the integration is over the first Brillouin zone, υax is given by  

υax(pax, sΔpφ)=
∂εs(pax)

∂Pax
(13) 

Now we expand εs(pax)/γ0 
in Fourier series with coefficients εrs to be 

determined  

ε(pax , sΔpφ)= εs(pax)= γ0

∑

r∕=0
εrsexpiarpax (14) 

The expression for the coefficients is found to be 

εrs =
a

2πγ0

∫2π/a

0

εs(pax)exp− iarpax dpax (15)  

where εs(pax) is given by equation (3), from equations (13) and (14) 

υax(pax , sΔpφ)= γ0

∑

r∕=0

∂(εrsexpiarpax )

∂pax
= γ0

∑

r∕=0
iarεrsexpiarpax (16) 

From equation (7), 

f (pax, sΔpφ,ψυ(t) ) = Δpφ

∑

r∕=0
frsexpiarpax ψυ(t) (17) 

Substituting equations (5), (7) and (8) into equation (12) and 
considering only the real part of the current density jax for zigzag (n, 0) 
CNT we obtained  
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where j0 =
4
̅̅
3

√
e2γ0

ℏ2 and n is the number of the unit vectors of hexagonal 
lattice of graphite sheet rolled up. 

seamlessly to form the zigzag (n, 0) CNT. Also, the radius R of any 
type of CNTs is derived as R =

̅̅
3

√
ac− c

2π (m2 + mn + n2)
1
2 [6] where ac− c is the 

distance between adjacent carbon atoms in the flat sheet or the C–C 
bond length. For zigzag (n, 0) CNT, radius R is expressed in terms of 
number n of unit vector as 

R=

̅̅̅
3

√
ac− c

2π n since m= 0 for zigzag (n, 0)CNTs and hence n in terms   

R is obtained as n= 2πR
/

̅̅̅
3

√
ac− c (19) 

Substituting equations (4) and (19) into equation (18), we obtained 
the current density along the axis Jax as function of dc field along the axis 
Eax and radius R for zigzag (n, 0) CNT as  

Fig. 1. A plot of normalized current density (Jax) versus electric field (Eax) for 
metallic zigzag (n, 0) CNTs where n = 3, 6, 9, 12, 15, 18 and 21 with the 
corresponding radius R = 0.117 nm, 0.235 nm, 0.352 nm, 0.470 nm, 0.587 nm, 
0.705 nm and 0.822 nm respectively at T = 287.5 K. 

Fig. 2. A plot of normalized current density (Jax) versus electric field (Eax) for 
semiconducting zigzag (n, 0) CNTs where n = 4, 5, 7, 8, 10, 11 and 13 with the 
corresponding radius R = 0.157 nm, 0.196 nm, 0.274 nm, 0.313 nm, 0.391 nm, 
0.431 nm and 0.509 nm respectively at T = 287.5 K. 

jax =
j0

n
∑n

s=1

⎛

⎜
⎝

a2n
2π2

̅̅̅
3

√
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0

exp− iarpax

1 + exp
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[
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n
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⎞
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2πγ0
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n

)]1 /

2
)
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⎞
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(20)   
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3. Results and discussions 

The behaviour of normalized current density along the axis of the 
carbon nanotube (Jax = jax/j0) as a function of the applied dc field along 
the axis (Eax) as the radius R of metallic zigzag (n, 0) CNT increases from 
0.117 nm to 0.822 nm is displayed in Fig. 1. The radius dependence of 
the electrical conductivity of metallic zigzag (n, 0) CNTs is shown in the 
figure. 

We have observed in Fig. 1 that the peak normalized current density 

and the electrical conductivity 
⃒
⃒
⃒
⃒

∂Jax
∂Eax

⃒
⃒
⃒
⃒ at any dc field (Eax) represented by 

the tangent to the curve at that particular dc field (Eax) for either ohmic 

region 
(

i.e.∂Jax
∂Eax

> 0
)

or negative differential conductivity (NDC) region 
(

i.e.∂Jax
∂Eax

< 0
)

decreases as the radius R of the metallic zigzag (n,0) CNT 

increases from 0.117 nm to 0.235 nm with the corresponding chiral 
index n of 3 and 6 respectively at a constant temperature of 287.5 K. As 
the radius R further increases from 0.235 nm and finally to 0.822 nm 
with the corresponding chiral index n of 6 and 21 respectively, the peak 
normalized current density and the electrical conductivity decrease 
further as shown in Fig. 1. This behaviour could be attributed to the fact 
that as the radius R of the zigzag (n, 0) CNT increases with a corre-
sponding increase in chiral index n, the scattering rate of electrons also 
increases leading to the decrease in electrical conductivity as well as 
peak current density. 

Also, the behaviour of normalized current density along the axis of 
the CNT (Jax = jax/j0) as a function of the applied dc field along the axis 
(Eax) as the radius R of semiconducting zigzag (n, 0) CNT increases from 
0.157 nm to 0.509 nm is displayed in Fig. 2. The radius dependence of 
the electrical conductivity of semiconducting zigzag (n, 0) CNTs is 
clearly shown in the Fig. 2. 

From the Fig. 2, unlike metallic zigzag (n, 0) CNTs in Fig. 1, we have 
observed that the peak normalized current density and the electrical 
conductivity at any dc field (Eax) for either ohmic or NDC region rather 
increase as the radius R of semiconducting zigzag (n, 0) CNT increases 
from 0.157 nm to 0.196 nm with the corresponding chiral index n of 4 
and 5 respectively at a constant temperature of 287.5 K. As the radius R 
further increases from 0.196 nm and finally to 0.509 nm with the cor-
responding chiral index n of 5 and 13 respectively, the peak normalized 
current density and the electrical conductivity increase drastically as 
shown in Fig. 2. This could be attributed to the fact that n is directly 
proportional to the diameter D (or radius R) of the semiconducting 
zigzag (n, 0) CNTs. In semiconducting CNTs, D (or R) is inversely pro-
portional to energy band gap [24–26]. Hence as the radius R (or 
diameter D) increases, the energy band gap of the semiconducting zigzag 
(n, 0) CNTs decreases accordingly resulting in more electrons in the 
valence band overcoming relatively narrow energy band gap into con-
duction band for conduction. This accounts for the increase in electrical 
conductivity as the radius R of semiconducting zigzag (n, 0) CNT 
increases. 

To put the observed radius dependence of the electrical conductivity 
of zigzag CNTs in perspective, the 3-dimensional behaviour of the 
normalized current density (Jax) as a function of the dc field (Eax) and 
the radius (R) for metallic and semiconducting zigzag (n, 0) CNTs are 
displayed in Figs. 3 and 4 respectively. 

In Fig. 3, the electrical conductivity and peak normalized current 
density of metallic zigzag (n, 0) CNT decrease with increasing radius 
from 0.117 nm to 0.822 nm with the corresponding chiral index n of 3 
and 21 respectively. For metallic zigzag (n, 0) CNT, the electrical con-
ductivity and the peak normalized current density are at the highest 
values when the radius of the tube is the lowest (i.e. R = 0.117 nm with 
the corresponding chiral index n = 3). As the radius gradually increases, 
the electrical conductivity and the peak normalized current density 
decrease until the lowest values are obtained at highest radius of 0.822 
nm with the corresponding chiral index n of 21 as shown in Fig. 3. 

Also in Fig. 4, the electrical conductivity and the peak normalized 
current density of semiconducting zigzag (n, 0) CNT increase with 
increasing radius from 0.157 nm to 0.509 nm with the corresponding 
chiral index n of 4 and 13 respectively. Unlike metallic zigzag carbon 
nanotube, the electrical conductivity and the peak normalized current 
density of semiconducting zigzag (n, 0) CNT are at the lowest values 
when the radius is the lowest (i.e. R = 0.157 nm with the corresponding 
chiral index n = 4). As the radius gradually increases, the electrical 
conductivity and the peak current density increase until the highest 
values are obtained at highest radius of 0.509 nm with the corre-
sponding chiral index n of 13 as shown in Fig. 4. 

Fig. 3. 3D plot of normalized current density (Jax) versus dc field (Eax) and 
radius (R) for metallic zigzag (3, 0), (6, 0), (9, 0), (12, 0), (15, 0), (18, 0) and 
(21, 0) CNTs with the corresponding radius of 0.117 nm, 0.235 nm, 0.352 nm, 
0.470 nm, 0.587 nm, 0.705 nm and 0.822 nm respectively at T = 287.5 K. 

Fig. 4. 3D plot of normalized current density (Jax) versus dc field (Eax) and 
radius (R) for semiconducting zigzag (4, 0), (7, 0), (10, 0) and (13, 0) CNTs with 
the corresponding radius of 0.157 nm, 0.274 nm, 0.391 nm and 0.509 nm 
respectively at T = 287.5 K. 
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Therefore, this study predicts metallic zigzag (3, 0) CNT with the 
least radius of 0.117 nm to be best conductor of electricity among all 
metallic zigzag (n, 0) CNTs. Furthermore, the study has shown that the 
electrical conductivity of semiconducting zigzag (n, 0) CNTs could be 
increased by just increasing the radius of that particular semiconducting 
zigzag (n, 0) CNTs without doping. 

4. Conclusions 

In conclusion, radius dependence of the electrical conductivity of 
metallic and semiconducting zigzag CNTs is theoretically studied using 
semiclassical approach. The theoretical framework investigation shows 
that the thinner metallic zigzag CNT and thicker semiconducting zigzag 
CNT are better conductors of electricity. This research therefore offers 
way of obtaining higher electrical conductivity in both materials 
without doping. This study therefore shows applications in the devel-
opment of current conducting nano-devices for scientific systems. 
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