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ABSTRACT 

The Transmuted Type I General Exponential family of distributions as a new 

generator is proposed and studied. The new generator has a closed form and 

therefore very tractable, its hazard rate function has the flexibility to model 

different kinds of the bathtub shapes. Also, a comprehensive description of the 

statistical properties of the new generator including explicit expressions for the 

ordinary and incomplete moments, moments generating function, order 

statistics and stochastic ordering property are derived. Five special models 

were derived from the proposed generator. The unknown parameters of the 

models were estimated and the Monte Carlo Simulation technique was used to 

assess the performance of the maximum likelihood estimators in terms of the 

average biases and the root mean squared errors, and it was found that the 

estimators are stable. The dynamism of the proposed generator was 

demonstrated by using real datasets and it was shown that the special models 

of the proposed generator provide a better fit than other competing models. It 

is recommended that the new family of distributions can be used in broad 

application in real life situation.  
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CHAPTER ONE 

INTRODUCTION 

1.1 Background of the Study 

Statistical distributions are very essential in modeling and analysing lifetime 

data in many areas of applied sciences such as actuarial science (Boland, 

2007; Frees et al., 2014), risk management (Embrechts et al., 2011; Willmot  

and Lin, 2011; Guo, 2017), insurance (Achieng and No, 2010; Paula et al., 

2012; Adcock et al., 2015), biomedical research (Lang, 2004; Ishak et al., 

2013) among others. 

In many practical situations, the existing models are not able to provide 

adequate fit  and flexibility to real data because most datasets are believed to 

arise from dynamic processes. Available literature (Merovic, 2013a; Yousof et 

al., 2015; Mahdavi and Kundu, 2017) indicate that by introducing an 

additional parameter, more flexibility is brought  into a distribution and hence 

can be very useful for data analysis purposes. In fact, most of the compounded 

models are noted to perform better in terms of flexibility when compared with 

their basline distribution. This is because the additional parameter  helps to 

change the weight of the tail of the new models thereby inducing it with 

skewness (Lee et al., 2013; Rezaei et al., 2017). 

For instance, the traditional normal distribution lacks robustness in terms of 

analysing  asymmetric data, hence cannot be relied upon  as a good choice. 

The introduction of an additional parameter in the normal distribution by 

Azzalini (1985) led to the establishment of the skewed normal distribution 

which brings more flexibility to the normal distribution.  
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There are many techniques in literature that can be adopted to extend existing 

standard distributions. For instance, a model can be enhanced by means of 

generalization which involves using the available model or generalized family 

of distributions. When a model or family of distributions is generalized, an 

extra parameter would have been added. 

A closer look at the existing statistical literature indicate a huge interest among 

statisticians and practitioners in developing new family of distributions. Some 

of these well-known families of distributions include: Quadratic Rank 

Transmutaion Map (QRTM) by Shaw and Buckley (2007), Lomax-G by 

Cordeiro et al. (2014), Kumaraswamy Marshall-Olkin-G by Alizadeh et al. 

(2015), Beta Transmuted-H family by Afify et al. (2017), Topp-Leone Odd 

log-logistic family by Brito et al. (2017), Type I General Exponential class of 

distributions by Hamedani et al. (2018), T-Pareto-G by Hamed et al. (2018), 

Z-famiy of distributions by Ahmad et al. (2020). 

1.2 Problem Statement 

The introduction of the Type I General Exponential (TIGE) class of 

distributions by Hamedani et al. (2018) is timely; because it contributes to the 

theory of probability distributions and relatively better fits for modeling 

unimodal data. 

However, the work of Hamedani et al. (2018) is not flexible enough to provide 

a better parametric fit for modeling phenomenon with varied failure rates such 

as bathtub and bimodal failure rates which can be present in many practical 

fields such as medical, risk management as well as reliability studies.  
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In order to overcome this drawback of the TIGE class of distributions, a 

minimum of two shape parameters are required (Gomes-Silva et al., 2017; 

Nasiru, 2018a). This study therefore seeks to develop an extended form of the 

TIGE class of distributions by adding an extra parameter to the existing family 

of distributions. 

1.3 Objectives of the Study 

1.3.1 General Objective 

The general objective of this study is to develop and study the statistical 

properties of Transmuted Type I General Exponential (T-TIGE) family of 

distributions.  

1.3.2 Specific Objectives 

The specific objectives are to;  

1. Develop the T-TIGE family of distributions.   

2. Derive the statistical properties of the T-TIGE family of distributions.  

3. Develop maximum likelihood estimators for parameters of the T-TIGE 

family.  

4. Develop some special distributions using the T-TIGE generator. 

5. Study the behaviour of the estimators using the Monte Carlo 

Simulation. 

6. Demonstrate the applications of the special models using real datasets. 
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1.4. Significance of the Study  

Developing and studying of probability distributions, generally in the sense of 

properties of suitable family of distributions, has ever been a persistent theme 

of theoretical and applied statistics for many decades. The knowledge of 

appropriate statistical distribution of real data sets greatly improves the 

sensitivity, power and efficiency of the statistical test associated with the data 

sets (Nasiru, 2018b). 

Therefore, developing new generator for modifying existing distributions to 

improve their goodness-of-fit cannot be overemphasized. Thus, this study 

makes significant contribution in terms of theoretical and empirical literature 

as a result of introduction of a new generator called T-TIGE, to improve upon 

the existing distributions.  

Another significant contribution of the current study which cannot be over-

emphasized is the development of T-TIGE family, which is a very versatile 

generalization of the TIGE generator with tractable distributions and very 

important in statistical analysis of dataset characterized by both monotonic and 

non-monotonic failure rates.  

It is equally important to know that the new T-TIGE generator is also capable 

in controlling skewness, kurtosis and tail variation of distributions that are 

common in actuarial science, risk management, insurance, biological, medical, 

and survival analysis applications among others. 

This new family of distributions has several advantages and it will give 

practitioners additional option for analyzing skewed life time data sets. It is 

also envisaged that practitioners, academicians and other researchers will 
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benefit from the necessary background and the relevant references about this 

distribution because it may serve as a knowledge base for academicians and 

researchers working on related topics. 

1.5 Outline of the Study 

The organization of this study is in six chapters. Chapter one deals with the 

introduction of the study, with focus on the background of the study, the 

problem statement, the objective of the study and significance of the study. 

Chapter two is a review of the relevant studies that underpin the current study. 

Chapter three is on the methods that help in addressing the research objectives. 

Chapter four is about the theoretical results which highlight the development 

of the new generator and some statistical properties. The chapter also 

highlights the development of the estimators and the Monte Carlo simulations. 

Chapter five is about the empirical results which focuses on the applications of 

the special distributions derived to real datasets. Chapter six presents the 

summary of findings, recommendations and concluding remarks of the study. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

This chapter reviews relevant literature relating to current study with focus on 

broad-spectrum of studies that were developed and current developments in 

the field of statistical distributions and probability theories.  Some important 

continuous distributions which are also relevant to this study are also being 

highlighted. 

2.2 Methods for Developing New Distributions 

There are general methodologies that underpinned the development and 

construction of new statistical distributions. These include methods of 

differential equations (Pearson,1895, 1916; Burr, 1942), methods of quantile 

function (Hastings et al., 1947; Tukey, 1960), methods of transformation 

(Johnson, 1949; Birnbaum and  Saunders, 1969; Athayde et al., 2012), skewed 

distributions generating methods (Azzalini, 1985), method of adding 

parameters to existing distributions (Mudhokar and Srivastava, 1993; Gupta 

and Kundu, 2001; Nadarajah and Kotz, 2006). 

2.3 Technique of Adding Parameters 

Mudholker and Srivastarvar (1993) initiated the addition of parameters to an 

existing distribution. This concept posits that adding parameter to an existing 

distribution makes it more flexible and simple. The addition of the parameter 

can either be in the form of scale parameter, shape parameter, or location 

parameter.  
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A scale parameter has the effect of widening or shrinking the graph of a 

distribution.  A shape parameter is the one that affects the shape of the 

distribution, and the location parameter is when a change in the value results 

in either a shift to the left or to the right of the curve. The concept of adding 

parameter was boosted by the work of various researchers.  

For instance, Gupta et al. (1998) gave many accounts on adding of parameters 

on the exponential distribution. Marshall-Olkin (2007) also developed another 

method of adding an extra parameter to a lifetime model, for which they 

studied in details the aspects or cases of exponential and Weibull models. 

Shaw and Buckley (2007) also introduced a generator called QRTM family of 

distributions. This has brought about a huge boost in adding a parameter to 

existing distribution, because the QRTM has led to the development of more 

family of distributions and extension of some existing distributions.  

2.4 Transmuted Family of Distributions and Extensions 

The transmuted family has being receiving increased attentions for the past 

two (2) decades. The concept of the transmuted family of distributions was 

engineered to provide parametric models that would provide flexibility and 

also provide tractability of distributions.  

The QRTM uses a functional composition of a cumulative function of one 

distribution with the quantile function of another, which allows the quadratic 

rank transmutation map to generate a flexible family of distributions. Thus the 

use of QRTM generator provides a platform to induce skewness and kurtosis 

of a given distribution or family of distributions. That is, the quadratic rank 

transmutation map is a vehicle available to generate a flexible family of 
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distributions. The generated family, also called the transmuted extended 

distribution, includes the parent distribution as a special case and gives more 

flexibility to model various types of data. There are many kinds of extensions 

to the transmuted family of distributions. 

For instance, Bourguignon et al. (2016) had modified the QRTM family to 

include the general results, as well as bivariate and multivariate extensions. 

The Generalized Transmuted-G by Nofal et al. (2017), the Beta transmuted-H 

families by Afify et al. (2017), and the Cubic Rank Transmuted distributions 

by Granzotto et al. (2017). 

As a way of contributing to the development of the QRTM literature, Azalideh 

et al. (2017) introduced and studied general mathematical properties of a new 

generator of continuous distributions called the Generalized Transmuted 

family.  

The various statistical properties such as the ordinary and incomplete 

moments, moment generating function, Bonferroni, Lorenz, Shannon and 

Rényi entropies and order statistics are computed. Azalideh et al. (2017) 

employed the maximum likelihood method among other to estimate the model 

parameters and illustrate the potential application of the model via real data. 

Rahman et al. (2018) have proposed and studied generalized transmuted 

models with emphasis on the Cubic Transmuted (CT) family.  

The CT family was derived as a result of the combination of the  T−X family 

by Alzaatreh et al. (2013) and the QRTM family. A special model, called the 

Cubic Transmuted Exponential distribution, was derived from the CT family 
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of distributions and various statistical properties of the distribution were 

studied.  The Cubic Transmuted Exponential model was fitted to two different 

datasets to investigate it applicability. 

The Transmuted Kumaraswamy-G Family for modeling reliability dataset was 

proposed and studied by Khan et al. (2017) as an extension to the QRTM 

family. The new extended family was derived by the combination of the 

quadratic rank transmutation map method, which possesses a bathtub shape 

for its hazard rate. Some special models in the new family were derived.  

Khan et al. (2020) studied the various statistical properties of the new family, 

including the probability weighted moment, ordinary moments, and moment 

generating functions, quantile function, and formulated the PDF of r
th

 order 

statistics. The method of maximum likelihood was used by Khan et al. (2020) 

for the estimation of the parameters. 

Louzada and Granzotto (2016) introduced and studied the transmuted log-

logistic model which represents a general class of survival regression models.. 

This model was formed by combining the quadratic rank transmutation map 

and the usual log-logistic distribution. 

Also, the QRTM was used by various authors to extend existing distributions. 

For instance, Aryal and Tsokos (2009) applied the QRTM to extend the 

Gumbel distribution to a new distribution called the Transmuted Gumbel 

distribution. Aryal and Tsokos (2011) embedded a two parameter Weibull 

model into the family of the QRTM to develop a new Weibull model known 

as the Transmuted Weibull model. Aryal and Tsokos (2011) studied and 

provided comprehensive statistical attributes of the Transmuted Weibull 
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distribution. The usefulness of the Transmuted Weibull model was compared 

with other models. 

Elbatal (2013) derived the Transmuted Generalized Inverted Exponential 

model via the combination of the QRTM family and the generalized Inverted 

Exponential model was developed by Abouammoh and Alshingiti (2009). The 

properties of the Transmuted Generalized Inverted Exponential model such as 

the moments, the order statistics among others were discussed. Abouammoh 

and Alshingiti (2009) also used the maximum likelihood estimation technique 

to estimate the parameters of the model. Other generalization or extensions of 

the Transmuted family or generator can be found in the works of  Merovci et 

al. (2016),  Merovci et al.(2017),  Afify et al. (2017),  Alizadeh et al. (2018) 

and Mansour et al. (2019)  among others. 

 

2.5 Some Important Continuous Probability Distributions 

In this section some important continuous parametric probability models that 

are relevant to this study are introduced. 

2.5.1  Weibull Distribution  

Weibull model is named after its pioneer, Waloddi Weibull, a Swedish 

scientist, who developed and used it in 1939 to study the distribution of 

breaking strength of materials. 

This model continue to attract extensive use in real life analysis such as 

survival analysis, weather forecasting, general insurance claim, reliability 
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analysis, extreme value theory, among others. Thus, Weibull distribution has 

wider applications in modeling practical issues in engineering and medicine. 

In addition, The Weibull model is equally important for modeling reliability 

(Bourguinon et al., 2016). Because of its versatility, it has attracted significant 

attentions and modifications. The Weibull model is a popular lifetime model 

in reliability engineering.  

However, this model does not have a bathtub or upside–down bathtub shaped 

hazard rate function (hrf), and thus cannot be used to model the lifetime of 

certain systems. To overcome this shortcoming, several generalizations of the 

classical Weibull model have been discussed by different authors in recent 

years. Many studies have introduced improved Weibull models to handle more 

complex data and to obtain better fits. 

The extensions of the Weibull as well as other traditional models is to provide 

a theoretical interpretation that would help to explain the mechanism of data 

generation and also introducing a model whose empirical fit better suits a 

given dataset. 

Tahir et al. (2018) proposed and studied the Transmuted New Weibull-Pareto 

model from the New Weibull-Pareto model by Nasiru and Luguterah (2015). 

The quadratic equation by Shaw and Buckley (2007) and the work of Nasiru 

and Luguterah (2015) have been compounded to develop the generalization. 

For instance, as extension to the family of the Weibull distribution, Alzaatreh 

and Ghosh (2015)   introduced and studied some properties of the Weibull-X 

family. The Weibull-logistic distribution, which belongs to the Weibull-X 
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family, was found to be unimodal and the shape can be symmetric, right 

skewed or left skewed.  

Tahir et al. (2016) also introduced and studied a new generator based on the 

Weibull distribution known as the Weibull-G family, and some statistical 

properties were studied. The flexibility of special-models of the Weibull-G 

family were exhibited in their PDFs in terms of the special models to be 

symmetrical, left-skewed, right-skewed, bathtub and reversed-J shaped,  and 

has increasing, decreasing, bathtub,  and S-shaped hazard rates. Tahir et al. 

(2016) obtained various statistical expressions which include the Renyi 

entropy, ordinary and incomplete moments, quantile and generating functions, 

order statistics and reliability. Tahir et al. (2016) also used the method of 

maximum likelihood to estimate the model parameters. 

As said earlier, there are several extensions of the Weibull model that have 

been developed by use of the QRTM technique. For instance, Carrasco et al. 

(2008) generalized the Weibull distribution into a four parameter model, 

which enabled it to model a bathtub-shaped hazard rate. Ashour and Eltehiwy 

(2013a) also proposed the Transmuted Exponentiated Modified Weibull 

model, making use of the QRTM techniques. 

The Transmuted Modified Weibull was also developed by Khan and King 

(2013) making use of the QRTM family of distributions. Application with real 

dataset was provided and it was confirmed that Khan and King (2013) was 

relatively better in terms of flexible compared with its competing models. 

Other generalization of the Weibull distribution can be found in the works of 

Nasiru and Luguterah (2015). 
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2.5.2 Rayleigh Distribution 

This is one of the important lifetime distributions, introduced by Lord 

Rayleigh in the early 1880s. Rayleigh model is very useful in physics and its 

related fields in modeling phenomenon such as waive heights, sound and light 

radiations. Its application has been seen in other areas of studies in literature. 

The greater interest in the use of Rayleigh model has led to many extensions. 

For instance, Blumenson and Miller (1963) generalized and studied the 

properties of the Rayleigh model in order to improve on the problem of 

computing the Rayleigh model in a useful form for arbitrary covariance 

matrices that appears intractable. The Transmuted Rayleigh model was 

developed by Merovci (2013c) by compounding the Rayleigh distribution and 

the QRTM family of distributions. The mathematical properties of the 

Transmuted Rayleigh model along with its reliability behaviour were studied. 

The transmuted Rayleigh model was applied to real dataset and it was 

confirmed that the work by Merovci (2013c) had a better fit compared with its 

competitors. 

Khan and King (2015) proposed the Transmuted Modified Inverse Rayleigh 

model. This was achieved by using the QRTM, and the Modified Inverse 

Rayleigh model. The various statistical properties of the Transmuted Modified 

Inverse Rayleigh model were discussed. The usefulness of the model was 

illustrated using real lifetime data. 

Usman and Yakubu (2018) proposed and studied a five parameter Generalized 

Transmuted-Generalized Rayleigh (GTGR) model which serves as a new 

distribution. Some of the mathematical expressions for this model included the 
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survival function and hazard function. Application of GTGR model with a 

dataset indicates that the model performs better than the other competing 

models with smallest value of Akaike information criteria.  

2.5.3 Fréchet Distribution 

The Fréchet model as one of versatile model was developed by a French 

Mathematician, Maurice Fréchet in 1927. This model has attracted a lot of 

attention recently because it emerged as a sub-model of the generalized 

extreme model and can be used to model maximum values in a dataset. 

Many studies proposed several generalization of the Fréchet distribution. For 

example, Nadarajah and Gupta (2004) studied the Beta Fréchet model, 

Nadarajah and Kotz (2013) proposed and studied the Exponentiated Fréchet 

model, Krishna et al. (2013) introduced the Marshall-Olkin Fréchet model. 

Ul Haq et al. (2017) derived a new five parameter Fréchet model for extreme 

value model and studied its various statistical properties. The new five-

parameter which was an extension of Fréchet model was arrived at by 

compounding the Weibull-Fréchet model (Afify et al., 2016) and the 

Transmuted-G family. 

Again, Mead (2014) developed and studies the Kumaraswamy Fréchet model, 

Afify et al. (2015), developed and studies the properties of the transmuted 

Marshall-Olkin Fréchet model. 

Moolath, and Jayakumar (2018) proposed and studied the Exponentiated-

Transmuted Fréchet distribution. Tablada and Cordeiro (2016) proposed a 

three-parameter extended Fréchet model and titled it as the Modified Fréchet 
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model. UlHaq and Elagarhy (2018) developed and studied the Odd Fréchet 

generator, and this family was further extended by the works of Nasiru 

(2018b) and named it as the Extended Odd Fréchet-G family. 

Riffi et al. (2019) recently developed Generalized Transmuted Fréchet (GTFr) 

model, a generalized version of the quadratic rank transmuted Fréchet model 

that generalizes the standard Fréchet model by incorporating extra shape 

parameters into its distribution functions. 

The main mathematical and statistical properties studied under the GTFr 

distribution include the hazard rate function, moments, moment-generating 

function, quantile function, order statistics, moments of order statistics, 

probability weighted moment, L-moments and maximum likelihood estimator. 

2.5.4 Exponentiated Exponential Distribution 

There are wide usages of the exponential distributions in literature, especially 

with regards to time to failure data, and a situation where the hazard rate 

function is fairly constant. There are great efforts in literature to improve upon 

the versatility of the Exponential model and this led to the development of 

various extension of this model. 

For instance, Gupta and Kundu (2001) have developed a generator called the 

Exponentiated Exponential family of distributions, which had encouraged lot 

of researchers in generalizing related Exponentiated Exponential model. 

The Exponentiated Exponential family of distribution has two parameters 

namely the scale parameter and the shape parameter. It is a right skewed 

unimodal distribution. The probability density function as well as the hazard 
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function of the Exponentiated Exponential model is quite similar to the density 

function and hazard function of the Gamma or Weibull model hence can be 

used to analyze lifetime data in place of Gamma or Weibull model. 

 Also, Merovci (2013a) developed and studies the Transmuted Exponentiated 

Exponential model by compounding the works of Shaw and Buckley (2007) 

and the Exponentiated Exponential family. 

2.5.5 Lomax Distribution 

Lomax model is named after its pioneer, K.S. Lomax, and this was used by 

Lomax (1954) to analysis the business lifetime data. The Lomax model is also 

referred to as a Pareto type II. It is basically a Pareto model that was shifted so 

as to allow its support at zero. 

Lomax model is essentially a heavy tailed model and versatile in its 

applications. For instance, its application is pronounced in actuarial science, 

business, economics, queuing theory, and internet traffic modeling among 

others. 

There are various generalizations of the Lomax family in literature. For 

instance, Oguntunde et al. (2017) recently generalized the Lomax model. This 

new generalization was derived  by compounding the Gompertz’s generalized 

family of distributions and the Lomax model. Excerpt from the literature 

indicates that the Gompertz Lomax model performed better than some of 

existing distributions such as the Beta Lomax distribution (Rajab et al., 20 13), 

and Weibull-Lomax model (Tahir et al., 2015). 
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Recently, Cordeiro et al. (2014) proposed and studied a new class of 

distributions known as the Lomax generator with two extra positive 

parameters. This generalization has opened the frontier of the Lomax family. 

Some special models such as the Lomax-normal, Lomax–Weibull, Lomax-

log-logistic and Lomax–Pareto models are were also derived. 

The wider usage of the Lomax model and other related models discussed so 

far clearly indicate that there is the need for the extensions of these traditional 

models. 
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CHAPTER THREE 

METHODOLOGY 

3.1  Introduction 

This chapter presents the various methods used in achieving the stated 

objectives. The chapter discusses the TIGE class of distributions, Quadratic 

Rank Transmutation Map (QRTM), compounding of the TIGE and the 

QRTM, the statistical properties, the concept of the maximum likelihood 

estimation, model selection criteria, optimization technique, the total time on 

test transform plot, data and sources of data used in this study. 

3.2 The TIGE Class of Distributions 

The first objective of this thesis is to develop the T-TIGE family of 

distributions.  In order to achieve this objective, the Type I General 

Exponential (TIGE) generator by Hamedani et al. (2018) was one of the tools 

used. TIGE is a family of univariate continuous distributions and has two 

parameters, namely the scale and shape parameters. The CDF of the TIGE 

class of distributions are represented as: 

        
  

 
1 ;

( ; ) , 0, 0, . 3.1
H x

F x e x R




 




   


  

where   is a scale parameter,   is a shape parameter and 

   1 2, ,k     is a parameter vector. Differentiating (3.1) gives the 

PDF of TIGE as: 

  
 

1 ;( 1)( ; ) ( ; ) ( ; ) . 3.2
H x

f x h x H x e




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

    
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Henceforth ( ; ) ( )H x H x  and ( ; ) ( )h x h x  are the arbitrary baseline CDF 

and PDF distributions respectively.   

The survival and the instantaneous failure rate (hazard) function of the TIGE 

family are defined respectively by  

   
  1

1 1
H x

S x F x e







    ,           (3.3) 

 and  
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






 










1

11

1
                     (3.4) 

The mathematical attributes of the TIGE class of distributions include 

expansions for the ordinary and incomplete moments, generating function, 

mean deviations, order statistics, probability weighted moments.  

3.3 The Quadratic Rank Transmutation Map  

Another important tool used to achieve the first objective of this study was the 

Quadratic Rank Transmutation Map (QRTM) by Shaw and Buckley (2007) 

which help to generate more distributional flexibility. Transmutation map 

provides a powerful technique for turning the ranks of one distribution in to 

the ranks of another (Hussein et al., 2018). 

The general rank transmutation as defined by Shaw and Buckley (2007) is 

given as     1

12 2GR u F F u and     2

21 1GR u F F u  for which 1F and 

2F  are cumulative distribution functions (CDF) of two distributions with a 

common sample space. The quantile function or the inverse of the cumulative 
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distribution is expressed as     1 infx RF y F x y

  for [0,1].y  The 

functions  12GR u and  21GR u both map the unit interval [0,1]I  into itself, 

and under suitable assumptions are mutual inverses and they satisfy 

 0 0GijR  and   0 1.GijR   The QRTM is defined as  12 (1 )GR u u u u   , 

from which it follows that the CDF's satisfy the relationship in equation (3.5) 

       
2

1 .T x F x F x            (3.5) 

The corresponding PDF of equation (3.5) was arrived at by differentiation, 

which gives equation (3.6) as follows: 

     1 2 , | | 1t x f x F x        ,                (3.6) 

 F x and  f x are the CDF and  PDF of the base distribution respectively. If 

the transmutation parameter is zero, that is, 0  , then the transmuted model 

reduces to the parent model.  

For more detail about the QRTM, see the works of Shaw and Buckley (2007), 

and Elgarhy et al. (2016). 

The QRTM thus provides a platform to induce skewness and kurtosis into a 

given model or family of distributions. 

The process of developing the new Transmuted Type I General Exponential     

(T-TIGE) family of distribution was therefore achieved by compounding the 

works of Hamedani et al. (2018) and that of Shaw and Buckley (2007). 
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3.4 Method of Estimation  

There are various methods of estimation; however, this study adopts the 

maximum likelihood estimation technique in order to achieve the third 

objective of this thesis. The maximum likelihood estimation technique is one 

of the widely used methods in estimating parameters of a model, because of its 

desirable properties under certain general conditions (Nasiru, 2018a). 

The algorithm selects the set of values of the model parameters that maximizes 

the likelihood function; it also gives a unified approach to estimation. That is, 

it helps provide the maximum information about the properties of the 

estimated parameters. 

The likelihood function, which is an essential and integral part of the MLE is 

defined as the joint density,    
1

| ; ,
n

i

i

f X f X 



 

as a function of the 

parameters .  Let us consider X  as a random variable, with PDF  ;if x  , 

where  1,2 .i n   and     is unknown parameter with  
1 2 3  ,  ,  , nx x x x

 
  as 

the observed values. The likelihood function of the sample as presented in 

(3.7) was arrived at by multiplying the probabilities of independent events; 

                                 
1

| ;
n

i

i

l X f X 


            (3.7)     

   

Thus, log-likelihood function  L  , is also arrived at by taking natural 

logarithm of equation (3.7). That is,  

            

   
1

| ln ;
n

i

i

L X f X 


 
  

 
                    (3.8) 
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The likelihood function attains its maximum at a specific value of the 

parameters. Since logarithm is a monotone function, the maximization of 

equation   (3.7) is the same as the maximization of the equation (3.7), and vice 

versa.  

The maximum likelihood estimates for the parameters are obtained by solving 

the system of log-likelihood equations in (3.9). That is, a point estimate is 

chosen such that the value θ̂    maximizes ( )L  . That is 

                                   1, 2, 3, 0, 1,2,3, .n

i

L x x x x i k



 


            (3.9) 

3.4.1 Properties of Maximum Likelihood Estimators 

This subsection explains some important (desirable) properties of the 

maximum likelihood estimators which make it more attractive. Also, we used 

these properties of the MLE in examining the behaviour of the MLE based on 

the Monte Carlo simulation conducted in chapter four. 

3.4.1.1 Consistency 

An estimator is said to be consistent when the value of ̂   converges in 

probability to the true value as the sample size get infinitely large. Consider  

1 2, , , nX X X which are independent identically distributed (iid) random 

sample from a population X  with density function  ,f x  . If ̂   is an 

estimator based on  n  observations, then it is said to be consistent if the 

probability of making an error of any size    , tends to zero as  n  tends to 

infinity.  This is written mathematically as    
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            ˆlim | | 0,n
n

P   


          (3.10)
 

for any  0.   

In the nutshell, an estimator n̂  based on the sample size  n  is consistent for    

if and only if the following theorem holds (Ofosu et al., 2016) 

                 ˆlim n
n

E  



 
and   ˆlim 0n

n
V 


 .                   (3.11) 

This indicates that the estimator converges to the true parameter values  as the 

sample size increases. 

 

3.4.1.2 Asymptotic Normality 

The distribution of the estimator converges to a multivariate normal variate as 

the sample size increases. Hence  

                   
    1ˆ ,Dist

nn N I    0 θ                                             (3.12) 

where  0 is a  K -dimensional mean zero vector, Dist
 represents 

convergence in distribution and, I(θ) is the KK x  dimensional Fisher 

information matrix, which is represented as the negative expectation of the 

second partial derivative matrix of the log-likelihood function evaluated at the 

true parameter (see, Nasiru, 2018). That is, 

                       
2 2( | ) ( | )

( ) ( ) .
f x f x

I E f x x
 
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



    
              

          (3.13) 
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The inverse of the Fisher information matrix yields the variance-covariance 

matrix of parameter   . 

3.4.1.3 Asymptotic Efficiency 

Whenever there is more than one consistent estimator in a class of unbiased 

estimators, there is the need to compare those estimators and select the one 

with the least variance. The estimator with the least variance in this class of 

unbiased estimators is known as the most efficient. The maximum likelihood 

estimators are asymptotically most efficient. Mathematically, if there are 

alternative unbiased estimator ̂ , such that   

                              
1ˆ( ) ( , ( )),Dist -

nn N I   0                              (3.14) 

then  )()( 11 -- II    always.  

3.4.1.4 Invariance Property 

Another desirable property of the method of maximum likelihood is its 

invariance to one-to-one transformations of the parameters of the log-

likelihood.  

Suppose that )(f  is a differentiable function, then the maximum likelihood 

estimator of )(f  is equal to the function evaluated at the maximum 

likelihood estimator of )(f . This means that if ̂  is the maximum likelihood 

estimator of  , then )ˆ(f is the maximum likelihood estimator of ),(f  and 

further 
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3.5 Information Matrix and Confidence Intervals  

In order to determine the likely range within which our estimates lie, and to be 

confidence about that, we computed the confidence interval by making the use 

of the estimated values and the information matrix. 

A 95% confidence interval is indicative that we are 95% certain that the true 

value of the population falls within a given range of values (lower and upper 

values). 

Consider the following n ,...., 21   as the parameters of the distribution and 

kk ,....., 2211   as their respective variances. Making use of the multivariate 

normal approximation, the approximate )%1(100   confidence intervals for 

the parameters are estimated as: 

    112/11
ˆ   z , 222/22

ˆ   z ,…….. kkkk z  2/
ˆ

 ,     (3.16)     

where  2/z    is the upper half percentile of the standard normal.  

3.6 Optimization Technique 

The maximum likelihood estimates of the special distributions (T-TIGER,    

T-TIGEW, T-TIGEFr, T-TIGEEE and T-TIGEL) parameters are obtained 

using the independent works of Broyden (1970), Fletcher (1970), Goldfarb 

(1970) and Shanno (1970) collectively known as the BFGS algorithm. The 

BFGS algorithm has iterative approach for finding solution to unconstrained 

optimization problems. 

This technique was applied to maximize the MLE by using the subroutine 

mle2 and the bbmle package in R (R version 3.6.2) which uses a wide range of 
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initial values. The bbmle is an R in-built package, named after its developer 

Bolker (2017). 

The iterative processes of the algorithm may lead to more than one maximum 

value, thus in such cases, the largest maxima is chosen as the maximum 

likelihood estimate. In cases where no maximum value is identified for the 

chosen initial values, a new set of initial values are used and the optimization 

is repeated until a maximum is obtained. 

3.7 Monte Carlo Simulation Study 

The Monte Carlo simulation is a technique that makes use of repeated random 

sampling in order to study properties of a statistic's sampling distribution and 

its behaviour. In other words, a Monte Carlo approach is a general tool for 

conducting and analyzing the behaviour of MLE since the process can be too 

complex for analytic manipulation. This technique helps to address our fifth 

objective of the study. That is, the Monte Carlo study was conducted to 

examine the performance (stability of point estimates) of MLE of the special 

models by conducting various simulations for different sample sizes and 

different parameter values. The quantile function of each of the special models 

was used to generate the random data. 

That is, the Monte Carlo was conducted to study the behaviour of the 

properties of the estimators of the various special distributions.  The Monte 

Carlo Simulation steps are as follows: 

Step1: Specify the sample size and values of the parameters; 

Step2: Generate the random samples of size n= 25, 50, 75 and 100 from the 
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special distributions of T-TIGE generator using their respective quantile 

functions; 

Step3:  Find the maximum likelihood estimates for the parameters 

Step4. Repeat steps 2-3 for N=1000 times. 

The average bias (AB) of the MLE ˆ
i   ˆ , , , ,i       parameter is defined 

as 

                       
1

1 ˆ ,
n

i

i

AB
N

 


             (3.17) 

Also, the root mean square errors (RMSE) of the MLE ˆ
i  of the estimated 

parameters are defined in equation (3.18) as follows: 

                               
2

1

1 ˆ .
n

i

i

RMSE
N

 


             (3.18) 

An RMSE is bounded by zero and a lower value of RMSE indicates a better 

fit.  

3.8 Model Selection Criteria 

The goal of the real-life application with regard to modeling is to select the 

most appropriate model from the competiting models. To accomplish this, 

various statistical tests such as the goodness of fit and information loss criteria 

tests were conducted.  
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3.8.1 Goodness of Fit Tests 

In order to test whether a given random variable comes from a specified 

distribution, we employed the goodness-of-fit tests. These tests include the 

Cramér-von Mises test (W*), the Kolmogorov-Smirnov (K-S) and Anderson-

Darling (A*) tests. 

The goodness of fit statistic K-S , W* and A* were tabulated and used as an 

analytical tool for establishing the best fitting model  for the particular dataset 

in question. As a rule of thumb, the smaller values of A*, K-S and W* give a 

better distributional fit. 

3.8.2 The Kolmogorov-Smirnov Test  

The K-S test (Kolmogorov, 1933; Smirnov, 1939) was used to decide if a 

random sample  
1 2 3,  , , . nx x x x   comes from a population with a given 

distribution. That is, K-S test is based on the empirical distribution function. 

The test statistic measures the distance between the empirical distribution 

function, ( )nF x  of the given sample and the estimated cumulative distribution 

function of the candidate (theoretical) distribution, * ( )F x . 

The null and the alternative hypotheses in relation to the K-S test stated as 

follows:  

 
0H  : the data do not follow a specified distribution 

 
1H  : the data follow a specified distribution.  

The test statistic of the K-S is defined as; 
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* *

1

1 1
( ) , ( ) .

i n

i
K S test Max F x F x

n n 

 
    

 
              (3.19). 

3.8.3 Cramér-von Mises Test 

This test was also employed to judge the goodness of fit of a cumulative 

distribution function compared to a given distribution function. When 

comparing the models, the one with the least value of the test statistic, W*  is 

usually the best. Let 
1 2 3  ,  ,  , .. nx x x x   be the observed values in a random 

sample of size n   of X  in increasing (that is, ascending) order. The test 

statistic is given by  

                          
2

* 2

1

2 1 1

2 2

n

i

i

i
W n F x

n n




 
    

 
                   (3.20) 

where         2 * *

nF x F x F x




     .       (3.21) 

* ( )F x and ( )nF x   are the theoretical and the empirically observed distributions 

respectively. 

The Cramér-von Mises test is most of the time, considered as an alternative to 

the Kolmogorov-Smirnov (K-S) test.  

3.8.4 Anderson-Darlings 

The Anderson Darlings (A*) test is a modification of the Cramér-von Mises  

test. This test gives more weight to the tails than the K-S test. The A* test 

statistic is computed as: 

      1

1

2 1
* log 1 log ,

n

n i i

i

i
A n Fx F x

n
 



 
     

 
                     (3.22) 

www.udsspace.uds.edu.gh 

 

 

 

 



 
 

30 
 

where 
1 2 3 , nx x x x    is the sorted data (ordered statistics) and   iF x

is the cumulative distribution function of the specified model, the A* test can 

detect differences between models over their entire width. One drawback of 

this test is that the model of the test statistic depends on the specific 

distribution being tested, so no general expression can be given.  

3.9 Information Criteria 

This study uses the following frequently used information criteria: the Akaike 

Information Criterion, the Corrected the Akaike Information Criterion, and 

Bayesian Information Criterion. 

 The information criterion selects model with smaller values of AIC, AICc, 

and BIC for a given set of candidate models and specified data set. 

 

3.9.1 The Akaike Information Criterion  

This is one of the many benchmarks used in selecting the relatively better 

statistical models for a given data set. The Akaike information criterion (AIC), 

named after its developer Akaike (1973, 1974), is a measure of the quality of 

each model, relative to each of the other models. AIC quantifies information 

lost when the data generating process is represented by a statistical model by 

obtaining equilibrium in the trade-off between goodness-of-fit of the model 

and its complexity. It thus provides a means for model selection. The AIC 

value of the test statistic is defined as follows: 

              ˆ2 2AIC k l   ,                                (3.23) 
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where k   the number of estimated parameters for the model. The preferred 

model to be selected is the one with the minimum AIC value from a given set 

of candidate models for a given data set. Thus, AIC is better candidate for the 

goodness-of-fit (as assessed by the likelihood function), but it also includes a 

penalty that is an increasing function of the number of parameters  k . This 

penalty helps to discourage over fitting of a model, since increasing the k  in 

the model always improves the goodness-of-fit. That is with relatively large 

sample size, the AIC improves the model selection. However, its limitation is 

exposed with relatively small sample size and biasedness. 

3.9.2 The Corrected Akaike Information Criterion  

The disadvantages inherent in the AIC in terms of sample size, large number 

of k   in the model, and biasedness has led to the development of the Corrected 

Akaike Information Criterion (AICc) as a further improvement to overcome 

these challenges and improve upon it (Sugiura, 1978; Hurvich and Tsai, 1989). 

The test statistic of AICc is defined as follows; 

                             
2 ( 1)

.
( 1)

k n
AICc AIC

n k


 

 
                        (3.24) 

3.9.3 Bayesian Information Criterion  

The Bayesian Information Criterion (BIC) also known as the Schwartz 

Bayesian Criterion (SBC) was also developed by Scwartz (1978) by 

approximating the Bayes factor on the assumption that the data is independent 

and identically distributed.  The test statistic is given as  

                       ˆln( ) 2ln( ),BIC k n                                                 (3.25) 
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where, n    is the sample size and  ˆln ( )l   is natural log of the likelihood 

function.  

The BIC has the power to penalize models with many parameters compared to 

the AIC and AICc in both large and small samples.  

It is therefore important to use the BIC together with AIC and AICc when 

selecting a best model among competing model (Nasiru, 2018). 

3.10 Total Time on Test Transform. 

Total time on test transform (TTT-transform), developed by Barlow and 

Doksum (1972) provides avenue for researchers to graphically view the shape 

of the hazard rate function. The TTT-transform is defines as: 

                   
1 ( )

1

0

( ) ( ) , 0,1 ,

G x

H x R x dx x



                                (3.26) 

where, ( ) 1 ( )R x G x   is the reliability (survival) function. Refer to (Barlow 

and Doksum, 1972; Arset, 1987) for more detail. 

The scaled TTT-transform is calculated using the relation 

     
1

1

( )
.

(1)

H p
p

H





                                         (3.27) 

The curve  p  versus 0 1p   is called the TTT-transform curve. The  

TTT-transform can help to identify the various shapes of a hazard rate 

function, either it is the upside down bathtub or unimodal shape (Barlow and 

Doksum, 1972; Nasiru et al., 2017). For instance, a hazard rate function is 
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upside down bathtub or unimodal shape if the TTT-transform curve is first 

concave above the 45 degrees line and then convex below the 45 degrees line. 

Let us consider an ordered sample 
1: 2: 3: :, ,n n n n nX X X X , with the TTT 

statistics as: 

                : 1:

1

1 , 1,2,3. , .
i

i j n j n

j

TTT n j x x i n



                         (3.28) 

The empirical scaled TTT-transform is given by 

                                            / ,i

n

TTT
G r t

TTT
             (3.29) 

where  0 / 1G r t  .  In the nutshell, the empirical TTT-transform curve is 

obtained by plotting 
i

n
 versus          

1 1

/ 1 /
r n

i r i
i i

G r t y n y y
 

  
    

  
   

against /r n , where 1,2 ,r n  and 
 i

y  1, 2 ,i n  are the order statistics of 

the sample. 

3.11 Data used and Sources  

This section highlights on the different datasets that were used and their 

sources. Different datasets were used to demonstrate applications of the 

special models. The sources of these datasets are secondary data from articles 

and journals. These tried and tested datasets 

The flexibility of the T-TIGE model was demonstrated by using the first three 

datasets for the T-TIGER model. The first data set relates to monthly tax 
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revenue obtained from Nassar and Nada (2011). It is recently studied by 

Klakattawi (2019). The dataset are given in Appendix A1. 

The second dataset relates to the waiting times between sixty-five consecutive 

eruptions of a blowhole, called the Kiamo Blowhole (Pinho et al., 2012) was 

also used to demonstrate the usefulness of the T-TIGEW distribution. The 

Kiamo Blowhole is a tourist attraction located nearly 120km to the south of 

Sydney, Australia. The data set are given in Appendix A2.  

The third data set used is called the Applied Life, emanates from the analyses 

on the time to breakdown of an insulating fluid at a voltage of 34 kV. The 

dataset was initially from the works of Nelson (1982) and were later used by 

Abbas and Tang (2015). This dataset is represented in an Appendix 3. 

In order to examine the flexibility of the special model known as the 

Transmuted Type I General Exponential Weibull (T-TIGEW) distribution, the 

aircraft windshield failure dataset was used in the analysis. This dataset relates 

to failure time. This dataset was recently used by Nasir et al (2019), and had 

been previously studied by Ibrahim et al. (2017), Tahir et al. (2015), Ramos et 

al. (2013) and Murthy et al. (2004) among others. The data set consist of 85 

failed windshields and it is presented in an Appendix B. 

Another dataset that was used is called the rainfall dataset which was obtained 

from the work of Mansoor et al. (2016). This dataset was also used in the 

analysis to determine the flexibility of the special model known as the the 

Transmuted Type I General Exponential Fréchet (T-TIGEFr) model. This 

dataset is displayed in an Appendix C1.  
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An Appendix C2 displayed uncensored dataset from the work of Nichols and 

Padgett (2006) which was also used to demonstrate the flexibility of              

T-TIGEFr model of the new generator. The dataset gives one hundred (100) 

data-points on breaking stress of carbon fibres (in Gba). This dataset is 

recently used by Mahmoud and Mandouh (2013). 

The seventh dataset called the fiber strength was used to examine the 

performance of the of T-TIGEFr model of the proposed T-TIGE family. This 

dataset was taken from the work of Selim and Badr (2016). It is a fibre 

strength data originally considered by Badar and Priest (1982). It is 

represented in Appendix D. 
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CHAPTER FOUR 

THEORETICAL RESULTS 

4.1 Introduction 

This chapter presents the results of the first five objectives of the studies. This 

include the T-TIGE generator, the statistical properties and the estimators of 

the T-TIGE generator. Five (5) special models of the T-TIGE family were also 

derived. The chapter further presents the results of the Monte Carlo 

Simulation. 

4.2 The T-TIGE Family of Distributions 

A random variable X  is said to follows the T-TIGE family if it’s CDF has the 

form: 

         

     1 ; 1 ;

( ; ) e 1 e ,
H x H x

T x x R
 

 

 
 

  
    

 

 

 ,           (4.1) 

where the shape, scale and the transmutation parameters are respectively  

0, 0 and 1.      The    1 2, ,k      is a vector parameter.  

The CDF of T-TIGE family was arrived at by substituting the TIGE generator 

into the  QRTM generator.  

The corresponding PDF of the T-TIGE was obtained by differentiating the 

CDF of T-TIGE hence the PDF is given as: 

     
       1 ; 1 ;1

; ; ; 1 2 .
H x H x

t x h x H x e e
 

 
  

 
    

   
 

 

         (4.2) 
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 ;H x   and  ;h x   are CDF and PDF of arbitrary baseline distribution 

respectively. Henceforth, the study write simply ( ; ) ( )T x T x  and 

( ; ) ( )t x t x . 

The T-TIGE family of distributions appears to be more flexible and could be 

used for modeling various types of data. The T-TIGE families of distributions 

can also very useful models in characterizing failure time of a given system 

because of its analytical structure. 

As a result of equation (4.1) and (4.2), the survival function  S x , (also refers 

to as the reliability function) defines the probability that an entity or system or 

an individual will survive beyond a specified time. In other words, it is the 

probability of an item not failing prior to some specified time. The usefulness 

of the survival function is paramount in many fields of studies including the 

actuarial science. For instance, in life contingencies, there is always the need 

to calculate the probability that an individual will survive to a certain age. The 

reliability or survival function for the T-TIGE family is defined as:

 
     1 ; 1

1 e 1 e .
H x H x

S x
 

 

 
 

  
    

 
  The hazard rate function is yet 

another useful characteristic of interest, which is also known as instantaneous 

failure rate is defined as 
 

 
( )

1

t x
Z x

-T(x)
 , which is an important quantity 

characterizing life phenomenon. The instantaneous failure (hazard) rate 

function of the T-TIGE family is defined as   
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 
   

       

     

1 11

1 1

1 2

1 e 1 e

H x H x

H x H x

h x H x e e

Z x

 

 

 

 

  

 

 

 

  

 

 
  

 
 

   
 

 . 

4.2.1 Mixture Representation 

This section provides the mixture representation for the PDF of the T-TIGE which 

can be used to study the mathematical characteristics of this new generator (Nasiru, 

2018b). 

Lemma 4.1. The PDF of the T-TIGE family can be expressed as a mixture 

representation in terms of the density as:    
0 0 0

j
k

ijk

i j k

t( x ) C h x H x
 

  

  .   

where  
         21 1 2 1 21

i i ii

ijk

j e ei j
C

k i! i!j

            
         

. 

Proof. The PDF of T-TIGE family, that is equation (4.2), could be written  as

   
 

      1 221 2
H x H x

t( x ) h x H x e .e e .e .
      

    
  

 

Using the expansion,      

0

1i

i ii

H x

i

H x
e

i!





 









 , the PDF of the T-TIGE 

becomes 

   
 

 
         1 2

0 0

1 1 2
1 2

i i i i ii

i i

H x H x
t( x ) h x H x e e

i! i!

 

  
 

  

 
 

 

 

  
   

  
 

and with simplification, gives 

   
 

 
       2

1

0

1 1 2 1 2
i i ii

i

i

e e
t( x ) h x H x H x .

i! i !

 
     




  



   
  
 
 

  
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Further simplification leads to  

   
 

 
         2

1 1

0

1 1 2 1 2
i i ii

i

i

e e
t( x ) h x H x H x .

i! i !

 
     




      



   
  
 
 



But   
 

  
  11

1 1
ii

H x H x
                , and using the negative binomial 

expansion; 
 

0

1
1 1j

j

j
b b , b

j

 




  
   

 
 ,  

which gives 

   
   

  
       1

0 0

2
1 1 1

1
1 1 2 1 2

j

i j

i i ii
i j

t( x ) h x H x H x
j

e e

i! i!



 



    

 

 

   
 

    
       



and this leads to the expression; 

   
   

 
       1

0 0

2
1 1 1 2 1 2

k

i j

i i ii
ji j

t( x ) h x H x H x
kj

e e

i! i!



 



    

 

 

 


     
         



hence,    
0 0 0

j
k

ijk

i j k

t( x ) C h x H x
 

  

  .  This completes the proof. 
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4.3 Statistical Properties of T-TIGE Family  

This section focuses on the statistical properties of the T-TIGE family. These 

include: quantile functions, moments, moment generating function, incomplete 

moments, inequality measures, mean residual life, stochastic ordering and 

order statistics. 

4.3.1 The Quantile Function  

The quantile function which helps in generating other statistical properties was 

derived for further analyses. The quantile function is another way of 

describing a probability distribution. It can also be called the inverse CDF. It 

can be used to generate random samples for probability and thereby can serve 

as an alternative to the PDF.  

Lemma 4.2. For a nonnegative continuous random variable X that follows 

the T-TIGE  family of distributions, the quantile function Q(u) for a unit 

interval,  0,1u  is given by 

1

2

1

( )

( 1) ( 1) 41
                                  1 ln , [0,1]

2
u

u
x H u


  

 




     
    

    

 

where  1 .H 
  is the inverse of the random variable X  of the baseline CDF of 

T-TIGE family.  
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Proof. For any  0,1u , where u  follows a uniform distribution, the quantile 

function is obtained by solving   , 0u T x x  ,  with respect to x , which is  

 
   1 ( ) 2 1 ( )

1
H x H x

e e u
  

 
  

   , and this leads to  

 
 

 2 1 1
1 0

H ( x ) H ( x )
e e u

  
 

  
    . Using the concept of quadratic 

equation gives  

 
2

1 ( ) ( 1) ( 1) 4

2

H x u
e

   



    
 .  

Expressing  H x  in terms of , ,   and  gives  

1

2( 1) ( 1) 41
( ) 1 ln

2

u
H x


  

 



     
   

    

, 

Hence 

1

2

1

( )

( 1) ( 1) 41
1 ln .

2
u

u
x H


  

 




     
   

    

 

This completes the proof. 

By using Lemma (4.2), the first quantile, median and upper quantile of the T-

TIGE family are obtained when 0.25u  , 0.5u    and 0.75u   respectively. 

4.3.2 Moments  

The moment of a random variable X  is the expectation of the 
thr  power of the 

random variable. The moment plays important roles when establishing the 

measures of central tendencies, measures of dispersion, and shapes of the 
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distribution of the random variable. The following preposition gives the r
th

 

moment of the T-TIGE family. 

Proposition 4.1. The  
thr  ordinary moment of a T-TIGE family of 

distributions is given 

by    
0 0 0

     1 2     
j

kr

r ijk

i j k

C x h x H x dx, r , , . 
 

   

     

where 

  
         21 1 2 1 21

i i ii

ijk

j e ei j
C

k i! i!j

            
         

 

Proof.  By definition, the 
thr  moment is given as 

 
   r r

r E X x t x dx.




                                (4.3) 

By substituting Lemma 4.1 into equation (4.3), and further simplification, 

yields     
0 0 0 0

j
kr

r ijk

i j k

C x h x H x dx. 
 

  

   
  

This completes the proof.

 

Setting 1r   in equation (4.3) gives the mean of the random variable X .  

4.3.3 Moment Generating Function 

The moment generating function (MGF) is a very important statistical concept 

which is used among others to find moments of a given random variable.  

 

www.udsspace.uds.edu.gh 

 

 

 

 



 
 

43 
 

Proposition 4.2. The MGF, of the T-TIGE family is given by 

                               
0 0 0 0

  
j

kijk r

X

r i j k

C
M t x h x H x dx.

r !


  

    

       

where 
         21 1 2 1 21

i i ii

ijk

j e ei j
C

k i! i!j

            
         

. 

Proof. By definition, the MGF is given as:  

   tX

XM t E e .                  (4.4) 

Using the series expansion, 
     

2 3

1
2! 3! n!

n

tX
tX tX tX

e tX      ,   

and substituting it into the equation (4.4), and with some algebraic 

manipulation gives  
0

r

X r

r

t
M t

r !






 , which finally results to

     
0 0 0 0

j
kijk r

X

r i j k

C
M t x h x H x dx

r !


  

    

   ,  which completes the proof. 

4.3.4 Incomplete Moment 

The incomplete moment as a statistical property is a foundation for measuring 

inequalities. For instance, Income quantile and Lorenz as well as Bonferroni 

curves. Clearly these curves rely on the first incomplete moment of the 

distribution.  

Proposition 4.3. The 
thr incomplete moment of the T-TIGE family is given by 

     
0 0 0 0

 

tj
kr

r ijk

i j k

m t C x h x H x dx.
 

  

    
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where  
         21 1 2 1 21

i i ii

ijk

j e ei j
C

k i! i!j

            
         

. 

Proof.  The incomplete  moment of a random variable X is defined as   

                                     

   
0

 

t

r

rm t x t x dx. 
 

            (4.5) 

 

Using the mixture representation of the PDF of the T-TIGE family, and 

substitute it into equation (4.5), yields  

                                             
0 0 00

t j
kr

r ijk

i j k

m t x C h x H x dx.
 

  

    

Thus,      
0 0 0 0

tj
kr

r ijk

i j k

m t C x h x H x dx
 

  

   .  This completes the proof. 

4.3.5 Inequality Measures 

The concept of inequality measure as a statistical property is concerned with 

disparity of a certain metric such as  income level within a distribution.  It is 

an important characteristic of non-negative distributions. An important 

application of the inequality curves is that they can be used to define some 

ordering. Such ordering allows the comparison of distributions in terms of 

inequality (Arcagni and Porro, 2014).   The most popular measuring technique 

in literature for measuring the income inequality of a given distribution are the 

Lorez and Bonferroni curves (Nasiru, 2018b).  
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4.3.5.1  Lorenz Curve   

Developed by Lorenz (1905),  Lorenz curve   G t
L is a graphical representation 

of the cumulative income distribution. Thus, the Lorenz index shows the level 

of inequality in the wealth distribution. 

The Lorenz curve of the T-TIGE family of distribution was developed by 

compounding the first moment and the PDF of each distribution. 

Proposition 4.4. The Lorenz curve of the T-TIGE family is 

     
0 0 0

tj
k

ijkG t
i j k

L C x.h x H x dx.




 

   

    

where  
         21 1 2 1 21

i i ii

ijk

j e ei j
C

k i! i!j

            
         

. 

Proof. By definition, the Lorenz function is defined as   

                                                 
   

1
t

G t
L x f x dx.




                                (4.6) 

but  
t

x f x dx


 is the first incomplete moment, and using Lemma 4.2, yields 

 
     

0 0 0

   

tj
k

ijkG t
i j k

L C x.h x H x dx.




 

   

   Thus, complete the proof. 

4.3.5.2 Bonferroni Curve 

The Bonferroni curve of the T-TIGE family which is a graphical 

representation that compares the lower group with the total mean was derived 

by compounding the various elements and the CDF of the T-TIGE family of 

www.udsspace.uds.edu.gh 

 

 

 

 



 
 

46 
 

distributions. The Bonferroni curve was proposed and studied by Bonferroni 

(1930) as a measure of income inequality based on partial means.  

Proposition 4.5  If  X T TIGE , , , , ,      then the Bonferroni index of 

the T-TIGE family is given by 
   

   
0 0 0

tj
k

ijkF t
i j k

B C x h x H x dx.
F t





 

   

    

where 
         21 1 2 1 21

i i ii

ijk

j e ei j
C

k i! i!j

            
         

. 

Proof. Bonferroni index is by definition given as: 

                                                 

 F t

F t

L
B .

F( t )
                                            (4.7)

 

Substituting Proposition 4.4 into equation (4.7) yields 

   
   

0 0 0

tj
k

ijkF t
i j k

B C x h x H x dx.
F t





 

   

      This completes the proof. 

4.3.6 Mean Residual Life 

The mean residual life function is an important statistical property of interest. 

It indicates the average remaining survival time that a population (or an item) 

has survived beyond t . It has many applications in the field of applied 

statistics, for instance, its usage is relevant in the field of survival analysis, life 

insurance, quality control and so on.
 

Proposition 4.6.The mean residual life of the T-TIGE family is given as 
  

               
 

   
0 0 0

1
tj

k

X ijk

i j k

t C x .h x H x dx t.
S t

  
 

   

 
   

 
                    
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where 
         21 1 2 1 21

i i ii

ijk

j e ei j
C

k i! i!j

            
         

. 

Proof. By definition, the mean residual life is defined as  

                        

   

   

 

 

 

1

0
1

X

t

r

t

t E X t | X t

x t f x dx

F t

xf x dx

t, t .
F t









  






 

  






         (4.8)
 

This leads to 

 

 
 

 1

1
t

x t xf x dx t.
S t

 


 
   

 
  

and hence, 

  
 

   
0 0 0

1
tj

k

X ijk

i j k

t C x .h x H x dx t.
S t

  
 

   

 
   

 
 

 

This completes the proof. 

4.3.7 Stochastic Ordering Property 

This is a statistical concept that helps to quantify one random variable being 

bigger than another. It shows an ordering mechanism in lifetime distribution. 

It is useful for comparison of probabilistic models in different areas such as 

reliability, survival analysis, risk management and finance. It is also an 

essential tool in the study of structural properties of complex stochastic 
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systems. Stochastic ordering thus provides important guide for decision 

making under uncertainty. 

A random variable 
1X
 
is said to be stochastically smaller than a random 

variable 
2X  in the:  

i. stochastic order  1 2stX X if the associated CDFs satisfy the 

following:    
1 2X XF x F x , x    

ii. hazard rate order   1 2hrtX X  if the associated hazard rates satisfy 

the following:    
1 2X Xh x h x , x   

iii. likelihood ratio order  1 2lrX X  if the associated PDFs given by  

 

 
1

2

X

X

f x

f x
 decreases in x . 

This study considered the likelihood ratio order ( lr ), stochastic order ( st ),
 

hazard rate order ( hr ) and mean residual life order ( mlr ). This can be written 

in a general terms as   ,   ,  ,   lr hr mrl stX Y X Y X X Y       . For a 

comprehensive literature on the stochastic ordering, refer to Shaked and 

Shanthikumar (1994) or Bakouch et al. (2017) or Nasiru (2018a).  

A random variable 
1X  is less than another random variable 

2X  in likelihood 

order if
 

 
1

2

X

X

f x

f x
is a decreasing function of x . 

Proposition 4.7. Let   1X T TIGE , , , ,   
 
and  2X TIGE , ,   , 

then 
1X   is less than 

2X
 
 in likelihood ratio order  

1 2  if 0lrX X , .   
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Proof. Let  
 

 

   
    

 
  

   
    

1 11

1

11
2

1 2
H x H x

H x

h x H x e e
t x

t x
h x H x e

 



 



  



 



  

 

 
  

   

which gives 
 

 
 

  11

2

1 2
H xt x

e
t x




 




   , and differentiating it with respect 

to x   yields 
 

 
   

    111

2

2
H xt xd

h x H x e
dx t x







  
   

 

. 

Since  
 

 
1

2

0
t xd

dx t x

 
  

 

  and 0   it implies that  
1 2lrX X  is in likelihood 

ratio order, and this completes the proof.  

4.3.8 Distribution of Order Statistics  

Order statistics have been employed in many areas of both statistical theory 

and applied statistics.  

Proposition 4.8.  The q
th

 order statistics of the T-TIGE family is 

 

 
   

 
        

1
1 (1 ( ) )

:

0 0 0 0

!
1 1 (1 . 

1 ! !

p mn q j
H xi kH x

q n ijk

m i j k

n qn
t x e e C h x H x

mq n q


 






   
 

   

   
          

 

 

where 
         21 1 2 1 21

i i ii

ijk

j e ei j
C

k i! i!j

            
         

. 

Proof. Consider 
1 2 3 nX ,X ,X , X ,

 
to be a random sample of size n  having 

the T-TIGE family of distributions, and 
1 2 3:n :n :n n:nX X X X     are 

order statistics derived from the sample.  The PDF,  :q nt x  of the q
th

 order 

statistics, say q:nX  is given by 
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                    
   

     
1

:

0

!
1 .

1 ! !

n q
p mi

q n

m

n qn
t x T x t x

mq n q


 



 
         

        (4.9) 

Substituting the Lemma 4.1 and CDF of the T-TIGE family into equation (4.9) 

yields 

 
   

 
        

1
1 (1 ( ) )

:

0 0 0 0

!
1 1 (1 . 

1 ! !

p mn q j
H xi kH x

q n ijk

m i j k

n qn
t x e e C h x H x

mq n q


 






   
 

   

   
          

 

 

where 
         21 1 2 1 21

i i ii

ijk

j e ei j
C

k i! i!j

            
         

. 

Proposition 4.9.  The r
th

 non-central moment of the q
th

 order statistic is given 

by  

 

   
 

        
1

1: (1 ( ) )

0 0 0 00

!
 1 1 (1 .

1 ! !

p mn q j
H xi kq n r H x

r ijk

m i j k

n qn
x e e C h x H x dx

mq n q


 

 




    
 

   

   
           

   

 

where 
         21 1 2 1 21

i i ii

ijk

j e ei j
C

k i! i!j

            
         

. 

Proof. By definition the r
th

 non-central moment of the q
th

 order statistic of a 

random variable X is defined as:  

                 :

:

0

 .
q n r

r q nx t x dx


                  (4.10)        
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   Substituting equation (4.9) into equation (4.10), yields, 

 

   
 

        
1

1: (1 ( ) )

0 0 0 00

!
 1 1 (1 .

1 ! !

p mn q j
H xi kq n r H x

r ijk

m i j k

n qn
x e e C h x H x dx

mq n q


 

 




    
 

   

   
           

 

 

This completes the proof. 
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4.4 Estimators of the T-TIGE Family 

The method of maximum likelihood method was used to develop the 

estimators of the parameters T-TIGE family.  This was the fulfillment of the 

third objective of this study. 

Let us consider
 1 2 3  ,  ,  , .. nx x x x   to be observed values from the T-TIGE 

family with parameters  ( ) , , ,
T

   θ . The total log-likelihood function is  

       

 
 

1 1

1

1 1

1

                   

ln ln ln 

 1 1 2  

ln 

ln
iH

n n

i i

i i

n n
x ;

i

i i

L n n x ; x ;

x ; e

H

H .

h




  

  


 

    

 

    

          

 

 

θ



 



         (4.11) 

By differentiating equation (4.11) with respect to the parameters, the score 

functions are derived as follows: 

 
  

  
  

  
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1 ;
1 1

1 ; e
1 ; 2 .

1 2 e
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H x
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i
H x

i i

H xn
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L
x




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




 
 










 

 
  

     
  

 

 
θ








 
(4.12) 

           
 

  

  

1 ;

1 ;
1

1 2e
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1 2 e
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H x
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






 










 
  

 
  


θ




                                  (4.13) 
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   
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i i

H
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
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

 



















 
 


  



 

 

 



θ





 

 


  

(4.14) 

 
 

 
    

   
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 

 
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1

1 ;

1 11 1
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; 2 1 .

1 1 2 ;

i

i

H xn nn n
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i H x

i ii ii i

e H x H x
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x e H x

L







  





 



  

 
    

  

   
   

  
  

θ







 
        (4.15) 
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where  

                            ; ; , ; ;r i i r i i

r r

h x h x H x H x   
 

 
         

. 

Setting the nonlinear system of equations to zero and solving them 

simultaneously yields the maximum likelihood estimates of  ˆ ˆˆ ˆ ˆ, , , .
T

   θ  

The observed information matrix ( )I θ  is used to construct the confidence 

interval for the estimated parameters. The observed information matrix for the 

T-TIGE family is given by 

              

       

     

   

 

2 2 2 2

2

2 2 2

2

2 2

2

2

2

( )

L L L L

L L L

I
L L

L

      

    

 



   

      

  

    

 

 



 
 
 
 
 
 

   
 
 
 
 
  

θ θ θ θ

θ θ θ

θ
θ θ

θ

             4.16) 

Under standard regularity conditions when ,n   the distribution of ˆ( )θ can 

be approximated by a multivariate normal  1ˆ, ( )pN I 
0 θ

 
distribution to 

construct approximate confidence intervals for the parameters, and this apply 

to all the special distributions derived. 
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4.5 Special T-TIGE Distributions  

A number of new models can be deduced as special models from the T-TIGE 

family. This section therefore focuses on the derivation of the five new special 

distributions of the from T-TIGE generator. These are T-TIGER, T-TIGEW, 

T-TIGEEE, T-TIGEFr and the T-TIGEL distributions. 

4.5.1 The T-TIGE Rayleigh Distribution  

The Rayleigh model with positive single parameter has the following CDF and 

PDF respectively as 

 
2

2
1 exp

2

x
F x



 
   

 
,           (4.17) 

and  

 
2

2 2
exp

2

x x
f x

 

 
  

 
                              (4.18) 

Substuting equation (4.17) into equation (4.1) gives the the CDF of the 

Transmuted Type I General Exponential Rayleigh (T-TIGER) model as 

represented in equations (4.19) as: 

 
2 2

2 2
1 exp 1 1 exp exp 1 1 exp

2 2
R

x x
T x

 

   
 

                                                          

    (4.19)         

Figure 4.1 depicts the various cumulative distribution functions of the  

T-TIGER. 
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           Figure 4.1: The CDF plots of the T-TIGER distribution  

The corresponding PDF of the T-TIGER model was arrived at by 

differentiating equation (4.19 ) given by 

( 1)
2 2 2

2 2 2 2
,( ) exp 1 exp exp 1 1 exp

2 2 2
R A

x x x x
t x

 




   

    
          
          
                       

  

               (4.20) 

where  
2

2
1 2 exp 1 1 exp

2
.

x
A



  


                       

      

The PDF plot of the T-TIGER distribution as shown in Figure 4.2 can be right 

skewed, left skewed. This indicates the flexibility nature of the T-TIGE family 

of distributions. 
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          Figure 4.2: The PDF plots of T-TIGER distribution  

 

The reliability (survival) function of the T-TIGER model is given as

 
2 2

2 2
1 1 exp 1 1 exp exp 1 1 exp

2 2
R

x x
S x

 

   
 

                                                           

    4.21) 

The graph representing the various survival function of the T-TIGER model is 

shown in Figure 4.3. 

 

       Figure 4.3.  Survival function plots of T-TIGER model 

0 5 10 15 20

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

0
.1

2

x

f(
x
)

=1.8, =12.8, =0.3, =0.1

=1.1, =10.1, =0.6, =0.005
=0.3, =11.1, =1.02, =1e-04

0 2 4 6 8

0
.0

0
0

.0
5

0
.1

0
0

.1
5

x

f(
x
)

=0.4, =23.9, =0.3, =0.01

=1.1, =10.1, =0.6, =0.005
=0.3, =11.1, =1.92, =1e-04

0 2 4 6 8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

F
(x

)

=0.51, =2.9, =2.52, =0.01

=0.78, =2.9, =2.52, =0.01
=1.08, =2.9, =2.52, =0.01

0 2 4 6 8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

F
(x

)

=1.08, =2.9, =2.52, =0.01

=1.08, =3.1, =2.52, =0.01
=1.08, =2.1, =2.52, =0.01

www.udsspace.uds.edu.gh 

 

 

 

 



 
 

57 
 

The diagram representing the hazard rate function of the T-TIGER model is 

displayed in Figure 4.4.  It could be deduced that the hazard rate function of 

the T-TIGER model as shown in Figure 4.4 exhibits different shapes such as 

bathtub, monotonically increasing or monotonically decreasing for various 

shapes of the hazard function. This further confirms the flexibility of the       

T-TIGE family. 

 

     Figure 4.4: Hazard rate plots of T-TIGER distribution 
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4.5.2 The T-TIGE Weibull Distribution 

The Weibull distribution with shape parameter 0  and scale parameter 

0   has the following CDF and PDF respectively as: 

                                                  ( ) 1 xF x e
                       (4.22) 

and   

                                              
1 ( ) xf x x e

                                        (4.23)   

Compounding equations (4.22) and (4.1) yields the CDF of the Transmuted 

Type I General Exponential Weibull (T-TIGEW) model and this is represented 

in equation (4.24).  

       ( ) 1 exp 1 1 exp 1 1 .
w

T x x x
 

 
     

 

         
            (4.24) 

 

The graph representing the CDF of T-TIGEW model is shown in Figure 4.5. 

 

          Figure 4.5:  The CDF plots of T-TIGEW model 

0 5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

F
(x

)

=1.9, =0.9, =0.175, =0.1, =0.1

=10.4, =1.4, = 0.95, =0.3, =0.1
=0.9, =1.3, = 0.905, =1.2, =0.1

0 5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

F
(x

)

=1.9, =0.9, =0.175, =0.1, =0.1

=10.4, =1.4, = 0.95, =0.3, =0.1
=1.9, =1.3, = 0.905, =1.2, =0.1

www.udsspace.uds.edu.gh 

 

 

 

 



 
 

59 
 

The corresponding PDF of the T-TIGEW model as shown in equation (4.25) 

was arrived at by differentiating equations (4.24): 

 
  1 1 1 11

1( ) 1 1 2 . (4.25)

x xe e
x x

Wt x x e e e e

 
  

 
 

    

 
 

      
                       

 
    
 
 

 

The diagram representing the PDF of T-TIGEW model as shown in Figure 4.6 

indicates right skewed, left skewed. This indicates the flexibility of the          

T-TIGE family. 

 

       Figure 4.6: The PDF plots of T-TIGEW distribution 

The reliability function of the T-TIGEW model is given as: 

                1 exp 1 1 exp 1 11W x xS x
 

 
     

 

         
      

           (4.26) 

The Figure 4.7 represents the graph of the various survival function of the      

T-TIGEW model. 
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Figure 4.7: The Survival functions of T-TIGEW model 

 

Also, the hazard rate function of the T-TIGEW distribution is given as: 

   
 

       

1 exp 1 1

.

1 1 exp 1 1 exp 1 1

x

W

W e

Z x

x x

 


 
 

  

     




 

   
      

   


   
      
      

      (4.27) 

where 

      
( 1)1 exp 1 exp exp 1 1 xW x x x e

       
     

        
   

 

The Figure 4.8 shows the graph of the hazard rate function of the T-TIGEW 

model. It could be deduced that the hazard rate function of the distribution as 

shown in Figure 4.8 also exhibits different shapes such as bathtub, 

monotonically increasing or monotonically decreasing for various shapes of 

the hazard function. This further confirms the flexibility of the T-TIGE family. 
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          Figure 4.8: Hazard rate plots of T-TIGEW distribution 
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4.5.3 The T-TIGE Fréchet Distribution  

The Fréchet model with two positive parameters  and   has the following 

CDF and PDF respectively as: 

                                                      
 /

( )
x

F x e



                                   (4.28) 

and 

                             
   1 /

 ( ) , 0, 0, 0.
x

f x x e x


   
 

                  (4.29) 

The CDF of the Transmuted Type I General Exponential Fréchet (T-TIGEFr) 

model, as defined in equation (4.30) was arrived at as a result of compounding 

equation (4.28) and the CDF of the T-TIGE family.. 

       / /
exp 1 1 exp 1 .

x x

FrT x e e
  

 
   

 
        

           
       

   (4.30) 

The plots of the cumulation function of the T-TIGEFr model are shown in 

Figure 4.9. 

    

       Figure 4.9: The CDF plots of T-TIGEFr distribution 
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The PDF of the T-TIGEFr model as represented in equation (4.31) was arrived 

at as the first differential of equation (4.30). 

        

  

1 /

/

( ) exp / exp 1

1 2 exp 1 .

x

Fr

x

t x x x e

e





 
 




  

  

 
 




  
    

  

   
     

   


               (4.31) 

The graphs of density function of the T-TIGEFr model are displayed in Figure 

4.10. It could be observed that the T-TIGEFr model exhibits both the right 

skewed and left skewed. This furthermore shows the flexibility of the  T-TIGE 

generator. 

 

    Figure 4.10: The PDF plots of T-TIGEFr distribution 

The survival function of the T-TIGEFr model is defined as: 

                  / /
1 exp 1 1 exp 1 .

x x

FrS x e e
  

 
   

 
        

            
       

      (4.32) 

The Figure 4.11 displayed the various survival functions of the T-TIGEFr 

model. 
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          Figure 4.11: The survival plots of T-TIGEFr distribution 

Also, the hazard rate function of the T-TIGEFr model is given as: 

 

           

     

1 / /

/ /

.

exp / exp 1 1 2 exp 1

1 exp 1 1 exp 1

Fr

x x

x x

Z x

x x e e

e e

 

 

 
  

 
 

     

   

 
  

 
 



    
       

       
       

       
           

       

    (4.33) 

Figure 4.12 depicts the graphical representation of the hazard rate function of 

the T-TIGEFr model. It could be deduced that the hazard rate function of the 

T-TIGEFr model as shown in Figure 4.12 exhibits different shapes such as 

bathtub, monotonically increasing or monotonically decreasing for various 

shapes of the hazard function. This further confirms the flexibility of the       

T-TIGE family and therefore, could be used to model diverse nature of 

datasets. 
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          Figure 4.12: Hazard rate plots of T-TIGEFr model 
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4.5.4 The T-TIGE Exponentiated Exponential Distribution 

Exponentiated Exponential model with positive parameters has the following 

CDF and PDF respectively as:  

                                                1 expF x x


             (4.34) 

and  

                
1

exp 1 exp .f x x x


  


                         (4.35) 

Substituting the CDF of the Exponentiated Exponential distribution into the 

CDF of the T-TIGE generator yields the new special model known as the      

T-TIGE Exponentiated Exponential (T-TIGEEE) model which is defined as

         exp 1 1 exp 1 exp 1 1 exp .EET x x x
 

 

     
        

               
       

  (4.36) 

The corresponding PDF of T-TIGEEE model was derived by differentiating 

the equation (4.36) which gives: 

        
 

       

1
1

( ) exp 1 exp 1 exp

exp 1 1 exp 1 2 exp 1 1 exp .

EEt x x x x

x x


 

  

   

     

 


 

      

       
              

       

     (4.37) 

The Figure 4.13 shows the graph representation of the CDF of T-TIGEEE 

model. 
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         Figure 4.13: The CDF plots of T-TIGEE distribution 

 

The PDF plots of the T-TIGEEE model as shown in Figure 4.14 exhibit right 

skewed and left skewed. 

 

          Figure 4.14: The PDF plots of T-TIGEEE distribution 
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The survival (reliability) function of the T-TIGEEE model is defined in 

equation (4.38). 

         1 exp 1 1 exp 1 exp 1 1 exp . (4.38)EES x x x
  

     
        

                
       

 

The plots representing the survival functions of the T-TIGEEE model is 

shown in Figure 4.15 

 

           Figure 4.15: The survival plots of T-TIGEEE distribution 

The hazard rate function of the T-TIGEEE model is shown graphically in 

Figure 4.16 with different values of parameters. It could be deduced that the 

hazard rate function of the T-TIGEEE model as shown in Figure 4.16 exhibits 

different shapes such as bathtub, monotonically increasing or monotonically 

decreasing for various shapes of the hazard function. This further confirms the 

flexibility of the T-TIGE family. 
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         Figure 4.16: Hazard rate plots of T-TIGEEE model 
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4.5.5 The T-TIGE Lomax Distribution 

Another special model derived from the T-TIGE generator is that of the 

Transmuted Type I General Exponential Lomax (T-TIGEL) model. Consider 

the Lomax model with shape parameter 0  and scale parameter 0   

which has the following CDF and PDF respectively as: 

  1 1 , 0, , 0
x

F x x



 




 
     

 
          (4.39) 

and   

 
 1

1
x

f x




 

 

 
  

 
          (4.40) 

Compounding equations (4.39) and (4.1) yields the cumulative function of the 

T-TIGEL model as:  

               

  exp 1 1 1 1 exp 1 1 1 ,L

x x
T x

 
 

   
 

 
                                              

        (4.41) 

for , , , 0, 1, 0.x        

The Figure 4.17 graphically displayed the CDF of T-TIGEL model. 
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         Figure 4.17:  The CDF plots of T-TIGEL model 

The corresponding PDF of the T-TIGEL model as shown in equation (4.42) 

was arrived at by differentiating equations (4.41), which gives: 

   1
1

( ) 1 1 1 exp 1 1 1 1 2 1 1 1 . (4.42)
L

x x x x
t x

  
   


   

    

   
    

           
                  

                                       

 

The graph of the PDF of T-TIGEL model as shown in Figure 4.18 indicates 

right skewed and left skewed. This indicates the flexibility of the T-TIGE 

family. 
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         Figure 4.18: The PDF of T-TIGEL model  

 

The survival function of the T-TIGEL model is given as: 

     
  1 exp 1 1 1 1 exp 1 1 1L

x x
S x

 
 

   
 

 
                                               

          (4.43) 

The graph of the various survival functions of the T-TIGEL model is shown in 

Figure 4.19. 

 

         Figure 4.19: The survival plots of T-TIGEL distribution 
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Also, the hazard rate function of the T-TIGEL model is given as: 

 

   1
1

1 1 1 exp 1 1 1 1 2 1 1 1 .

1 exp 1 1 1 1 exp 1 1 1

L

x x x x

Z x

x x

  
   


 


   

    

   
 

   
    


 

          



        

                  
                                       

      
     

      

. (4.44)


   
         

 

The hazard rate function of the T-TIGEL model is graphically shown in Figure 

4.20.  It could be deduced that the hazard rate function of the distribution as 

shown in Figure 4.20 also exhibits different shapes such as bathtub, 

monotonically increasing or monotonically decreasing for various shapes of 

the hazard function. This further confirms the flexibility of the T-TIGE family. 

 

        Figure 4.20: Hazard rate plots of T-TIGEL model 
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4.6 The Monte Carlo Simulation Studies 

The estimators of the various special model derived were examined using the 

Monte Carlo Simulation technique. This section therefore is a response to the 

fifth objective of the study.  

The Root Mean Square Errors (RMSE) and the Average Biases (AB) are 

presented in Tables 4.1 to 4.10. The quantile functions of these special 

distributions were used to generate the random samples of these distributions.  

The simulation experiment was repeated for 1,000N   times for each model 

with various sample sizes of  25, 50, 75, 100n   and different parameter 

values. 

Tables 4.1 and 4.2 respectively show the RMSE and AB of the maximum 

likelihood estimators of  , , , ,      for 25, 50, 75, 100n   for the            

T-TIGEW model. From Tables 4.3 to Table 4.7, it could be noticed that the 

estimates are quite stable and close to the true value of the parameters for the 

various sample sizes. Thus, estimators of the parameters of both the RMSE 

and AB decrease as the sample size ( n ) increases. 
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Table 4.1: The RMSE of the MLE of T-TIGEW distribution  

 RMSE of estimated parameters 

 , , , ,    

 

n  ̂  ̂  ̂  ̂  ̂  

 

(0.3,0.2,0.1, 

0.2,0.1) 

25 0.2324 103.701 3.85755 0.32133 0.07436 

50 0.4803 7.78242 1.77892 0.31385 0.06089 

75 0.4609 4.22556 1.37040 0.27569 0.05694 

100 0.4405 3.05633 0.65330 0.26870 0.05320 

 

(0.2,0.2,0.1, 

0.2,0.1) 

25 0.1595 52.8412 3.00442 0.27481 0.04831 

50 0.3071 104.732 1.31964 0.30210 0.05023 

75 0.3745 7.52802 0.66610 0.28028 0.04916 

100 0.3383 3.51450 0.39636 0.27985 0.04644 

 

(0.3,0.2,0.1, 

0.2,0.1) 

25 0.2246 64.3763 3.34755 0.32106 0.07572 

50 0.4852 46.7850 1.92911 0.31784 0.06271 

75 0.4685 5.33141 1.44544 0.28902 0.05732 

100 0.4869 3.04859 0.63031 0.27185 0.05198 

 

(0.3,0.1,0.2, 

0.2,0.3) 

25 0.2550 11.0378 4.50751 0.32283 0.23527 

50 0.3677 1.84995 2.21065 0.33224 0.17495 

75 0.3073 1.56504 1.70797 0.31002 0.15656 

100 0.2507 1.28587 1.17212 0.31493 0.15082 
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Table 4.2: The AB of the MLE of T-TIGEW distribution  

 Average biases of estimated parameters 

  ,,,,  n  ̂  ̂  ̂  ̂  ̂  

 

(0.3,0.2,0.1, 

0.2,0.1) 

25 0.2495 17.4786 1.5916 0.0599 0.0079 

50 0.2074 3.80391 0.7566 0.0039 0.0193 

75 0.2064 2.61030 0.4065 0.0620 0.0108 

100 0.1731 2.13732 0.2285 0.0547 0.0081 

 

(0.2,0.2,0.1, 

0.2,0.1) 

25 0.0240 15.0605 0.8180 0.0260 0.0036 

50 0.1235 10.2954 0.4226 0.0196 0.0198 

75 0.1821 3.00904 0.2385 0.0449 0.0263 

100 0.1695 2.14472 0.1440 0.0404 0.0267 

 

(0.3,0.2,0.1, 

0.2,0.1) 

25 -0.0010 14.6331 1.5028 0.0637 0.0076 

50 0.1792 6.13051 0.7807 0.0022 0.0136 

75 0.1920 2.70515 0.4475 0.0367 0.0119 

100 0.1827 2.09262 0.2321 0.0546 0.0086 

 

(0.3,0.1,0.2, 

0.2,0.3) 

25 0.0081 2.61592 1.8572 0.0409 0.0157 

50 0.0988 1.39632 0.7665 0.0248 0.0206 

75 0.0713 1.10649 0.4728 -0.0134 0.0004 

100 0.0487 0.87921 0.3105 0.00244 0.0126 
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Tables 4.3 and show the RMSE and AB of the maximum likelihood estimators 

of  , , , ,      for 25, 50, 75, 100n   for the T-TIGER model. The 

estimators RMSE and average biases reduce as the sample size increases. 

  Table 4.3: The RMSE of the MLE of T-TIGER distribution 

                 RMSE of estimated parameters 

  ,,,  n  ̂  ̂  ̂  ̂  

 

 

(0.1,0.2,0.1,0.2) 

25 0.02796 0.03330 0.07817 0.22014 

50 0.02167 0.02594 0.05567 0.21398 

75 0.01930 0.02365 0.05688 0.22206 

100 0.01769 0.02034 0.04261 0.19794 

 

 

(0.2,0.2,0.1,0.2) 

25 0.04801 0.14195 0.21146 0.22095 

50 0.03587 0.11282 0.10825 0.23065 

75 0.03121 0.09845 0.09535 0.26361 

100 0.02809 0.08722 0.08182 0.26187 

 

 

(0.2,0.3,0.1,0.2) 

25 0.04701 0.21390 0.18183 0.21450 

50 0.03614 0.16905 0.11198 0.24155 

75 0.03057 0.14845 0.09738 0.26329 

100 0.02842 0.12623 0.08634 0.26281 

 

(0.1,0.2,0.3,0.2) 

25 0.04451 0.10898 0.65800 0.24701 

50 0.02701 0.06208 0.37940 0.28544 

75 0.02007 0.03907 0.26067 0.28453 

100 0.01805 0.03212 0.22673 0.26197 
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Table 4.4 depicts the AB of the maximum likelihood estimators of 

 , , , ,      for 25, 50, 75, 100n   for the T-TIGER model. The 

estimators of the parameters of the AB decrease as the sample size increases. 

 

  Table 4.4: The AB of the MLE of T-TIGER distribution 

  Average biases of estimated parameters 

  ,,,  n  ̂  ̂  ̂  ̂  

 

 

(0.1,0.2,0.1,0.2) 

25 0.01540 -0.02248 -0.01026 -0.07580 

50 0.01445 0.01839 0.01907 0.07298 

75 0.01335 -0.01653 -0.01811 -0.07749 

100 0.01360 0.01514 0.02374 0.10647 

 

 

(0.2,0.2,0.1,0.2) 

25 0.00487 0.04690 0.08417 0.03650 

50 0.00510 0.02226 0.03630 0.0111 

75 0.00075 0.00822 0.03397 0.02247 

100 0.00126 0.00138 0.02760 0.03247 

 

 

(0.2,0.3,0.1,0.2) 

25 0.00860 0.05078 0.06365 0.03693 

50 0.00185 0.02835 0.04092 0.00204 

75 -0.00258 0.01609 0.03737 0.02689 

100 -0.00228 0.00906 0.03053 0.03393 

 

(0.1,0.2,0.3,0.2) 

25 0.24701 0.07226 0.17209 -0.06112 

50 0.00012 0.02363 0.12245 0.01178 

75 0.00211 0.00976 0.08357 0.03015 

100 0.00146 0.00912 0.06630 0.00777 
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Tables 4.5 and 4.6 respectively show the RMSE and AB of the maximum 

likelihood estimators of  , , , ,      for 25, 50, 75, 100n   for the             

T-TIGEFr model. The estimators of the parameters of both the RMSE and 

average biases decrease as the sample size increases. It is observed that the 

estimates are quite stable and are closer to the true value of the parameters for 

these sample sizes. 

Table 4.5: The RMSE of the MLE of T-TIGEFr distribution 

  RMSE of estimated parameters 

  ,,,,  n  ̂  ̂  ̂  ̂  ̂  

 

 

(0.4,0.3,0.5,0.6,0.7 ) 

25 0.57927 0.16397 1.45527 0.49062 0.26949 

50 0.60841 0.16392 1.78301 0.44909 0.24993 

75 0.57236 0.15712 0.81421 0.43901 0.24106 

100 0.50602 0.15703 0.55377 0.41412 0.23919 

 

 

(0.4,0.3,0.5,0.1,0.7 ) 

 

25 0.50241 0.15564 7.19286 0.21166 0.27103 

50 0.44747 0.13301 5.76043 0.23754 0.20969 

75 0.42737 0.12438 2.02787 0.24345 0.18855 

100 0.43401 0.11372 1.12418 0.24306 0.17997 

 

(0.4,0.3,0.5,0.2,0.7) 

 

25 0.49334 0.15377 4.68342 0.22784 0.26807 

50 0.44716 0.13242 3.01534 0.24396 0.20898 

75 0.46388 0.14301 1.88564 0.22611 0.19534 

100 0.43075 0.12091 1.10347 0.21351 0.18732 

 

(0.3,0.3,0.5,0.30.7) 

 

25 0.40807 0.16268 3.00771 0.28203 0.25894 

50 0.44555 0.16261 2.91197 0.29253 0.21488 

75 0.40613 0.15319 2.03833 0.27398 0.19750 

100 0.40474 0.14690 0.88844 0.23998 0.18942 
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Table 4.6: The AB of the MLE of T-TIGEFr distribution  

  Average biases of estimated parameters  

  ,,,,  n  ̂  ̂  ̂  ̂  ̂  

 

 

(0.4,0.3,0.5,0.6,0.7 ) 

 

25 0.20360 0.06566 -0.01821 0.41213 0.05481 

50 0.22405 0.06279 0.06164 0.30782 0.02375 

75 0.21015 0.05839 0.00384 0.29092 0.02094 

100 0.20305 0.06193 0.03089 0.25492 0.00697 

 

 

(0.4,0.3,0.5,0.1,0.7 ) 

25 0.17770 0.04058 1.36938 0.01041 0.02409 

50 0.13436 0.02184 0.94084 0.03315 0.00581 

75 0.14091 0.02936 0.31583 0.04211 -0.0140 

100 0.13708 0.02622 0.21189 0.03753 0.01675 

 

 

(0.4,0.3,0.5,0.2,0.7) 

 

25 0.15563 0.03427 0.89543 0.08444 0.04014 

50 0.13589 0.03287 0.48752 0.06682 0.01056 

75 0.16742 0.04484 0.22475 0.03688 0.02029 

100 0.14142 0.03304 0.16243 0.02635 -0.01146 

 

 

(0.3,0.3,0.5,0.30.7) 

25 0.12970 0.04153 0.53333 0.17356 0.04425 

50 0.16216 0.05234 0.29310 0.12087 0.00345 

75 0.15263 0.05202 0.16013 0.09506 0.01357 

100 0.15213 0.05218 0.05776 0.08788 0.02192 

 

Tables 4.7 and 4.8 depict the RMSE and average biases of the maximum 

likelihood estimators of  , , , ,      for 25, 50, 75, 100n   for the      

T-TIGEEE model. The estimators of the parameters of the AB decrease as the 

sample size increases. 
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Table 4.7: The RMSE of the MLE of T-TIGEEE distribution  

   RMSE of estimated parameters 

  ,,,,  n  ̂  ̂  ̂  ̂  ̂  

 

 

(0.3,0.4,0.5,0.4,0.3) 

25 0.10446 4.81254 0.84594 0.35467 0.10473 

50 0.06969 1.80140 0.47129 0.34628 0.06561 

75 0.05679 0.85361 0.35039 0.32772 0.06004 

100 0.04951 0.63861 0.34638 0.31934 0.04951 

 

 

(0.2,0.4,0.5,0.4,0.3) 

25 0.05883 0.57029 2.09409 0.39704 0.08621 

50 0.04708 0.10369 0.57585 0.38848 0.06644 

75 0.04178 0.07177 0.32432 0.37673 0.06889 

100 0.04254 0.05809 0.28631 0.36898 0.05828 

 

 

(0.2,0.3,0.5,0.4,0.3) 

25 0.05868 0.53320 0.81674 0.39381 0.07141 

50 0.04842 0.08515 0.50382 0.38456 0.06176 

75 0.05048 0.05908 0.30905 0.37296 0.05670 

100 0.07460 0.07215 0.29143 0.37078 0.06378 

 

 

(0.4,0.5,0.5,0.4,0.3) 

25 0.11372 1.67242 0.54711 0.35362 0.08543 

50 0.08048 0.86935 0.33850 0.34706 0.05625 

75 0.06775 0.57119 0.28776 0.33681 0.04821 

100 0.063097 0.47708 0.27901 0.33004 0.04340 
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Table 4.8: The average biases (AB) of the MLE of T-TIGEEE distribution 

              Average biases of estimated parameters 

  ,,,,  n  ̂  ̂  ̂  ̂  ̂  

 

 

(0.3,0.4,0.5,0.4,0.3) 

 

25 0.04418 1.65370 0.04437 0.26819 0.04732 

50 0.03001 0.74922 -0.00321 0.19855 0.02787 

75 0.02043 0.35702 -0.00845 0.15128 0.01983 

100 0.01477 0.24408 0.00190 0.12811 0.01457 

 

 

(0.2,0.4,0.5,0.4,0.3) 

25 0.02819 0.12617 0.06744 -0.18077 0.03558 

50 0.02918 0.04689 -0.09463 -0.19448 0.03666 

75 0.02915 0.03333 -0.14783 -0.21272 0.04112 

100 0.03229 0.03122 -0.17897 -0.23299 0.04094 

 

 

(0.2,0.3,0.5,0.4,0.3) 

25 0.03002 0.10691 -0.00890 -0.16728 0.03224 

50 0.03114 0.04313 -0.11643 0.20334 0.03757 

75 0.03143 0.03430 -0.15319 0.21281 0.03836 

100 0.03372 0.03590 -0.17692 0.23718 0.04172 

 

(0.4,0.5,0.5,0.4,0.3) 

25 0.04604 0.74500 -0.03149 0.25766 0.03731 

50 0.03264 0.36680 -0.04623 0.18739 0.02141 

75 0.02524 0.20908 -0.05343 0.16164 0.01976 

100 0.02009 0.16644 -0.04067 0.14187 0.01720 

 

The estimators for the parameters of the T-TIGEL model were also examined 

via the Monte Carlo technique. The root mean square root (RMSE) and 

average bias (AB) of the parameters were observed and displayed in Table 4.9 

and Table 4.10 respectively. The AB for the estimators also exhibits similar 

patterns as displayed in Table 4.10. 

www.udsspace.uds.edu.gh 

 

 

 

 



 
 

83 
 

Table 4.9: The RMSE of the MLE of T-TIGEL distribution 

  RMSE of estimated parameters 

  ,,,,  n  ̂  ̂  ̂  ̂  ̂  

 

 

(0.13, 0.01, 0.12, 0.02,0.03) 

25 0.0319 0.2193 0.0808 0.2659 0.4551 

50 0.0241 0.1462 0.0779 0.3109 0.0951 

75 0.0216 0.1597 0.0760 0.3385 0.0681 

100 0.0198 0.1845 0.0754 0.3421 0.0722 

 

(0.12, 0.011, 0.12, 0.02, 0.03)  

25 0.0330 0.1676 0.0828 0.2348 0.1253 

50 0.0278 0.1588 0.0832 0.2739 0.0935 

75 0.0269 0.1721 0.0820 0.3169 0.0833 

100 0.0251 0.1611 0.0822 0.2951 0.0932 

 

(0.125, 0.011, 0.12, 0.02, 

0.06) 

25 0.0353 0.1742 0.0865 0.2198 0.1212 

50 0.0278 0.1440 0.0842 0.2824 0.1017 

75  0.026 0.1584 0.0835 0.2961 0.0946 

100 0.0252 0.1562 0.0834 0.2978 0.1001 

 

(0.13, 0.01, 0.12, 0.02, 0.04) 

25 0.0329 0.1666 0.0827 0.2252 0.1089 

50 0.0262 0.1657 0.0801 0.3071 0.1175 

75 0.0228 0.1605 0.0789 0.3077 0.0872 

100 0.0219 0.1602 0.0785 0.3222 0.0797 
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Table 4.10: The AB of the MLE of T-TIGEL distribution  

  Average biases of estimated parameters  

  ,,,,  n  ̂  ̂  ̂  ̂  ̂  

 

(0.13, 0.01,  

0.12,0.02, 

0.03) 

25 0.016 0.1288 -0.0696 0.1411 0.0853 

50 0.013 0.1049 -0.0699 0.1805 0.0594 

75 0.011 0.1081 -0.0679 0.1986 0.0511 

100 0.010 0.1114 -0.0685 0.2097 0.0488 

 

(0.12, 0.011,  

0.12,0.02, 

0.03) 

25 0.022 0.1048 -0.0756 0.1237 0.0678 

50 0.021 0.0929 -0.0777 0.1413 0.0557 

75 0.020 0.0968 -0.0752 0.1688 0.0502 

100 0.019 0.0915 -0.0769 0.1493 0.0501 

  

(0.125, 0.011, 

 0.12,0.02, 

0.06) 

25 0.023 0.1219 -0.0798 0.0959 0.0724 

50 0.019 0.1041 -0.0777 0.1295 0.0582 

75 0.018 0.1087 -0.0773 0.1334 0.0574 

100 0.018 0.1075 -0.0773 0.1342 0.0612 

 

(0.13, 0.01, 

 0.12,0.02,     

0.04) 

25 0.019 0.1240 -0.0745 0.1107 0.0731 

50 0.014 0.1207 -0.0715 0.1696 0.0674 

75 0.013 0.1146 -0.0719 0.1662 0.0596 

100 0.012 0.1142 -0.0716 0.1753 0.0564 
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CHAPTER FIVE 

EMPIRICAL RESULTS AND APPLICATIONS 

5.1 Introduction 

This chapter presents the results of the sixth stated objective of this study. That 

is, the special models derived from the T-TIGE family are applied to different 

real datasets to assess the dynamism of the T-TIGE family of distributions. 

5.2 The Application of the T-TIGER Distribution 

This section demonstrates how the application of the T-TIGER model works 

in practice by using three (3) different real datasets.  The T-TIGER model 

fitness was compared with different models namely the Exponentiated 

Transmuted Generalized Rayleigh (ETGR) by Afify et al. (2015) ,Weibull-

Fréchet (WFr) by Afify et al. (2016),  Transmuted Rayleigh (TR) distribution 

by Merovci (2013c),  the General Exponential (GE) model by Gupta and 

Kundu (1999), the Generalized Rayleigh (GR) by Raqab et al. (2017), the 

Weibull (W) distribution by Weibull (1951), the Exponential (E) and the 

Rayleigh (R) model.  

For these analyses, the following datasets were used; the tax revenue data 

(Appendix A1), the Kiamo Blowhole (Appendix A2) and Applied Analysis 

data (Appendix A3). 

The descriptive statistics of the tax revenue data is presented in Table 5.1. It 

could be observed from the Table 5.1 that the first, second and third quarters 

of the tax revenue data were 8.45, 10.60 and 16.85 respectively. The minimum 

and maximum of the tax revenue were 4.10 and 39.20 Egyptian pounds 

respectively. The average tax revenue was 13.49 Egyptian pounds per month. 
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The coefficient of skewness of 1.57 and excess kurtosis of 2.08 indicated that 

the tax revenue data was skewed and more peak than the normal curve. The 

descriptive statistics of the tax revenue dataset is further presented in Figure 

5.1. 

Table 5.1: Descriptive statistic of the tax revenue data 

Min 1
st
 Q Median Mean Sd 3

rd
 Q Max Skewness Kurtosis 

  4.10     8.45 10.60 13.49 8.05 16.85 39.20 1.57 2.08 

 

             Figure 5.1: A graphical summary of the tax revenue dataset 
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In order to determine the shape of the most appropriate hazard function for 

modeling, graphical analysis of the data become more useful.  As shown in 

Figure 5.2, the tax revenue data set has an increasing failure rate as indicated 

by the TTT-transform plot which has a concave shape since the curve shown 

is above the 45
0
.line as shown in Figure 5.2. 

 

 

Figure 5.2: The TTT-transform plot for tax revenue data 

The estimated parameters of the fitted models with their respective standard 

are estimated by maximum likelihood are presented in Table 5.2. The values 

of most of the fitted distributions are significant at the 5% significant level. 

This can be verified by using the standard error test which states that for a 

parameter to be significant at the 5% significant level, the standard error 

should be less than half the parameter value.  For instance, for the T-TIGER 

model, the parameters for alpha and theta were significant at the 10% and 1% 

significant levels respectively. 
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Table 5.2: The MLE estimates using the tax revenue data 

Model Estimate Standard error z-value P-value 

 

 

T-TIGER 

̂ =0.9325 3.36 x10
-1

 2.7739 5.5 x10
-3

  

̂ =18.002 5.19 x10
0
 3.4662 5.0 x10

-4
  

̂ =11.891 5.03 x10
0
 2.3641 4.6 x10

-11
 

̂ =0.1793 3.07 x10
-2

 5.8404 3.2 x10
-3

 

WFr 

̂ =15.045 7.51 x10
0
 2.0043 4.5 x10

-2
 

̂ =1.8730 7.55 x10
-1

 2.4795 1.3 x10
-2

 

̂ =1.6320 1.39 x10
0
 1.1717 2.4 x10

-1
 

̂ =0.5360 1.43 x10
-1

 3.7487 1.8x10
-3

 

GTR 

̂ =1.4660 2.57 x10
-1

 5.7009 1.2x10
-8

  

̂ =0.1050 2.37 x10
-1

 0.4429 6.6 x10
-3

 

̂ =12.490 1.48 x10
0
 8.4154 < 2.2x10

-16
 

̂ =10.265 2.42 x10
1
 0.4237 6.7 x10

-1
 

ETGR 

̂ =0.1978 7.32 x10
-2

 2.7025 6.9 x10
-3

 

̂ =12.204 7.05 x10
0
 1.7318 8.3 x10

-2
. 

̂ =0.0520 7.30 x10
-3

 7.1440 9.1x10
-13

  

̂ =0.9070 7.00 x10
-2

 12.9483 < 2.2x10
-16

 

 

EWE 

̂ =1.0010  3.60 x10
-4

  2.7526 < 2.2x10
-16

  

̂ =0.6051 4.00x10
-2

 12.4788  < 2.2x10
-16 

 

 ̂  =1.8925 3.90 x10
-4

 4.8059 < 2.2x10-16 

̂ =0.0128 1.90 x10
-3

  6.7433  1.5x10
-11
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Table 5.2: The MLE estimates using the tax revenue data (Cont’d) 

TR ̂ =13.1342 1.30 x10
1
  9.8498 < 2.2 x 10

-16
 

̂ =0.6426 2.40 x10
-1

 2.6932 7.0 x10
-3

 

GE 

 

̂ =5.5301 1.40x10
1
 3.8557 1.2 x10

-4
 

̂ =0.1787 2.30 x10
-2

 7.6727 1.7 x 10
-14

 

GR 

̂ =1.0311 1.80 x10
-1

  5.5894 2.3 x 10
-8

 

̂ =0.0645 5.70 x10
-3

 11.3315 < 2.2x10
-16

  

R ̂ =11.083 7.20 x10
-1

 15.362 < 2.2 x 10
-16

 

 

W 

̂ =1.8020 
1.70 x10

-1
 10.4463 < 2 .2 x

-16
  

̂ =0.0070 3.90 x10
-4

 1.8732 6. x10
-2

 

E ̂ =0.0740 9.60 x10
-3

 7.6811 1.6 x 10
-14

 

 

The inverse of the Hessian matrix of the T-TIGER model is given by 

1 2 2 1

2 1 1

2 1 2 1

1 1

1

1

1

1

 1.13  6.5 -8.0 -2.3

6.5 2.7  -5.3  8.6

-8.0 -5.3 6.8  1.6

-

10 10 10 10

10 10 10 10

10 10 10 10

10 10 10 102.3 8.6 1.6 6.5

I

   

  

   

   



    
 

    
    
 

     

 

The approximately 95% CI for , , , and    are displayed in Table 5.3. 

Table 5.3: Confidence Interval for the model parameters 

CI         

95% (0.2736, 1.5914) (7.822, 28.1811) (0.1,  0.6984) (-0.4013, 0.8599) 
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It can be observed from the Table 5.3 that all the confidence intervals 

contained their respective point estimates. It must be noted the values of the 

gamma, γ ranges from -1 to +1, hence the confidence interval of the gamma  

doe indicates that it is significant. The estimates of the T-TIGER model were 

significant at 5% significant level. 

The model selection was carried out using the values of log-likelihood 

function, AIC, AICc, HQ, BIC, A*, W* and K-S as explained earlier in the 

methodology. Table 5.4 gives the rest of the statistics. It could be deduced 

from the Table 5.4 that the T-TIGER provides a better fit than the comparative 

models. That is the T-TIGER distribution leads to better fit compared to the 

other ten models. 

Table 5.4: The negative log-likelihood, information criteria and goodness 

of fit statistics for tax revenue data  

Model -L AIC AICc BIC HQ A* W* K-S 

T-TIGER 187.62 383.23 383.98 391.54 386.48 0.24 0.037 0.05 

WFr 191.79 386.37 386.31 399.88 396.82 0.52 0.063 0.09 

GTR 194.53 397.05 397.79 405.36 400.29 1.47 0.235 0.15 

ETGR 191.42 390.84 391.58 399.15 394.08 0.95 0.155 0.12 

EWE 189.85 387.71 388.44 396.01 390.95 0.65 0.109 0.10 

TR 195.71 395.42 395.63 399.57 397.04 1.61 0.257 0.13 

GE 191.22 386.44 386.66 390.60 398.07 0.87 0.144 0.12 

R 197.71 397.42 397.49 399.49 398.23 1.99 0.312 0.17 

W 197.32 398.63 398.85 402.79 400.25 1.83 0.288 0.14 

E 212.51 427.01 427.08 429.09 427.82 1.21 0.194 0.30 
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The plots of empirical density and densities of the fitted models are presented 

in Figure 5.3. The dash line with the blue colour represents the T-TIGER 

distribution. It can be observed that the fitted T-TIGER distribution mimic the 

empirical density of the tax revenue data, hence the T-TIGER distribution 

provides a better fit. 

 

Figure 5.3: Plots of empirical density and densities of the fitted models. 

The second dataset relates to the waiting times between sixty-five consecutive 

eruptions of a blowhole, called the Kiamo Blowhole (Pinho et al., 2012) was 

also used to demonstrate the usefulness of the T-TIGER model. The Kiamo 

Blowhole is a tourist attraction located nearly 120km to the south of Sydney, 

Australia. The data set are given in an Appendix A2.  

The descriptive statistics of the Kiamo Blowhole dataset are presented in 

Table 5.5. It could be observed from the Table 5.5 that the first, second and 

third quarters of the Kiamo Blowhole data were 14.75, 28.00 and 60.00 

www.udsspace.uds.edu.gh 

 

 

 

 



 
 

92 
 

respectively. The minimum and maximum values of the dataset were 7.00 and 

169.00 respectively.  

The dataset has an average value of 39.83. The coefficient of skewness of 1.51 

and excess kurtosis of 2.59 indicated that the Kiamo Blowhole dataset was 

positively skewed and the kurtosis value indicates that the model has relatively 

a flatter peak than the normal distribution.  

The descriptive statistic of the Kiamo Blowhole dataset is further presented in 

figure 5.4. 

  Table 5.5: Descriptive statistic of Kiamo Blowhole Data   

Min 1
st
 Q Mean Std dev 3

rd
 Q Max skewness Kurtosis 

7.00 14.75 39.83 33.75 60.00 169.00 1.51 2.59 
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Figure 5.4: A graphical summary of the Kiamo Blowhole dataset 

In order to determine the shape of the most appropriate hazard function for 

modeling, graphical analysis of the data become more useful.  As shown in 

Figure 5.5, the Kiamo Blowhole data set has an increasing failure rate as 

indicated by the TTT-transform plot which has a concave shape. 
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            Figure 5.5: The TTT-transform plot for Kiamo Blowhole data   

The fitted models with their respective standard errors were estimates were 

presented in Table 5.6. The parameters of most fitted distributions are 

significant at the 5% significant level. This can be verified by using the 

standard error test which states that for a parameter to be significant at the 5% 

significant level, the standard error should be less than half the parameter 

value.  
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    Table 5.6: The maximum likelihood estimates of parameters of the    

    Kiamo Blowhole data 

Model Estimate Std error z-value P-value 

 

 

T-TIGER 

̂ =0.4899 0.1284 3.8149 1.2 x10
-4

 

̂ =69.4916 16.676 4.1672 3.1x10
-5

  

̂ =0.5270 0.2276 2.3154 2.6 x10
-2

 

̂ =-0.8340 0.2514 -3.3174 8. x10
-3

 

ETGR 

̂ =11.3488 0.0145 781.986  < 2.2x10
-16

  

̂ =0.04512 0.0068 6.6733 2.5x10
-11

  

̂ =0.0151 0.0017 9.0576 < 2.2x10
-16

 

̂ =-0.0031 0.6505  -0.0047 9.9 x10
-1

  

EWE 

̂ =4.1602 1.3562 1.3562 2.2 x10
-3

   

̂ =0.3505 0.0565 6.2048 5.5x10
-10

  

̂ =14.5165 0.0470 308.7835 < 2.2x10
-16

 

̂ =0.0116 0.0074 1.5648 1.2 x10
-1

 

TR ̂ =42.6897 3.9890 10.7018 < 2.2x10
-16

 

̂ =0.6562 0.2007 3.2701 1.1 x10
-3

  

GE ̂ =1.7326 0.3201 5.4129 6.2 x10
-8

 

̂ =0.0351 0.0051 6.8523 7.3 x10
-12

 

GR 
̂ =0.51234 0.0767 6.6826 2.348X10

-11
 

̂ =0.0151 0.0015 9.8573 < 2.2x10
-16 

 

R ̂ =36.7939 2.2996 16.0000 < 2.2x10
-16

  

 

W 
̂ =1.2584 0.1221 10.3053 < 2.2x10

-16
  

̂ =0.0088 0.0046  1.9223 5.5 x10
-2

 

E ̂ =0.02511 0.0032  8.0000 1.2x10
-15

  

 

The variance-covariance matrix for the estimated parameters of the T-TIGER 

model is given by 

2 1 3 2

1 2 0 2

3 0 2 2

2 2

1

2 1

1.65 10 8.72 10 2.76 10 3.09 10

8.72 10 2.78 10 2.27 10 4.61 10

2.76 10 2.27 10 5.18 10  6.01 10

3.09 10 4.61 10  6.01 10 1.81

 

 

1

 

0

 
I

   

 

  

   



     

    

 

 
 
 
 
 
  

   

    
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Thus, Table 5.7 displayed the approximately 95% confidence interval for the 

parameters , , , and    .  

Table 5.7: Confidence Interval for the model parameters 

CI         

95% (0.238, 0.7426) (36.807, 102.1765) (0.1,  0.7031) (-0.916, 0.7498) 

It can be observed that all the confidence intervals contained their respective 

point estimates. Thus all the estimated parameters of the T-TIGER distribution 

using the Kiamo Blowhole dataset were significant at the 5% significant level. 

Hence the estimated parameters can be relied upon.  

The appropriate distribution was selected using the log-likelihood functions, 

AIC, AICc, HQ, BIC, A*, W* and K-S as explained earlier in the 

methodology. It could be deduced from the Table 5.8 that the T-TIGER model 

provides a better fit than the comparative models. Table 5.8 gives the rest of 

the statistics.  
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Table 5.8:  The negative log-likelihood, information criteria and goodness 

of fit statistics for the Kiamo Blowhole data  

Model -L AIC AICc BIC HQ A* W* K-S 

T-TIGER 291.63 591.26 591.94 599.89 594.67 0.61 0.07 0.08 

ETGR 299.75 607.49 608.17 616.13 610.89 1.29 0.19 0.14 

EWE 293.78 595.56 596.24 604.19 598.96 0.73 0.10 0.11 

TR 306.66 617.31 617.51 621.63 619.01 1.18 0.18 0.26 

GE 295.67 595.33 595.53 599.65 597.03 0.90 0.13 0.12 

GR 299.75 603.49 603.69 607.81 605.19 1.29 0.19 0.14 

R 311.38 624.75 624.82 626.91 625.60 1.29 0.19 0.28 

W 296.91 597.82 598.02 602.14 599.52 1.03 0.15 0.11 

E 299.81 601.63 601.69 603.78 602.48 0.92 0.13 0.17 

 

Figure 5.6 shows the empirical density and the fitted densities of the 

distributions based on the Kiamo Blowhole dataset. The dashed blue density 

represents the T-TIGER model, which best fitted the dataset as compared with 

other competing models. 
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  Figure 5.6: Empirical and densities plots of the fitted models. 

 

The T-TIGER model was also applied to the third dataset as shown in 

Appendix A3. The descriptive summary of the dataset is given in Table 5.9. It 

could be seen that the dataset of the Applied Life Analysis is positively 

skewed with a coefficient of 2.19 and a kurtosis of 4.33. 

Table 5.9: The descriptive summary of the Applied Life Data 

Min 1
st
 Q Median Mean Sd 3

rd
 Q Max Skewness Kurtosis 

0.19 2.97 6.50 14.36 18.88 21.91 72.89 2.19 4.33 

 

The descriptive statistic of the Applied Analysis dataset is further depicts in 

figure 5.7. 
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             Figure 5.7: A graphical summary of the applied life dataset 

Also, in order to determine the shape of the most appropriate hazard function 

for modeling, graphical analysis of the data become more useful.  As shown in 

Figure 5.8, the applied life data set has an increasing failure rate as indicated 

by the TTT transform plot which has a concave shape. 
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                   Figure 5.8: The TTT-transform plot for applied life data   

 

The estimates of the fitted models and their respective standard errors are are 

presented in Table 5.10. The parameters of most of the fitted distributions 

were significant at the 5% significant level. This can be verified by using the 

standard error test which states that for a parameter to be significant at the 5% 

significant level, the standard error should be less than half the parameter 

value. 

For instance, for the T-TIGER model, the parameters for alpha and theta were 

significant at the 10% and 1% significant levels respectively. 
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Table 5.10: The MLE estimates of the applied life data  

Model Estimate Std error z-value P-value 

 

 

T-TIGER 

̂ =0.767 0.1338 5.7364 9.7x10
-9 

 

̂ =38.157 17.522 2.1777 2.9x10
-2

 

̂ =0.795 1.6340 0.4865 6.3x10
-6

 

̂ =0.693 0.2514 2.7578 5.8x10
-3 

 

ETGR 

̂ =0.167 0.1523 1.0959 2.7x10
-1

 

̂ =0.457 0.0503 9.0918 < 2.2x10
-16 

 

̂  =0.012 0.0029 4.0912 4.3x10
-5

 

̂ =2.522 3.0297 0.8325 4.1x10
-1

 

 

TR 

̂ =18.32 2.5868 7.0813 1.4x10
-12 

 

̂ =0.209 1.3278 0.1573 8.7x10
-1

 

R ̂ =16.491 1.8916 8.7179 < 2.2x10
-16 

 

 

Table 5.11 gives the rest of the statistics of the log-likelihood function, AIC, 

AICc, HQ, BIC, A, W* and K-S. It could be deduced from the Table 5.11 that 

the T-TIGER provides a better fit than the competing models. 
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Table 5.11: The negative log-likelihood, information criteria and goodness 

of fit statistics for the applied life dataset 

Model -L AIC AICc BIC HQ A W* K-S 

T-TIGER 67.69 143.38 146.23 147.15 144.02 0.30 0.05 0.13 

ETGR 69.21 146.428 149.48 150.2057 147.81 0.69 0.15 0.45 

TR 88.61 181.23 181.98 183.12 181.55 0.70 0.13 0.53 

R 91.56 185.13 185.36 186.07 185.28 0.75 0.14 0.57 

 

The variance-covariance matrix for the T-TIGER model   using the applied 

life data is given by 

-2 -1 -1 -1

-1 2 2 1

1

-1 2 0 0

-1 1 0 0

 2.32 10  -3.58 10 -2.45 10 -1.66 10

-3.58 10 3.07 10 3.04 10 1.01 10

-2.45 10 3.04 10 2.67 10 1.87 10

-1.66 10 1.01 10 1.87 10 1.76 10

I 

    
 

    
    
 

     

 

The approximately 95% CI for α, θ , λ and γ are presented in Table 5.12 

Table 5.12: Confidence Interval for the model parameters 

CI         

95% (0.000, 0.4653) (3.8141, 72.500) (0,  3.9980) (-1.0, 1.0) 

 

The plots of empirical density and densities of the fitted models are presented 

in Figure 5.9. It can be seen that the T-TIGER model mimic the empirical 

density and CDF of the applied life dataset.  

www.udsspace.uds.edu.gh 

 

 

 

 



 
 

103 
 

 

           Figure 5.9: Plots of empirical and densities of the fitted models 
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5.3 The Application of the T-TIGEW distribution  

In this section the application of the T-TIGEW model was demonstrated using 

real datasets, namely the aircraft windshield failure data set. These dataset is 

represented in Appendix B  

The descriptive summary of the aircraft windshield failure data are represented 

in Table 5.13. It could be observed from the Table 5.13 that the first, second 

and third quantile (Q) of the aircraft windshield data were 1.866, 2.385 and 

3.376 respectively. The minimum and maximum of the aircraft windshield 

data were 0.04 and 4.663 respectively. The average value of the data set was 

2.563. The coefficient of skewness of 0.09 and excess kurtosis was -0.69. 

The descriptive statistic of the windshield failure dataset is further presented in 

figure 5.10. 

Table 5.13: Descriptive statistic of the Aircraft Windshield data 

Min 1
st
 Q Median Mean Sd 3

rd
 Q Max Skewness Kurtosis 

0.040 1.866 2.385 2.563 1.110 3.376 4.663 0.09 -0.69 
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   Figure 5.10: A graphical summary of the windshield failure dataset 

In order to determine the shape of the most appropriate hazard function for 

modeling, graphical analysis of the data become more useful.  As shown in 

Figure 5.11, the aircraft windshield data set has an increasing failure rate as 

indicated by the TTT-transform plot which has a concave shape. 
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                Figure 5.11: The TTT-transform plot for windshield failure data 

The estimated parameters of the fitted models and their respective standard 

errors were presented in Table 5.14. The parameters of most of the fitted 

models were significant at the 5% significant level. This can be verified by 

using the standard error test which states that for a parameter to be significant 

at the 5% significant level, the standard error should be less than half the 

parameter value. 
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Table 5.14: The MLE estimates of the aircraft windshield data  

Model Estimate Std error z-value P-value 

 

 

T-TIGEW 

 

̂ =0.0059 0.0037 1.5807 1.1 x10
-10

 

̂ =4.2792 1.7602 2.4312 1.5 x10
-2

 

̂ =1.0128 0.0973 10.4044 < 2.2 x10
-16

 

̂ =41.961 0.0020 20697 < 2.2 x10
-16

 

̂ =-0.8391 0.2015 -4.1639 3.13 x10
-5

 

TEMW 

  

̂ =65.564 145.52 0.4505 6.5 x10
-1

 

̂ =0.0093 0.0237 0.3904 6.9 x10
-1

 

̂ =0.0042 0.0113 0.3573 7.2 x10
-1

 

̂ =2.5958 2.1721 1.1951 2.3 x10
-1

 

̂ =-0.7144 0.2245 -3.1814 1.5 x10
-3

 

TIGEW 

̂ =0.0229 0.0111 2.0562 3.9 x10
-2

 

̂ =4.1659 1.5650 2.6619 7.8 x10
-3

 

̂ =0.0043 0.0106 0.4047 6.9 x10
-1

 

̂ =16.9747 0.0752 225.8121 < 2.2 x10
-16

 

 

TW 

 

̂ =1.9713 0.2541 7.7572 8.7 x10
-15

 

̂ =0.1759 0.0669 2.6304 8.5x10
-3

 

̂ =-0.6599 0.2599 -2.5389 1.1x10
-1
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Table 5.14: The MLE estimates of the aircraft windshield data (cont’d)  

Model Estimate Std error z-value P-value 

WFr 

  

̂ =0.0866 2.76 x10
-2

 3.1401 1.6x10
-2

 

̂ =0.0871 7.50 x10
-3

 11.5555 < 2.2x10
-16

 

̂ =5.2134 1.7x10
-4

 3.01x10
4
 < 2.2x10

-16
 

̂ =19.043 5.48x10
-4

 3.54x10
4
 < 2.2x10

-16
 

 

W 

̂ =2.3932 2.10 x10
-1

 11.3887 < 2.2x10
-16

 

̂ =0.0803 2.22 x10
-2

 3.6162 2.9 x10
-4

 

E ̂ =0.3902 4.23 x10
-2

 9.2195 <2.2x10
-16

 

 

The performance of the T-TIGEW model was compared with different models 

using the log-likelihood functions .AIC, AICc, HQ, BIC, A*, W* and K-S.  

Table 5.15 gives the rest of the statistics. It could be deduced from the Table 

5.15 that the T-TIGEW model provides a better fit compared with the 

competing models. 
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Table 5.15: The negative log-likelihood, information criteria and goodness 

of fit statistics for the Aircraft windshield failure data 

Model -L AIC AICc BIC HQ A* W* K-S 

T-TIGEW 128.18 266.36 267.12 278.58 271.28 0.64 0.039 0.008 

TIGEW 133.97 276.94 286.44 297.71 291.87 0.86 0.097 0.074 

TEMW 131.77 273.54 274.29 285.75 278.45 0.66 0.057 0.069 

WFr 131.96 271.92 272.42 281.69 275.85 0.69 0.064 0.060 

TW 130.35 276.70 276.99 279.03 279.65 0.92 0.048 0.058 

W 131.29 276.58 276.72 281.46 286.54 0.86 0.058 0.054 

E 164.99 331.98 332.02 334.42 332.96 1.34 0.167 0.303 

 

The Hessian matrix for the estimates of T-TIGEW model is given by 

5  3 5 6 4

3 0 0 3 2

5 2 4 5 4

6 3 5 6 4

1

1.37 10 6.17 10 4.01 10 7.08 10 3.57 10

6.17 10 3.10 10 0.02 10 3.60 10 9.14 10

4.01 10 2.00 10 1.28 10 2.29 10 6.12 10

7.08 10 3.60 10 2.29 10 4.11 10   1.00 10

3.5

 

7 1

I

    

  

    

  



 



      

      

      

       

 4 2 4 4 20 9.14 10 6.12 10   1.00 10  4.06 10    

 
 


    


 
 
 
 
 

 

The approximate 95% CI for , , , , and     are given in Table 5.16.  

Table 5.16: Confidence Interval for the model parameters 

CI           

95% (0.01,0.13) (0.83, 7.73) (0.01, 1.98 (41.94, 41.98) (-1.0, -0.44) 

 

It can be observed that all the confidence intervals contained their respective 

point estimates, which indicating that some parameters of the T-TIGEW 
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model were significant at 5% significance level. The plots of empirical density 

and densities of the fitted model are presented in Figure 5.12.  

 

          Figure 5.12: Plots of empirical and densities of the fitted models 
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5.4 The Application of the T-TIGEFr Distribution 

This section presents the application of the T-TIGEFr model. The rainfall 

datasets (Appendix C1) was used to evaluate the performance of the proposed 

model. The descriptive summary of the data is shown in Table 5.17. 

Table 5.17:   Descriptive statistic of the rainfall data 

Min 1
st
 Q Median Mean Sd 3

rd
 Q Max Skewness Kurtosis 

 20.7        101.6 131.6 144.6 66.18 165.5 354.7 0.93 0.73 

  

 

            Figure 5.13: A graphical summary of the rainfall data 
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In order to determine the shape of the most appropriate hazard function for 

modeling, graphical analysis of the data become more useful.  In this context, 

the TTT-transform plot is very useful. As shown in Figure 5.23, the data set 

illustrated by the TTT-transform plot has a concave shape which provides 

evidence that the data set an increasing failure rate as indicated by the TTT- 

transform plot which has a concave shape. 

 

               Figure 5.14: The TTT-transform plot for rainfall dataset 

 

The Table 5.18 presents the estimated parameters of the fitted distributions 

with their respective standard errors were estimated by maximum likelihood. 

The parameters of most of the fitted distributions were significant at the 5% 

significant level. This can be verified by using the standard error test which 

states that for a parameter to be significant at the 5% significant level, the 

standard error should be less than half the parameter value. 
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Table 5.18. The MLE estimates of parameters of the rainfall data 

Model Estimate Std error z-value P-value 

 

 

T-TIGEFr 

 

̂ =0.3761 7.90 x10
0
 0.0476 9.6 x10

-11
 

̂ =1.833 1.13 x10
-1

 16.1132   <2.0x10
-16

 

̂ =0.5980 8.79 x10
-3

 67.9953  < 2.2 x10
-16

 

̂ =141.247  1.67 x10
2
 0.8475  3.9 x10

-11
  

̂ =-0.8725 9.07 x10
-2

  -9.6189   <2.0 x10
-16

 

 

 

 

GTFr 

̂ =1.65038 1.03 x10
-1

 15.9941 < 2.2 x10
-16

 

̂ =41.0956 1.08 x10
1
  3.7936  1.5 x10

-4
 

̂ =48.5427 9.17 x10
1
 5.2916  1.2 x10

-7
 

̂ =0.0011 3.75 x10
-1

 0.0003 9.9 x10
-1

 

̂ =8.3270 9.59 x10
1
  0.0867 9.3 x10

-1
 

 

Fr 

̂ =1.6497 1.03 x10
-1

 15.995 < 2.2 x10
-16 

 

̂ =99.934 6.29 x10
2
 15.881 < 2.2 x10

-16
 

E ̂ =0.0069 6.70 x10
-4

 10.247  < 2.2 x10
-16

 

 

Table 5.19 gives the statistics of log-likelihood function, AIC, AICc, HQ, 

BIC, A*, W* and K-S. It could be deduced from the Table 5.22 that the         

T-TIGEFr provides a better fit than the competing models. 

 

 

 

www.udsspace.uds.edu.gh 

 

 

 

 



 
 

114 
 

Table 5.19: The negative log-likelihood, information criteria and goodness 

of fit statistics for the Rainfall dataset 

Model -L AIC AICc BIC HQ A* W* K-S 

T-TIGEFr 602.6 1215.1 1215.7 1228.4 1220.5 3.4 0.59 0.13 

GTFr 608.6 1227.2 1227.8 1240.5 1232.6 4.1 0.71 0.15 

Fr 608.6 1221.2 1221.3 1226.5 1223.4 4.1 0.71 0.15 

E 627.3 1256.5 1256.5 1259.2 1257.6 0.9 0.75 0.30 

 

The inverse Hessian matrix for the estimates of the T-TIGEFr model using the 

Rainfall dataset is given by 

1 3 2 1 5

3 2 2 0 4

1 2 2 3 2 4

1 0 2 4

6.245 10 -1.055 10 -7.574 10 -2.532 10  3.008 10

-1.055 10 1.280 10 3.514 10  3.310 10 -2.369 10

-7.574 10 3.514 10  9.214 10 -5.455 10 -8.577 10

-2.532 10  3.310 10 -5.455 10 2.778 10  5.

I

 

   

  

    

    

     

    1

5 4 4 1 3

820 10

 3.008 10 -2.369 10 -8.577 10  5.820 10  8.227 10



    

 
 
 
 
 

 
      

 

The approximate 95%  CI for the , , , , and     are represented in Table 

5.20. 

Table 5.20: Confidence Interval for the model parameters 

CI           

95% (0, 5.274) (1.602, 2.045) (0, 19.64) (148.54,  341.61) (-0.93, 0.238) 
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It can be observed that all the confidence intervals contained their respective 

point estimates. The plots of empirical and densities of the fitted models are 

presented in Figure 5.24 

 

            Figure 5.15: Plots of empirical and densities of the fitted model                          

The second dataset used to assess the flexibility of the T-TIGEFr model is the 

breaking strength dataset. This is uncensored data set from the work of 

Nichols and Padgett (2006) and displayed in Appendix C2. This dataset is 

recently used by Mahmoud and Mandouh (2013). 

The descriptive statistics of the breaking stress of carbon fibers dataset is 

presented in Table 5.21, and it could be observed that the first, second and 
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third quantile of the Breaking stress dataset are respectively 1.302, 1.544 and 

1.814. The minimum and maximum of breaking stress of carbon fibers dataset 

are 0.920 and 5.306 respectively. The average value of the data set is 1.658. 

The coefficient of skewness of 3.13 and excess kurtosis was 14.08.  

Table 5.21: Descriptive statistic of the breaking stress data 

Min 1
st
 Q Median Mean Sd  3

rd
 Q Max Skewness Kurtosis 

0.920          1.302 1.544 1.658 0.6 1.814 5.306 3.13 14.08 

  

Further descriptive of the Breaking stress of carbon fibers dataset is presented 

in Figure 5.25 

 

    Figure 5.16: A graphical summary of the breaking stress data  
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Figure 5.17 represented the breaking stress of carbon fibers dataset which was 

illustrated by the TTT transform plot and has a concave shape which provides 

evidence that the data set an increasing failure rate as indicated by the TTT 

transform plot which has a concave shape. 

 

          Figure 5.17: The TTT-transform plot for breaking stress data 

The Table 5.22 presents the maximum likelihood estimates of the fitted 

models. All the estimates are significant at the five per cent (5%) significant 

level, except that of the parameter α. 
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Table 5.22. The MLE estimates of the breaking stress dataset 

Model Estimate Stand error z-value P-value 

 

 

T-TIGEFr 

 

̂ =0.7692 2.67x10
0
 0.2879 7.7 x10

-6
 

̂ =3.2186 3.8210
-1

 8.4325 < 2.2 x10
-16

 

̂ =0.0519 7.30 x10
-3

 7.1440 9.1x10
-13

  

ˆ 0. 2801   
1.9 x10

-3
  6.7433  1.5x10

-11
  

̂ =0.8819 0.1.6210
-1

 5.4277 5.7 x10
-8

 

 

 

EGFr 

̂ =2.1706 2.6310
0
 0.8238 4.1 x10

-1
 

̂ =4.4313 1.8510
1
 0.2364 8.1 x10

-1
 

̂ =1.1957 8.8810
-1

 1.3469 1.8 x10
-1

 

̂ =2.5505 2.8210
0
 0.9034 3.7 x10

-1
 

 

BXFr 

̂ =0.1091 2.00 x10
-2

 5.4485 5.1 x10
-8

 

̂ =0.0373 2.60 x10
-2

 1.4225  < 2.2 x10
-16

 

̂ =9.7962 3.20 x10
-5

 3.0 x10
6
 < 2.2 x10

-16
 

 

 

TFr 

̂ =4.7123 3.6610
-1

 12.883 < 2.0 x10
-16

 

̂ =1.2656 5.7910
-2

 21.8705 < 2.0 x10
-16

 

̂ =-0.7169 2.6110
-1

  -2.7445 6.1 x10
-3

   

 

Fr 

̂ =4.3726 3.2810
-1

 13.34  < 2.2 x10
-16

 

̂ =1.3968 3.3710
-2

 41.45 < 2.2 x10
-16

 

E ̂ =0.6032 6.0310
-2

 10.0000 < 2.2 x10
-16

 

R ̂ =1.2458 6.2310
-2

 20.0000 < 2.2 x10
-16
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The model selection was carried out to determine the most appropriate model. 

The test statistic of log-likelihood, AIC, AICc, BIC, HIQ, A*, W* and  K-S were 

used.   It could be deduced from the Table 5.23 that the T-TIGEFr model exhibits 

a better fit in modeling the breaking stress data compared with its competing 

distributions.  

Table 5.23: The negative log-likelihood, information criteria and goodness 

of fit statistics for the Breaking Stress dataset  

Model -L AIC AICc BIC HQ A* W* K-S 

T-TIGEF 51.250 105.010 109.648 118.036 114.282 0.4173 0.0593 0.0616 

EGFr 52.889 113.779 114.201 124.201 117.997 0.6091 0.0799 0.0755 

WFr 51.609 111.218 111.639 121.639 115.435 0.4507 0.0627 0.0657 

BXFr 55.269 116.537 116.787 124.353 119.701 0.8426 0.1039 0.0833 

TFr 52.699 111.398 111.648 119.214 114.562 0.6209 0.0871 0.0782 

Fr 53.692 111.383 111.507 116.593 113.492 0.7658 0.1090 0.0875 

E 150.55 303.103 303.144 305.708 304.157 2.6556 0.3811 0.4439 

R 102.61 207.220 207.261 209.825 208.275 4.0769 0.6237 0.3019 

 The variance-covariance matrix for the estimates of the T-TIGEFr model 

using the breaking stress dataset is given by 

1 2 1 1 2

2 1 2 1 2

1 1 2 1 1 3

1 1 1 3 1

2 2 3

7.1 -5.7 -1.7 -1.3  1.1

-5.7  1.5 -1.8 8.7 -4.2

-1.7 -1.8

  10 10 10 10 10

10 10 10 10 10

10 10 10 10 10

10 10 10

4.4 -8.4 1.1

-1.3 8.7 -8.4 2.2 -1.4

1.1 -4.2

10 10

10 10 11.1 -1.0 104

I
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The approximate 95% CI for , , , , and     are displayed in Table 5.24.  
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Table 5.24: Confidence Interval for the model parameters 

CI           

95% (0, 6.001) (2.47, 3.967) (0, 1.903) (0,  121.72) (0.564, 1.00) 

 

Figure 5.18 shows the empirical density and the fitted densities of the 

distributions. 

 

         Figure 5.18: Empirical and densities plots of the fitted 
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5.5 The Application of the T-TIGEEE Distribution 

The T-TIGEEE model was subjected to the fibre strength dataset as 

represented in Appendix D. This dataset was taken from the work of Selim 

and Badar (2016). The data was first considered by Badar and Priest (1982).       

The descriptive summary of the dataset is given in Table 5.25. It could be seen 

that the dataset of the Fibre Strength is positively skewed with a coefficient of 

0.62 and a kurtosis value of 0.18. 

Table 5.25: Descriptive statistic of the fibre strength data 

  

The descriptive statistics of the dataset is further displayed in Figure 5.19. 

 

        Figure 5.19: A graphical summary of the fibre strength data 

Min 1
st
 Q Median Mean Sd 3

rd
 Q Max Skewness Kurtosis 

1.90 2.55 2.99 3.06 0.62 3.421 5.02 0.62 0.18 
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The TTT-transform plot which is displayed in Figure 5.20 revealed that the 

Machine data set has an increasing failure rate since the TTT-transform plot in 

the Figure 5.20 which has a convex shape 

 

               Figure 5.20: The TTT-transform plot for fibre strength data 

The maximum likelihood estimates, standard errors of the estimate for the 

parameters of the T-TIGEEE model and the competitive models using the 

fibre strength dataset are represented in Table 5.26.  
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Table 5.26: The MLE estimates of models using  the fibre strength data 

Model Estimate Std error z-value P-value 

 

 

T-TIGEEE 

̂ =5.41 0.003 1.90x10
3
 < 2.0x10

-16
 

̂ =1.18 47.12 0.0251 9.8 x 10
-10

 

̂ =1.99  0.27 7.3744 1.6 x 10
-13

 

̂ =23.52 108.15 0.2175 8.3 x 10
-16

 

̂ =0.832 0.148 5.621x10
1
  < 2.2x10

-16
  

 

 

     GTFr 

̂ =5.43 0.51 10.6999 < 2.2 x 10
-16

 

̂ =30.92 0.83 37.4304 < 2.2x10
-16

  

̂ =7.45 3.42  2.1758   2.9 x 10
-2

 

̂ =0.09 0.02 4.4485 8.6 x 10
-6

 

̂ -3.7x10
-4

 5.36   -0.0001  9.9 x 10
-1

 

 

       EE 

̂ =2.1x10
3
 9.0x10

6
 2.3x10

8
  < 2.2x10

-16
  

̂ =-0.29 0.69 -0.4258 6.7 x 10
-1

 

       E ̂ =3.2x10
-1

 4.0x10
-2

 7.9373   2.0x10
-15

 

 

The model selection was performed using the log-likelihood function, AIC, 

AICc, HQ, BIC, A*, W* and K-S statistics. It could be deduced from the 

Table 5.27 that the T-TIGEEE model with respect to the given data set 

provides a better fit than the comparative models.  
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    Table 5.27: The negative log-likelihood, information criteria and 

goodness of fit statistics for the Fibre   Strength data 

Model -L AIC AICc BIC HQ A* W* K-S 

T-TIGEEE 56.44 122.88 123.93 133.60 127.09 0.35 0.07 0.086 

GTFr 58.90 127.80 128.62 138.52 133.47 0.39 0.09 0.13 

EE 65.44 134.87 135.07 139.16 136.56 0.51 0.09 0.21 

E 133.45 268.89 268.96 271.03 269.73 0.37 0.06 0.49 

 

Figure 5.21 displayed the plots of empirical density and densities of the fitted 

models using the Fibre dataset 

 

Figure 5.21: Empirical and densities plots of the fitted models  
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CHAPTER SIX 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

6.1 Introduction 

This chapter presents the summary, conclusions and recommendations of the 

study in three different sections. 

6.2 Summary 

The lack of flexibility and tractability was identified in literature and the main 

objective of this study was to develop the Transmuted Type I General 

Exponential family of distributions to correct it. The relevant literature 

underpin this study were reviewed. Two different generators were 

compounded to develop the T-TIGE family. All the stated objectives of this 

study were successfully achieved. The results of this study were presented in 

two different fronts, namely theoretical and empirical fronts. Theoretical 

results include the development of the T-TIGE generator.  Five special models 

were derived from the T-TIGE generator. The maximum likelihood estimators 

were developed for the unknown parameters of the T-TIGE family.  The 

statistical properties of the T-TIGE family were derived. The behaviour of the 

estimators were examined using the Monte Carlo Simulation technique. 

Results from the empirical perspective clearly indicate the usefulness of the 

special models of the T-TIGE family when applied to different real datasets. 
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6.3 Conclusions 

The deficiency in the work of Hamedani et al. (2018) was corrected by the 

development of the T-TIGE generator. Skewness has been induced into the 

work of Hamedani et al. (2018) by adding a transmutation parameter. Clearly, 

this brings a new application of theory and empirical tools for data analyses 

onto the existing body of literature.   

The statistical properties were derived and the maximum likelihood estimation 

technique was employed to develop the estimators of the parameters of         

T-TIGE family. These new statistical properties and the estimators derived are 

very important in statistical analyses and inferences.  

The Monte Carlo Simulation was conducted to examine the estimators and it 

was concluded these estimators are stable and close to their true values. It can 

therefore be concluded the estimation technique used was appropriate. 

This study generalized five new special models using the proposed generator.  

From the results of the this study, it was concluded that the proposed T-TIGE 

generator possesses bath-tub shaped curves, which serves the practical needs 

of for studying the monotone hazard rates and fitness of the parameters.  

The usefulness and dynamism of the special models were demonstrated. From 

the results, it was found that the new special models of the T-TIGE family 

performed better than their competing models. It was therefore concluded that 

the ideas that originally motivated for this study  indeed has its justification 

because the special models of the proposed generator have better fit and 

minimal loss of information with the different types of real datasets in 

modeling.   

www.udsspace.uds.edu.gh 

 

 

 

 



 
 

127 
 

6.4 Recommendations 

Based on the results from this study, the following are recommended: 

 It is recommended that the T-TIGE family of distributions can be 

relied upon to model sets of given data.  

 This study used the QRTM to generalize the TIGE class of 

distributions. It is recommended that other generalized families of 

distributions which should be different from QRTM can be used to 

generalize the work of Hamedani et al. (2018). 

 The study uses the maximum likelihood method in estimating the 

parameters. It is recommended that further work consider more detail 

comparisons by using Bayesian estimation paradigm, in a future study. 

 Five (5) special models were generalized using the T-TIGE generator, 

it is recommended that many more models be transformed using the 

proposed T-TIGE generator in further studies. This will therefore bring 

more innovations in addition to the existing models. 

 This study focuses on univariate continuous distributions; it may be 

appropriate for a further study in terms of its extension to a bivariate 

models and subsequently multivariate set-up. This study therefore 

recommends bivariate extensions of the proposed generator. For 

instance, a parametric regression models may be developed to study 

the relationship between an output and input variables. 

 Furthermore, this study recommends an analysis of the behaviour of 

the T-TIGE generator in the presence of censored data or observations, 

given the fact that the special models of the T-TIGE generator used 

uncensored data to demonstrate the flexibility of the T-TIGE family.  
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 From the finding of this study, it was established that the special 

models of the proposed T-TIGE family of distributions performed 

better than the competing models. It is therefore recommended that 

these special models of the proposed generator can be used as standard 

models to estimate a model that represents real life phenomenon when 

samples have different shapes and tails.  

It is expected that this study will serve as a reference and help to advance 

future research in the area of applied statistics and other related disciplines. 
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APPENDICES 

Appendix A1: The tax revenue data and the application of the T-TIGER  

model 

 

The Appendix A1 represents the first dataset known as the Tax Revenue data 

that was used to demonstrate the application of the T-TIGER distribution of 

the proposed generator. 

Appendix A1: Tax Revenue Data 

5.9 20.4 14.9 16.2 17.2 7.8 6.1 9.2 

13.3 8.5 21.6 18.5 5.1 6.7 17.0 8.60 

35.7 15.7 9.7 10.0 4.1 36 8.5 8.0 

21.9 16.7 21.3 35.4 14.3 8.5 10.6 19.1 

7.7 18.1 16.5 11.9 7.0 8.6 12.5 10.3 

8.4 11 11.6 11.9 5.2 6.8 8.9 7.1 

10.2 9.70 9.2 20.5 11.2 10.8 9.6 39.2 

26.2 7.1 6.1      

         Sources: (Nassar and Nada 2011; Klakattawi, 2019). 
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Appendix A2: The Kiamo dataset and the application of the T-TIGER  

model 

This represents the second dataset known as the Kiamo Blowhole data that 

was used to demonstrate the application of the T-TIGER distribution of the 

proposed generator.  

Appendix A2: Kiamo Blowhole data 

83 51 87 60 28 95 8 27 

15 10 18 16 29 54 91 8 

17 55 10 35 47 77 36 17 

21 36 18 40 10 7 34 27 

28 56 8 25 68 146 89 18 

73 69 9 37 10 82 29 8 

60 61 61 18 169 25 8 26 

11 83 11 42 17 14 9 12 

Source: Pinho et al. (2012) 
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Appendix A3: The dataset and the application of the T-TIGER  

distribution  

This represents the third dataset known as the Applied Life Analysis data that 

was used to demonstrate the application of the T-TIGER distribution of the 

proposed generator.  

Appendix A3: Applied Life Analysis Data 

0.96 4.15 0.19 0.78 8.01 31.75 7.35 

32.52 3.16 4.85 2.78 4.67 1.31 12.06 

6.50 36.71 8.27 72.89 33.91   

Sources: (Abbas and Tang, 2015; Nelson, 1982). 
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Appendix B: The Aircraft windshield failure rate  dataset and the 

application of the T-TIGEW  

 

This represents the fourth dataset known as the Aircraft windshield failure rate 

data that was used to demonstrate the application of the T-TIGEW model of 

the proposed generator.  

Appendix B: Aircraft windshield failure rate data 

 

Sources:(Nasir et al.2019; Tahir et al.2015; Ramos et al. 2013; Murthy et al. 

2004) 

 

 

0.040 1.866 2.385 3.443 0.301 1.876 2.481 3.467 0.309 1.899 

0.557 1.911 2.625 3.578 0.943 1.912 2.632 3.595 1.070 1.914 

1.124 1.981 2.661 3.779 1.248 2.010 2.688 3.924 1.281 2.038 

4.035 1.281 2.085 2.890 4.121 1.303 2.089 2.902 4.167 1.432 

4.240 1.480 2.135 2.962 4.255 1.505 2.154 2.964 4.278 1.506 

4.305 1.568 2.194 3.103 4.376 1.615 2.223 3.114 4.449 1.619 

4.485 1.652 2.229 3.166 4.570 1.652 2.300 3.344 4.602 1.757 

4.663 2.610 3.478 2.646 3.699 2.820 3.000 2.097 2.934 2.190 

3.000 2.224 3.117 2.324 3.376      

www.udsspace.uds.edu.gh 

 

 

 

 



 
 

155 
 

Appendix C1: The rainfall dataset and the application of the T-TIGEFr 

distribution 

This represents the fifth dataset known as the rainfall dataset. This dataset was 

used to demonstrate the application of the T-TIGEFr distribution of the 

proposed generator.  

Appendix C1:  Rainfall Dataset 

Source: Mansoor et al (2016). 

 

 

24.8 140.9 54.1 153.5 47.9 165.5 68.5 153.1 

87.6 150.6 147.9 354.7 128.5 150.4 119.2 69.7 

121.7 99.3 126.9 150.1 149.1 143 125.2 97.2 

101 89.8 54.6 283.9 94.3 165.4 48.3 69.2 

159.4 114.9 58.5 76.6 20.7 107.1 244.5 126 

153.2 145.3 101.9 135.3 103.1 74.7 174 126 

96.2 149.3 122.3 164.8 188.6 273.2 273.2 61.2 

96.2 155.8 194.6 92 131 137 106.8 131.6 

147.8 294.6 101.6 103.1 247.5 140.2 153.3 91.8 

168.6 127.7 332.8 261.6 122.9 273.4 178 177 

241 76 127.5 190 259.5 301.5 268.2 124.5 

254.7 175.3 185.1 153.4 179.3 125.8 147.1 114.2 

122.2 219.9 144.9 226.3 84.3 130.5 79.4 149.2 

108.5 115 241 76 127.5 190 259.5 301.5 
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Appendix C2: The breaking strength dataset and  the application of the 

T-TIGEFr model 

This represents the sixth dataset known as the breaking strength dataset. This 

dataset was used to demonstrate the application of the T-TIGEFr distribution 

of the proposed generator.  

Appendix C2: Breaking Stress dataset 

0.92 0.928 0.997 0.9971 1.061 1.117 1.162 1.183 1.187 1.192 

1.196 1.213 1.215 1.2199 1.22, 1.224 1.225, 1.228 1.237 1.24  

1.244 1.259 1.261 1.263 1.276 1.31 1.321 1.329 1.331 1.337 

1.351 1.359 1.388 1.408 1.449 1.4497 1.45 1.459 1.471 1.475 

1.477 1.48 1.489 1.501 1.507 1.515 1.53 1.5304 1.533 1.544  

1.5443 1.552 1.556 1.562 1.566 1.585 1.586 1.599 1.602  1.614 

1.616 1.617 1.628 1.684 1.711 1.718 1.733 1.738 1.743  1.759 

1.777 1.794 1.799 1.806 1.814 1.816 1.828 1.83 1.884  1.892 

1.944 1.972 1.984 1.987 2.02 2.0304 2.029 2.035 2.037 2.043 

2.046 2.059 2.111 2.165 2.686 2.778 2.972 3.504 3.863 5.306 

Sources: Mahmoud and Mandouh (2013) 
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Appendix D: The fibre strength dataset and application of the T-TIGEEE 

distribution 

This represents the sixth dataset known as the breaking strength dataset. This 

dataset was used to demonstrate the application of the T-TIGEEE model of the 

proposed generator.  

       Appendix D:  Fibre Strength Data 

1.901 2.132 2.203 2.228 2.257 2.350 2.361 2.396 

2.454 2.474 2.518 2.522 2.525 2.532 2.575 2.614 

2.624 2.659 2.675 2.738 2.740 2.856 2.917 2.928 

2.977 2.996 3.030 3.125 3.139 3.145 3.220 3.223 

3.264 3.272 3.294 3.332 3.346 3.377 3.408 3.435 

3.537 3.554 3.562 3.628 3.852 3.871 3.886 3.971 

4.225 4.395 5.020 2.397 2.445 2.616 2.618 2.937 

2.937 3.235 3.243 3.493 3.501 4.024 4.027  

      Source: (Selim and Badr ,2016; Badar and Priest, 1982) 
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