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ABSTRACT 

With the advent of climate change, it is important to predict the effect it has on the 

potential distribution of species in order to identify those that are vulnerable for 

planning conservation strategies. This study was carried out to predict the effect of 

2080 climate change on the potential distribution of Parkia biglobosa. A factorial 

combination of three resolutions (2.5, 5 and 10 arc-minutes; retrieved from 

WorldClim database) and eight sample sizes (5, 10, 25, 50, 75, 150, 200 and 305) 

were sampled from Parkia biglobosa location data retrieved from Global 

Biodiversity Information Facility (GBIF) and modelled using MaxEnt (version 

3.4.4). All 19 bioclimatic variables in addition to four soil layers (retrieved from 

Harmonized World Soil Databases (version 1.2)) were used for the modelling with 

15 replications. A virtual species model was also ran based on the mean annual 

rainfall (mm) and mean annual temperature (℃) of the GBIF data on the software 

“Virtualspecies”. Models were evaluated using Area Under Curve (AUC), True 

Skill Statistic (TSS) and Kappa Statistic. Jaccard Similarity Index was also 

calculated between the predicted ranges and the true range for the virtual species. 

Results indicate that Parkia biglobosa has the potential to expand its present range 

by about 110% in the future 2080. Small sample sizes (<50) predicted imprecise 

ranges and also were less accurate in terms of evaluation statistics than larger 

sample sizes (≥50). The effect of resolution largely depended on sample size. 

Comparison between evaluation statistics and Jaccard Similarity Index suggests 

that evaluation statistics may not reflect accuracy of range prediction. It is 

concluded that, human assisted dispersal may be necessary to aid Parkia biglobosa 

to achieve its future potential. 
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CHPATER ONE 

INTRODUCTION 

1.1 Background 

Climate change and land-use change have become very important issues for 

especially scientific bodies including the Intergovernmental Panel on Climate 

Change (IPCC) (Odoemene, 2017). This is not because only humans are vulnerable 

but also importantly, the dramatic impact it is having on all biological communities 

and ecosystems. The IPCC’s  special report 2019 (Odoemene, 2017) on climate 

change, desertification, land degradation, sustainable land management, food 

security, and greenhouse gas fluxes in terrestrial ecosystems indicates that 

observed warming from the preindustrial era has resulted in increased frequencies, 

intensity and duration of events surrounding heat weaves in many areas. 

Climate is defined as the conditions of the atmosphere for a particular region or 

location over time. It is usually considered as the long-term summation of 

atmospheric variables which in a short-term period is regarded as the weather. 

These variables include temperature, wind, humidity, precipitation, atmospheric 

pressure and solar radiation (https://www.britannica.com/science/climate-

meteorology) (Retrieved on the 8th April, 2020). Climate is also regarded as the 

overall effect of weather and atmospheric conditions over a number of years for a 

given area or location. Climate includes both the average values of the climatic 

elements that existed in the past, likewise their extreme ranges and variability and 

the number of times of various occurrences 

(https://www.britannica.com/science/climate-meteorology). (Retrieved on the 8th 

April, 2020) 
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 Climate, can be referred to as a description which considers averages and 

variability, of relevant quantities of surface variables for example temperature, 

precipitation, and wind, over a duration starting from months to many (thousands 

or millions of) years (Browne, 2011). In practice, 30 years is an acceptable 

standard normal period defined by World Meteorological Organization to define 

and describe the climate (Browne, 2011). These 30 years was selected as a duration 

long enough to get rid of variations that have accumulated from year-to-year for 

description or application of the climate for specific regions or general (Browne, 

2011). 

Patterns in climate features have drifted over the past centuries and the effect of 

climate change is already happening. Africa is among the most vulnerable 

continents facing significant effect of climate change (Kurukulasuriya et al., 2006). 

Climate conditions over the years have had significant impacts on growth and 

distribution of plant species (Kotir, 2011). There is also much and continuous 

observable evidence showing the biosphere has and is reacting to current rapid 

warming with changing genetic population structure, species distributions, shifting 

phenology and vegetation dynamics (Franklin et al., 2016). 

A UN report (May 6, 2019) states that more than a million species of plants and 

animals are in danger of extinction with severe implications on the human planet in 

the next future as a result of climate change, exacerbated by human activities. The 

Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem 

Services went on to say that, all humans will suffer the consequences (Fears, 

2019). Climate change has already and immediately caused species distribution 
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shifts (including plants) across the globe. The negative effect of climate change 

threatens food systems and security, reduction in agriculture productivity and 

yields, and extinction of some crops (plants) (Kurukulasuriya et al., 2006); it 

affects the crust of the world’s economy, health and livelihood (Fears, 2019). 

The impact of climate change is  suggested to be spatially variable (Thornton et al., 

2008). With continuous land use for human livelihood especially through 

agriculture together with growing population, large regional variations of changes 

have contributed to net increase in greenhouse gas emissions, decline in 

biodiversity and loss of natural ecosystem (Odoemene, 2017). It is expected that, 

the greenhouse gas emissions will bring a significant effect to increase in global 

average temperature, resulting in increases in rainfall in certain regions of the 

globe, possibly causing floods as reported by Klutse et al., (2016), which are likely 

to affect the growth, production, and distribution of indigenous  fruit trees species 

in Africa. The variation in rainfall pattern therefore is projected to have significant 

impact on agriculture and the local economy of people in many regions (Klutse et 

al., 2016). Rainfall is a major determining factor that influences crop choice and 

yield, as well, contribute to success of livelihood and other socio-economic 

activities in West Africa. Kotir, (2011) identified that the variability in rainfall (a 

climatic factor) onset, the period it stops and duration affect dates of planting 

(sowing), crop growth, yield and food production.  

Bioclimatic variables such as temperature and precipitation have varying effects on 

the tree crops. For example, Olajuyigbe et al., (2013) report that the growth rate of 

Diospyros mespiliformis decreased with decreasing watering frequency in a study, 

www.udsspace.uds.edu.gh 

 

 



 

 

4 

 

and concluded that since the plant was able to survive the stressed water regime, it 

is able to survive in the savannah, and evidence of the impact water (rainfall) has 

on the development of plants. This did not take into consideration the changes and 

effects of other bioclimatic factors such as the temperature, the unexpected 

cessation of rains and the cooling effects of the atmosphere. 

Some authors lament the deficit of work done to enable scientists to accurately 

predict what types of species are most threatened with extinction resulting from 

climate change (Kelly et al., 2014). To make informed choices and provide more 

precise strategies towards mitigating the effect (negative) of climate change, many 

studies have tried to investigate the impact of climate change and suggested ways 

to enhance mitigation actions in various ways. For example, Klutse et al., (2016) 

indicated, there were changes in extreme events including heat waves, droughts, 

floods, and many more combined with existing happenings capable of potential 

displacement of sensitive populations, crop failure or yield reduction, food 

insecurity, and water scarcity. They mentioned that “much burden is therefore 

placed on the lives and livelihoods of a region (Africa) already plagued with latent 

adaptive potential. 

Again, on the potential consequence of 1.5℃ and 2.0℃ global warming on 

continuous dry and wet days throughout the West African region, results indicated 

a consistent changed pattern in temperature and rainfall across many regions of 

West Africa. Diasso et al., (2018) reported that, it is significant not to 

underestimate an increase of 0.5 ℃ rise in the global average which consequently 

leads to enhanced warming of up to 1.0℃ in some parts of Africa. The projected 
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increase in the continuous dry days may negatively influence the future yield of 

crops which may result in increasing the danger of crop production and food 

security in the region (West Africa). These and many other studies give relevance 

to conservation planning to mitigate climate change. 

Predicting to what extent species’ distributions respond to variations in climate 

often uses one of a suitable methodologies at different times called Species’ 

Distribution Modelling (SDMs), Habitat Modelling, or Ecological Niche 

Modelling (ENM) (Miller et al., 2007; Shabani et al., 2018). 

Species distribution modelling, (SDM) make use of digital maps of the 

environmental variables, and spatial information on the vegetation 

factors/characteristics of interest (Franklin et al., 2017; Miller et al., 2007), species, 

type, abundance, usually from a sample of locations. These distributive models are 

produced using conventional statistical methods which are based on assumptions 

that, distribution of the vegetation is random and, hence, every observation is 

independent (Miller et al., 2007). 

The standard definition of climate helps in describing the climate and makes it easy 

to be used as a base for which present conditions can be compared. 

Although a combination of different techniques are important for global forecast, 

region-specific investigations that consider different factors of global change 

drivers may bring more insight on various interactions among drivers Kotir, 

(2011); Sylla et al., (2018), example, land-use change and fire, that are not easily 
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accessible and accounted for at the global scale. Regional synthesis across the 

globe can yield very relevant insights into the causes of vegetation changes. 

Understanding important variables that affect the growth and distribution of Parkia 

biglobosa in Africa is relevant since it will inform conservationists on the 

appropriate strategies to employ in conserving the species where the need arises. 

The relevance for studying this species is also because of the economic benefit the 

tree species gives to the people living in the geographical area it is distributed. For 

example, the matured beans are consumed as a dessert by many in the north of 

Ghana. Though it is a non-timber tree crop, dry branches are harvested and used as 

fuel wood domestically. It is also of great importance in the traditional 

pharmacology of people in most communities where it is located, it provides 

protein in diets as well, serve as feed supplement for farm animals like pigs among 

others. 

To effectively predict the species’ distribution, representative sample sizes and 

spatial resolution must be factored into the modelling and prediction scheme in 

order to get a true representation in the range. An accurate prediction for a model 

of species distribution in Africa needs much work to be done since limited species 

location data is available or is believed to be available. Available data on the web, 

for example, the Global Biodiversity Information Facility have some level of 

inadequacies in uploading location data point in the range distributed. 

Although species distribution modelling is important for many uses including 

conservation planning and mitigation for biodiversity loss in general, the accuracy 

of the model is critical for it to be useful (Manzoor et al., 2018). The accuracy of 
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SDMs are influenced by many factors including sample size and the resolution at 

which the modelling is done. 

The effect of sample size  on accuracy of models have been studied for various 

species with most concentration keen on investigating the effect of sample size on 

model performance and accuracies Hernandez et al., (2006);. Jiménez-Valverde et 

al., (2009); McPherson et al., (2004), in the temperate regions but little is known of  

tropical Africa, for example Segurado & Arau, (2004) investigated on sample size, 

outside tropical Africa. Importantly, most tree species in Africa which are not been 

cared, like some cash crops (cocoa and rubber) need particular attention to 

understand the extent to which climate change has or could negatively affect their 

distribution. Many species including rare species as reported by Hernandez et al, 

(2006), need thorough investigation taking into consideration sample size and its 

function on range size and model accuracy. This is because these orphan or rare 

species have controlled spatial distribution (Hernandez et al., 2006), that is, there 

are few numbers of known locations. Very few studies have investigated sample 

size in relation to predicted range sizes and model accuracy on species indigenous 

to Africa. Although Hernandez et al., (2006), have shown that increasing sample 

size appeared to increase model accuracy, they also suggested that sample size 

might be species-specific and dependent on the geographic range of the species. 

Since Parkia biglobosa distribution has not been modelled, it was necessary to 

investigate how sample size affected the accuracy of SDMs as well as geographic 

range predictions. 
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The resolution at which models are developed are important and should be 

considered in any study (Franklin, 2010). The interval at which species respond to 

their environmental conditions may vary, therefore different scales for predictive 

modelling of the distribution of species should be carefully selected in the analysis 

of models (McPherson & Jetz, 2007). Results of the combination of the species 

ecological characteristics and the spatial resolution on model accuracy might 

differ, given that the selected spatial resolution employed for analysis may range 

from a close environment to a larger range (McPherson & Jetz, 2007).  

Studies on the impact of climate change among other things must be examined to 

predict species distribution of indigenous fruit species. 

Climate change and its effect on biodiversity in the African continent have made it 

prudent for species distribution modelling to predict how the distribution of species 

will be affected in the future. Good model prediction requires the right sample size 

and resolution. This is necessary for conservation planning into the future 2080. 

This will ensure the survival of the species now for both biological conservation of 

the ecosystem and the benefit derived from the species into the future 2080. This 

study will provide clarity on the minimum required sample size and resolution that 

will produce accurate models in terms of range and accuracy of models. It will also 

inform policy to maintain or improve on current mitigation strategies to provide 

favourable climate and soil conditions that affect the distribution of the species. It 

is also expected that standard accuracy measures used in predicting accuracy of 

models could be improved to give good overlaps as may be compared with the 
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Jaccard Similarity Index. Overall, a model of Parkia biglobosa in Africa will be 

known with determining variables that influence its distribution. 

1.2 Objectives of the Study  

The main objective of the study is to model the effect of climate variation on the 

potential distribution of Parkia biglobosa in Africa. 

1.2.1 Specific Objectives 

The specific objectives for the study are as follows; 

1. To predict the present (1994) and future (2080) range of Parkia biglobosa. 

2. To determine the effect of sample size and resolution on the accuracy of 

modelling the distribution of Parkia biglobosa in Africa.  

3. Investigate the effect of climate change on the potential distribution of 

Parkia biglobosa. 

4. To determine the most important environmental variable that affect the 

distribution of Parkia biglobosa in Africa.  

5. To compare standard accuracy measures (AUC, TSS and Kappa) with 

Jaccard Similarity Index between the true range and the predicted range. 

1.3 Study Questions  

1. What is the present and future ranges of Parkia biglobosa in Africa under 

climate change? 

2. How does sample size and resolution affect range predictions and accuracy 

predictions? 
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3. To what extent has climate change affected the potential distribution of 

Parkia biglobosa in to the future? 

4. Which environmental variables are the most important for the distribution 

of the species? 

5. Does the traditional accuracy measures predict good accuracies when 

compared to Jaccard Similarity Index? 

1.4 Organization of the Study 

The thesis is organized into six chapters. Chapter one is the introduction of the 

study. It focuses on the background of the study objectives of the study and the 

organization of the study. Chapter two reviews and discusses literature relevant to 

the topic to establish a theoretical approach for the research. The areas of literature 

considered are relevant to the study and provides evidence for analytical discussion 

to support the study. Chapter three focuses on, methodology applied to obtain the 

needed information for this study. Again, it presents research design and analysis. 

Chapter four present results of findings of the research within the context of the 

study objectives. Chapter five, focused on discussion of the study while chapter six 

focused on the conclusion, and recommendations base on the findings of the 

research. Appendixes are provided after references used in the study to give a 

much practical picture of some issues. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 African Locust Bean (Parkia biglobosa)  

Parkia biglobosa (Jacq), also known as “African locust bean”, is a tropical tree in 

Africa popular for its uses as a non-timber wood species which provide food and 

medicine of various kinds. It has its fruits, leaves, bark, seeds, roots and stems in 

different economical and medicinal uses. Parkia biglobosa is an evergreen, 

deciduous, branchy crowned tree that is commonly found in the savannah and 

partially more dry locations of the Sahelian zone and the wetter areas south to the 

Guinean ecological zone of Africa (Lompo et al., 2017). It serves critical 

importance in the rural economy of most communities in Africa especially in the 

West African region. Its products are fast becoming export commodities. It 

provides not only fruits which are eaten as desserts but also the seeds, which are 

mostly processed into condiments (known as “Dawadawa” in Ghana) which serves 

as a spice/condiment in most meals (Dawadawa is a strong flavour and tasty soup 

condiment which is rich in protein). It is a source of timber and fuel wood for 

domestic purposes but also relevant in the traditional pharmacology.  

It is a dicotyledonous plant which is categorized under the family Fabaceae - 

Mimosoideae. Though it is deciduous. It is a perennial plant that grows up to about 

1 metre in a year: young seedling and between 7 and 20 metres high, and in some 

cases up to 30 meters. It is reported to start flowering at 5 to 7 years 

(Houndonougbo et al., 2020). The species is able to withstand fire (Abdulhamid et 

al., 2017), and has a thick dark grey-brown bark. The pods of the tree, which are 

referred to as locust beans, are green in the beginning and become dark brown 
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when they are fully mature. They are usually 30 to 40 cm long on average, with 

some extreme lengths of about 45 cm in length. A pod is capable of containing up 

to 30 seeds (Lompo et al., 2017; Oyerinde et al., 2018). 

P. biglobosa have different uses, including fodder, food, medicine, green manure, 

fuel wood, timber and many other economic purposes. 

Fruits of Parkia biglobosa are commonly gathered from the wild and locally used 

as food, different from one community to another in the species location area. 

Some parts especially the bark of the tree is used for medicines as well as provide a 

wide range of commodities including tannins significant in the leather industry and 

to the livelihood to the communities.  

2.2 Natural Range of the Species 

Geographically, the species is distributed in some parts of Africa with a description 

considered in a range map, compiled by Hall et al., (1998) to show climatic zones 

and geographic boundaries. Naturally, the range covers about 20 countries mainly 

in the African savannah, north of the equator  especially in the Suddanian 

vegetation zone, parts of which are partially in the drier,  north of the Sahelian and 

wetter regions, south of the Guinean vegetation zone (Lompo et al., 2017). The 

species’ land area covers diverse habitats but mainly on deep loamy and sandy 

soils (Lompo et al., 2017), characterized with annual rainfall ranging between 700 

mm to 2,600 mm in the North and South respectively, and in exceptional 

situations, around 4,500 mm in countries such as Sierra-Leone and Guinea (Hall et 

al., 1998). Almost all the West African countries are endowed with Parkia 

biglobosa. The population density of the tree differs from one geographic region to 
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another with a reported 40 trees found in a hectare (Lompo et al., 2017). Land use 

activities is believed to have affected the species’ distribution over the past two 

decades since the assemblage of its occurrence data by Hall et al., (1998). 

2.3 Cultivation of Parkia biglobosa 

Parkia biglobosa’ seeds are considered as orthodox seeds (Hong et al., 1996) 

which can be stored for 10 to 20 years, after which they lose significantly in their 

germination rate; a decline of approximately 15% from its initial germination 

percentage (Millogo et al., 2019). Lompo et al (2017), reported that Parkia 

biglobosa seeds tolerate desiccation at a low moisture content while keeping high 

viability even in freezing conditions. Fresh seeds are reported to reach up to a 95% 

germination rate when treated with sulphuric acid, to break dormancy (Lompo et 

al., 2017). Propagation of Parkia biglobosa through mature vegetative tissues has 

been identified to be difficult and mostly unsuccessful (Ræbild et al., 2011). Most 

propagation practices are through direct seeding and appear to be the most 

practical means used for improving and rejuvenating existing ranges (Lompo et al., 

2017). Parkia biglobosa is a fast-growing tree species than some commonly used 

in agroforestry such as Faidherbia albida and Ziziphus mauritiana (Lompo, 1999). 

This characteristic gives the opportunity to increase distribution while promoting 

conservation, agroforestry and sustainable use of the species (Lompo et al., 2017). 

2.4 Medicinal and Nutritive Value of Parkia biglobosa 

Indigenous healers in various parts of Africa use various parts of the locust bean 

tree to derive health benefits. It was reported that P. biglobosa was one of the 

leading cited plants species used for treating hypertension, through a survey 
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conducted on healers in Togo, (Makanjuola et al., 2016). Similarly, in a survey 

conducted in Guinea regarding the use of P. biglobosa as anti-malarial plants, P. 

biglobosa was cited among those most often successfully used (Makanjuola et al., 

2016). The yellow colour of the pulp is an indication of the presence of nutrient 

possible to be vitamin A while its sour taste is considered to be due to the presence 

of ascorbic acid (Oyerinde et al., 2018). It has been reported that, the condiment 

made from the fermented locust bean seeds have between 12 – 16% carbohydrate, 

39 – 47% protein, and 31 – 40% fat of lipids  (Ikpeme, et al., 2002). In some areas, 

extract from the bark of the tree (appendices 3) is applied for the treatment of 

malaria, pneumonia, wound, and bronchitis (Ojewumi et al., 2016). Studies on 

biological compounds present in Parkia biglobosa leaves has reported the leaves to 

have antioxidant properties and significantly contribute to the immunity of cells 

and tissues against the effects of reactive oxygen species as well as other free 

radicals (Makanjuola et al., 2016). 

Some reports emphasise that chemical elements that serve as protective agents 

from plants known with anti-peroxidative and antioxidant properties play an 

important role in giving protection to the liver against toxins (Fifamè Grâce 

Nadège et al., 2016). Aqueous extract of Parkia leaves induces an increase in total 

lymphocytes and TCD4+ in blood and therefore, it may assist in strengthening the 

immune system (especially of persons with weaker immune systems). Leaf extract 

of Parkia revealed tannins, steroid, flavonoid, terpenoids, cardiac glycoside, and 

saponin as some bioactive compounds present in the extract for which some are 

antioxidant agents against factors causing inflammation, hypertension, diarrhoea, 
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diabetes, cardiac failure, bacterial infection, cancer cells, scurvy and membrane 

lipid peroxidation (Makanjuola et al., 2016).  

2.5 Climate Change  

Climate ChangClimate change perhaps has become a household name for most 

people in Africa, mostly linked to increasing temperature and/or flood. Many 

growers attribute failure in crop yield to decrease or outright cessation of rainfall 

prematurely to climate change. Climate change according to Hulme (2005), is 

significantly the most severe problem the world is facing today; considerably more 

serious than any form of threat from terrorism. Again, Hulme (2005), mentioned 

that climate change is interchangeably used with global warming and the 

greenhouse effect. Two variables, rainfall and temperature are considered the most 

affected climatic variables that are driving the devastating wheels of climate 

change while wind speed plays rather an important role that many do not consider 

by increasing the rate of evapotranspiration. Human activities have been identified 

to contribute a good percentage to global warming with industrialization occupying 

an important position in the causes of global warming and climate change (IPCC, 

2008). Fossil pollutants causing greenhouse effect (Mertz et al., 2009), are mostly 

attributed to having contributed immensely to increased temperature, causing 

warming since many irradiated energies remains on the earth (IPCC, 2008).  

 Major physical events of climate change which are concerns in current times are 

increasing flood along many coastal regions throughout the world which are 

attributed to very high intensities of rainfall in short durations, melting of the ice 

cap and rising sea levels (Mertz et al., 2009), due to higher temperature.   
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Low ambient temperature has been found to hinder phytoplankton distribution, tree 

growth and phenology, plant biomass among others by various authors including 

(Hunter & Lechowicz, 2008; Liang et al., 2002),  while high ambient temperature 

is said to have the greatest relevance in the extinction of some species such as 

terrestrial mollusc (Baur, 1992). An important phenomenon brought about by 

climate change is drought on farmland which has affected the abundance of a 

number of soil animal species, which is attributed to drier climate leading to the 

extinction of these animals (Hulme, 2005). Studies have focused on the effect of 

higher temperature and rainfall on the socio-economic livelihood of people often 

considering temperature and rainfall collectively. Example; Klutse et al., (2016), 

studied the onset and cessation of rainfall in West Africa. The implication it has on 

the livelihood of people is huge, especially on rural farmers who are dependent on 

the weather to grow their crops and make a living. Many years before now, Hulme, 

(2005), noted for example; Picton 1984; Pollard 1988 to have suggested that 

temperature and rainfall should not be held in isolation since the combined effect 

of these variables could be severe. That is, findings from the study of only one of 

the variables may result in misinformation on policy in terms of conservation 

planning and sustenance of agroforestry systems since these variables complement 

each other.    

2.6 Effect of Climate Change in Africa 

Across the world, the climate has been changing for several thousand years. The 

Inter-Governmental Panel on Climate Change (IPCC), IPCC, (2008), says climate 

change is evident and presents environmental, economic and social threats. Again 

they stated that recent warming in the climate system is unequivocal, as 
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observation indicates an increase in global average air and ocean temperatures, 

widespread melting of snow and ice, and rising global average sea level (IPCC, 

2008). Rising average global temperature and variations in precipitation are 

evidently and non-debatably impacting ecosystems, biodiversity and human 

civilization all through the world. A negative consequence of climate change 

considered the most significant is the risk to agriculture. The implication is rather 

serious since majority of people especially those in the developing countries 

depend on agriculture for livelihood (Kurukulasuriya et al., 2006).  

Agriculture is vulnerable and delicate to weather and climate factors such as light, 

temperature and precipitation as well as weather extremes, like floods, storms and 

droughts (Kotir, 2011; Polak et al., 2016). It is expected that the impact of climate 

change will not equally influence systems among the population of the world 

Kurukulasuriya et al., (2006), with strong affirmation that the distribution of 

impacts will vary in the ability to respond to impacts and resource with which to 

(overcome) mitigate across nations. Vulnerable among nations are the developing 

countries, bring about inequalities in income distribution between and within 

countries (van Vuuren et al., 2011). It is considered that sub-Sahara Africa is most 

vulnerable and may be the most hard hit from the effects of climate change since it 

heavily depends on agriculture (Sylla et al., 2018). 

Kotir (2011), reported that the vulnerability is because the existing climate is 

already severe while current knowledge is poorest combined with technological 

change that has been slow. Climate change is predicted to affect rain, elevate the 
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intensity of droughts and increase mean temperatures, and endangers the 

abundance of fresh water for agriculture production.  

The climate of Africa is distinguished by several climate zones, tropical rain forest, 

tropical wet and dry, tropical dry, mountain, Mediterranean, middle latitude dry, 

and humid sub-tropical (Kotir, 2011). Hulme (2005), described the climate of 

Africa as variable - It is varied because they stretch from humid to equatorial 

regimes, through seasonal and tropical regimes to sub-tropical Mediterranean-type 

climates; varying because all these climates show different degrees of temporal 

variability, particularly with regards to rainfall. 

Studies have shown various degrees of changes in mean temperature, rainfall and 

extreme weather event (Jensen et al., 2008; Mensah et al., 2016). They also show 

that a change in climatic factors like precipitation, temperature and weather 

extremes such as floods and drought have been dramatic and expected to remain in 

coming decades across Africa (Mensah et al., 2016).  

Evidence of studied temperatures have shown an increased warming trend since 

the 1960s (IPCC, 2008). Globally, records of warmth throughout the twentieth 

century is estimated to be about 0.5℃ per century with relatively higher warming 

in the June- August ,and  September-November seasons then in December-

February and March – May (Hulme, 2005). Again, it was recorded, that the late 

1980s and 1990s had the warmest years with 1987 and 1998 recording the highest 

warmth. Temperature changes in the continent are not often uniform and they vary 

considerably within, and between regions and countries. Hulme (2005), reported 

mean annual diurnal temperature range increased by 0.7 to 0.9 and increased 
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between 0.5 and 1 since the 1950s in Sudan and Ethiopian regions, and similar rise 

in temperature also experienced in the Zimbabwe. In South Africa, dianural 

temperature range declined around the 1950s and 1960s but has been relatively 

stable since then.  

The third annual report of IPCC reports according Bjurström & Polk (2011),  

shows the earths mean surface temperature increased to 0.2℃ in the twentieth 

century and it is expected to remain, with a rise of 1.4℃ to 5.8℃ by 2100 (Stocker 

et al., 2001). The whole of Africa is expected to warm across all seasons 

throughout this century (Kotir, 2011). 

Recent models suggest that the West African region has experienced a 1.5oC 

warming since the year 2004 and projections point to a continuum in an increase 

by 2049 (Mensah et al., 2016), while increasing to 2℃ warming from around 2012 

to 2066 (Vizy & Cook, 2012). Temperature increase occurred up to 3℃ global 

climate levels in the northernmost part of the region while temperature increase in 

the south is below 1℃. However, the difference in the projected changes between 

the North’s and the South’s global warming levels is around 0.5oC and up to 1℃ in 

the south and the north respectively (Mensah et al., 2016). Again, they reported an 

increase in average seasonal rainfall in most part of the region except the 

northwest. Suggestions claim that increase drying, may result in drought which 

will negatively affect agriculture. Some other conclusion suggested that the 

difference in the impacts between 1.5oC and 2℃ warming is significant and 

implies that, meeting the threshold of 1.5℃ or 2℃ will result in similar seasonal 
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impacts. That is, rise in extreme rainfall with increasing temperature resulting in 

flooding in some cities along the coast in West Africa (Klutse et al., 2018). 

2.7 Adaptation to Climate Change 

An important factor in mitigating climate change and the effect it has or had or 

would have been to find key adaptation measures, sustainable enough to effect 

positive lasting changes on the ecological, social and economic systems. Here, 

adaptation is adjustment in the community that brings changes in climatic stimuli 

to a greater extent removing the impact on the ecology and social background. 

These could be done through capacity building; which includes the broadening of 

the knowledge and ability of the individual, groups and organization to develop 

adaptation measures by making clearly informed decisions, adapting and 

implement these adaptation strategies (Adger et al., 2005). These capacity 

measures they also referred to as “transforming that capacity into action”. They 

insist that adapting to climate change is first an individual task, civil society groups 

stretching through to governments at local, national and international levels. 

Communicating climate change information through different forums, giving the 

potential impacts, venturing into new fields for new opportunities, maintenance of 

the land and maintaining economic growth are some of the postulated remedies to 

adapting successfully to adapting to climate change. 

For Hulme (2005), the focus should be on making improvements in the flexibility 

in management of vulnerable communities that form the ecosystem, improvement 

in the inherent adaptability of plant and animal species as well as develop 

processes in the system while reducing environmental challenges  and social 
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pressure that raises vulnerability  to climate variability. Referring to assumptions 

that, measures for adapting to present climate risk correlates with adapting to 

future change events (Houghton et al., 2001). 

In Africa, technology has moved much slowly behind the rest of the world in 

adapting to climate change impact especially in adopting higher yielding crop 

varieties, exploring the benefit of irrigation amidst reduced precipitation and 

increasing capital investments (Kurukulasuriya et al., 2006). Suggestions to  

producers of crops and animals (as the most affected though most may not be 

aware) in Africa welcome investments in infrastructure development throughout 

Africa at local, regional and international levels in the area of irrigation which will 

increase the productivity and improve the livelihood of many on the continent 

(Kurukulasuriya et al., 2006). 

Suggestions by some studies advocate for incorporating climate change in long-

term conservation and even water use and resources planning, management and 

governance which is fundamentally important for decision makers (Sylla et al., 

2018). For future climate, Sylla et al (2018), quote for example Karambiri et al., 

(2011); Roudier et al., (2014); Yira et al., (2017) reporting, the direction and 

magnitude of the projected changes are highly unknown; a statement which point 

to the need for studies to be refocused especially on future changes resulting from 

anthropogenic events since some level of significant contribution to mitigating the 

effect of climate change can be realized when it is embraced with urgency and will.  

The need for vigorous work to mitigate the effect of climate change and intense 

climate variability in many areas also steam from many disasters across the world 
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with respect to weather inconsistencies such as floods and cyclones over the past 

few years to decades. (Appendix 4) shows some records throughout the world of 

which Africa is no exception with regards to some disasters that has hit countries 

in the year 2014, in relation to climate change and its associated phenomenon. 

2.8 Species Distribution Modelling 

Species distribution models (SDMs) are a combination of verifiable data of the 

species occurrences or information of a species with data on climatic factors or 

environmental data. These models are essential in predicting species distributions 

through landscapes and unravel new discoveries into ecological and evolutionary 

studies and development, often dependent on extrapolation in time and space. They 

are widely applied in terrestrial, freshwater and marine studies (Shabani et al., 

2016). 

Many SDM methods exist which share a common approach in building and 

projecting models. That is, models are built in relation with known occurrence 

species dataset and environmental variables. Depending on the objectives of the 

study, factors such as soil texture, bulk density and land cover among others, 

relevant for the existence of the species population are considered. Usually, digital 

maps are used to aid the projection of environmental domains within which the 

species lives for both current and future projections or estimation of a model, 

allowing modellers to assess suitable models for the study and provide information 

on variables that are most critical (Franklin , 2010). According to Yates et al., 

(2010), most models employ the inexhaustible or no dispersal for estimating 

percentile gain or loss of climate conditions suitable for the species.  
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Models can be categorized into classes as; (a) statistical: with some examples as 

Generalized Linear Models (GLM), Generalized Additive Models (GAM) and 

Multivariate Adaptive Regression Splines (MARS); (b) climatic envelopes: such 

as BIOCLIM; and (c) machine learning techniques with examples as: Maximum 

Entropy (MaxEnt), Classification Regression Trees (CART) and GARP (Elith et 

al., 2006; Yates et al., 2010). A major significant difference between the methods 

primarily, is the kind of the species occurrence data being used. While some of 

these models have been designed to build models with presence-only data, others 

are designed to use presence-absence data. It is important to note the distinction 

with the models in other to apply appropriately  when developing bioclimatic 

models  aimed for conservation planning and climate change (Yates et al., 2010). 

Presence-only data used by Elith et al., (2006) to compare  16 modelling 

techniques  for the range of 226 species from different continents  was found to be 

effective and can be used for modelling species distribution even across regions 

though novel methods were robust than the more established/traditional methods.  

SDM’s are increasingly used in ecological and conservational discipline to predict 

the impact of climate change on biodiversity and species distributions, but model 

evaluation remains challenging, because reliable data against which simulations of 

future ranges can be validated are seldom available (Yates et al., 2010). 

Consequently, model validation is often limited to how well they predict present 

range or distributions. Preferably model evaluations use an independent dataset 

(for current distributions), but more practically, most modellers often use data 

splitting, such that a portion of the data are used to train the model and the other 
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portion held to validate it. One measure of classification accuracy is commonly 

used, the area under the curve (AUC) of  receiver operating characteristic (ROC) 

plot (while the Kappa Statistic, True Skill Statistic, and Boyce Index) are other 

commonly used measures of classification of model accuracy (Antoine Guisan et 

al., 2016; Antoine Guisan & Thuiller, 2005). 

Key challenges that affect SDMs include bias associated to presence-only data 

modelling procedures, model selection and evaluation, manipulation of biotic 

interactions, and the assessment of model uncertainty (Phillips et al., 2009). For 

example, the method of modelling may reflect a situation which is capable to 

misinform and unable to relate sequences in the range (Miller et al., 2007). Sample 

sizes, sampling techniques methods could contribute significantly to model 

predictions. For example, data inadequacies or errors in the available data in the 

GBIF may result to giving inaccurate (under prediction or over prediction of 

ranges) models prediction (Anderson et al., 2016). These causes  has been 

categorized into three stages in data processing; first is the data collectors, where 

there could be errors in the data uploads leading to false data presentation, 

secondly is at the data entry stage and lastly the data consumers, how well the 

modeller handles the data during the modelling process and the interpretation given 

during analysis (Anderson et al., 2016). 

The accuracy and robustness of the models rely on the choice and selection, 

variables that form parameters, interaction of geographic and environmental 

factors, modelling algorithm used, the degree of model calibration, and stages of 
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projection. Present relationship between modelling practices and ecological 

sciences are generally poor, which limits development in the field.  

Threshold dependent accuracy such as the sensitivity (SE) and specificity (SP) are 

used in many fields including species distribution modelling. The sensitivity 

measures the probability of models such that, the model accurately predicts an 

observation at a location. And specificity measures the probability that a known 

observation absent from a location is correctly predicted (C. Liu et al., 2020) 

Various disciplines refer to the SE and SP differently; example, in the field of 

imaging, they are known as producer’s accuracy X. Liu et al., (2007) in machine 

learning and information retrieval, they are referred to as precision (Fawcett, 

2006). These indices are used complementarily (Adams et al., 2001), and are being 

used in species distribution modelling. 

Another measure of accuracy which is widely used in species distribution 

modelling is the Cohen’s Kappa. Its adoption is aimed at correcting overestimation 

of the overall accuracy and measures the degree to which an agreement between 

observed and predicted is higher compared to the expected by chance alone (Liu et 

al., 2009). 

True skill statistic (TSS) is another measure index widely recognized which was 

used as a test for diagnosis in medicine. It is defined as the average of the net 

prediction success rate for present locations and that for absent locations and 

similar to the arithmetic mean of sensitivity and specificity (C. Liu et al., 2020). 

TSS values greater than 0.2 but less than 0.6 (>0.2, <0.6) are considered fairly 

accurate while values ≥ 0.6 are good/ accurate models (ALLOUCHE et al., 2006), 
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Area under the curve (AUC) of the (ROC) receiver operating characteristic is a 

threshold- independent index which is often used to measure the accuracy of 

various models in so many disciplines (Canran Liu et al., 2011), mentioned that, it 

is also used in ecological studies  despite some criticism it has received as made by 

(Lobo et al., 2008). It is said to give a misleading picture of mean model 

performance and over predict ranges that are not practically significant (example;  

It is the probability that a model would rank a ramdomly selected species 

prescence location higher than randomly selected abscence location. 

A summary of Liu et al., (2009) on the use of these measures of accuracy 

pronounced key important issues. First, almost all SDMs studies focuses on the 

discrimination capacity and reliability is not often evaluated. Two, they mentioned 

the need for precision of accuracies being estimated as important information for 

model assessment. Sample size for the test data needed to produce accurate 

estimate of model performance must be considered. They explained that, it has a 

close relationship to the statistical features of accuracy measures. Small sample 

sized test dataset lead to unstable accuracy measurement and may mislead 

conclusions made on model accuracy.  

The Jaccard similarity index is another measure of accuracy used in conservation 

due to the ability to be applied to determine the relationship between species areas 

to determine for the optimum size for natural protection. Jaccard do similarities 

between two taxa where operational taxa is not affected by another taxa during 

analysis like producing  independent values different from those of the operating 

taxonomic unit. Jaccard similarity index considers attributes of co-rated 
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observations  as the main function that significantly increase the similarity values 

(Bag et al., 2019). It is simply the ratio between the size of intersection and size of 

the union of sample sets. 

2.9 Global Biodiversity Information Facility Data 

Access to biodiversity data and information is a critical concern at a time where 

there is habitat loss across the world. The Global Biodiversity Information Facility 

(GBIF) unarguably is the single largest biodiversity data in the world. GBIF is an 

Intergovernmental Organization, providing an internet accessible, interoperable 

network of biodiversity databases and information technology tools Yesson et al., 

(2007), with a target to make the world’s biodiversity data freely and universally 

available via the internet and has been described as a cornerstone resource. 

Biodiversity information from museums, herbaria and other organizations around 

the world constitute the information presently provided on the GBIF portal 

(Anderson et al., 2016). However, though the database is bulky, it is characterized 

with some patchy areas, where some locations, taxa etc. are evenly covered while 

some areas do not or are absent. 

2.10 Worldclim Data 

Spatially incorporated gridded climate data which is referred to by Hijmans, 

Cameron, Parra, Jones, & Jarvis, (2005), as climate surfaces provided climate 

layers referred to as “Worldclim version 1 database” for global land areas 

excluding Antarctica. The database consisted of precipitation and long-term 

monthly mean temperature. Over the decade, the original dataset has been 

improved to include solar radiation, wind speed and vapour pressure at high spatial 
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resolution (less than 1km2). Formerly, these climate variables were only available 

at lower resolution (10 arc-minutes) and for varying base periods (New et al., 

2002). 

Climate data at very high resolution available may be essential for studies in 

environments  of high topography and other areas with varying climate conditions 

which (Hijmans et al., 2005), referred to as strong climate gradients.  Hijmans et al 

(2005), noted that “the availability of climate data at very high resolution allow for 

the evaluation of their utility with respect to data at a lower spatial resolution. In 

addition, the implication of climate data resolution on modelling result is almost 

unconsidered but current, it can be investigated across larger ranges of spatial 

resolutions less or equal to one (≥1) km. Though high resolution climate data or 

layers have brought improvement in investigating modelling results in very small 

spaces, it cannot be generalized to mean that the quality of the climate data is 

necessarily high in all places (Hijmans et al., 2005). To these it must be explained 

that the quality of the variables is spatially varied and are dependent on the 

variability of the climate in a location or an area, coupled with the quality and 

density of the observations, and the degree to which a spline can be fitted through 

it (Hijmans et al., 2005). Challenges in producing climate layers resulting from the 

low density of climate stations as well as not including relevant drivers, for 

example; aspect, made the climate layers unable to account for all the variation that 

may arise at a resolution of 1 km, specifically records of precipitation in 

mountainous areas. 
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Worldclim version 2 has only current data and work in progress for the future data, 

which already have gridded time-series of meteorological variables like the land 

surface temperature and cloud cover now available from a number of satellite-

borne instruments. These have the potential to inform estimates of the variables of 

interest. 

2.11 Sample Size and Model Accuracy 

Models for species that have large range and environmental tolerance performs less 

in accuracy than for the species that have smaller ranges and restricted 

environmental forbearance (Elith et al., 2006; Wisz et al., 2008; Zurell et al., 

2016). Small sample sizes are challenging for statistical analysis and results 

decreases predictive potential if compared to model occurrences  (van Proosdij et 

al., 2016). 

Accuracy should increase with increasing sample size until the highest accuracy 

potential is achieved. Added to this is that, the highest accuracy potential and the 

number of records that constitute a sample size for which the true range is 

predicted is dependent on the scale of species, the extent and spatial resolution of 

the environmental and species occurrence data available for the modelling and 

modelling method used (Hernandez et al., 2006). Accuracy complication may arise 

if only presence only data are used or are available owing to the difficulty to 

examine false positive prediction errors. Due to this, some modellers prefer to 

totally ignore commission errors but give concentration to only omission errors. 

This definitely is not healthy for or otherwise, simply not sufficient for any model 
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because models with no omission errors may possess high commission errors 

(Hernandez et al., 2006). 

Studies have found MaxEnt to be the best predictor even when a small sample size 

is applied. In the literature, Hernandez et al., (2006), showed that, out of the four 

models built to manipulate different sample sizes (GARP, Domain, MaxEnt and 

Bioclim), MaxEnt outperformed the other models with the mean of the least of the 

sample size (5) having the highest score while Domain had the least mean with the 

same sample size. 
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CHAPTER THREE  

MATERIALS AND METHODS 

3.1 Experiment One 

Experiment one focused on using data from the GBIF (Global Biodiversity 

Information Facility) to model Parkia biglobosa while varying the sample size and 

resolution. This section employs standard techniques so that the present (1994) and 

future (2080) distribution of Parkia biglobosa could be predicted. The effect of 

both sample size and resolution were assessed on the range prediction and model 

accuracy. 

3.1.1 Occurrence Data 

African locust bean was chosen due to its usefulness in the local economy of many 

communities of Africa (especially Northern Ghana) where it is located and because 

it is a wild/orphan species. Species data used in this study was retrieved from the 

Global Biodiversity Information Facility (GBIF) downloaded from 

https://www.gbif.org. DOI 10.15468/dl.4fxtom (Retrieved 8th January, 2019). 

GBIF has a pool of several species’ occurrence data supplied by ecological, 

geographic and conservationist organizations, other institutions and private 

individuals, using remote sensing, satellites and or fossil evidence to record the 

location and presence of species. It is a facility which is evaluated and updated 

regularly and occurrence (presence) is presented on digital maps, showing clearly 

the distribution as well as enjoying reference and access. 

To mitigate the tendencies of working with data set with location coordinates 

which may influence predictions and may produce inaccurate models, species data 
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were verified by filtering to take out occurrences that did not match coordinates or 

locations using Arc Map in ArcGIS version 10.4.1. The ArcMap was supplied with 

an electronic map which allows data coordinates to be plotted against the country 

boundaries. Where data points were marked as errors, they were removed using 

Microsoft excel (Excel). Observations of plants under cultivation (those which are 

out of their natural location/cultivated by someone in a geographic location other 

than their natural range) and observations with apparent errors were also taken 

away from the data set for modelling. Species locations largely perceived to be 

misrepresented were removed. (For example; the original (GBIF) dataset when 

opened in the ArcMap may show species location in the sea. This clearly is a 

deviation and could be attributed to errors in data entry processes) in conformity 

with (Magarey et al., 2018). 

3.1.2 Samples and Resolution 

After thinning the occurrence data and the three resolutions, the number of records 

remaining were, 888, 644 and 434 for resolution 2.5, 5 and 20 arc minutes 

respectively. For each resolution, a sample of 107 records were reserved for model 

validation. Eight different sample sizes (5, 10, 25, 50, 75, 250, 305) were randomly 

selected from the remaining data without replacement. Each sample was taken 

independently of the other from the data set. This was done to ensure that sample 

sizes were maintained the same for all three resolutions. This mode of sampling 

resulted in 24 data sets (3 resolutions × 8 sample size = 24). 
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3.1.3 Environmental Variables 

Climate data were acquire from the WorldClim website 

(https://www.worldclim.org) (Hijmans et al., 2005). Raster layers for nineteen (19) 

bioclimatic variables obtained from the globally interpolated datasets representing 

annual trends, seasonality and extreme environmental variables which are 

supposed to be maximum relevant to plant existence (Pearson & Dawson, 2003), 

were used as environmental variables or data for the modelling. Climate data were 

cropped to correspond with the map of Africa. All the 19 bioclimatic variables 

were prepared at resolutions 2.5, 5 and 10 arc-minutes. These set of climatic 

variables was supplemented with four soil variables retrieved from the Harmonized 

World Soil Database.  

The environmental variables, and their abbreviations are; 

BIO1  Annual Mean Temperature (℃× 10) 

BIO2  Mean Diurnal Range [Mean of monthly (max temp – min temp)]  

(℃) 

BIO3  Isothermality (BIO2/BIO7) (× 100) 

BIO4  Temperature Seasonality (standard deviation × 100) 

BIO5  Maximum Temperature of Warmest Month (℃) 

BIO6  Minimum temperature of Coldest Month (℃) 

BIO7  Temperature Annual Range (BIO5 – BIO6) (℃) 

BIO8  Mean Temperature of Wettest Quarter (℃) 

BIO9  Mean Temperature of Driest Quarter (℃) 

BIO10  Mean Temperature of Warmest Quarter (℃) 
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BIO11  Mean Temperature of Coldest Quarter (℃) 

BIO12  Annual Precipitation (mm) 

BIO13  Precipitation of Wettest Month (mm) 

BIO14  Precipitation of Driest Month (mm) 

BIO15  Precipitation Seasonality (Coefficient of Variation) 

BIO16  Precipitation of Wettest Quarter (mm) 

BIO17  Precipitation of Driest Quarter (mm) 

BIO18  Precipitation of Warmest Quarter (mm) 

BIO19  Precipitation of coldest Quarter (mm) 

Bulk_dn×10 Soil bulk density ×10 

Soil_txture Soil texture  

t_oc×100 Top soil organic content ×100 

t_pH×10 Top soil pH ×10 

3.1.4 Modelling Software 

The Maximum Entropy for species distribution modelling, MaxEnt (ver. 3.4.4) was 

thew software used for the modelling. Model training was set to auto features. 

Each model was validated with the 107 records set aside. A threshold of 10 

percentile training Cloglog presence was selected as a threshold for converting 

continuous probability to presence- absence predictions and the software was 

allowed to write the background predictions. Background predictions, sample 

predictions and maps of the binary predictions were used for computing the 

predicted ranges and test statistics namely Kappa statistic, True Skills Statistic 

(TSS) and the Area Under the Curve (AUC) of the receiver operative characteristic 

curve.  
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Three hundred and sixty (360) models (8 sample sizes × 3 resolutions × 15 

replicates) were built for the species dataset and for each, a forecast was made for 

the current (1994) and the future (2080) range using the Had85 representative 

concentration pathway. The pathway represents one of the severe situations that 

might arise (van Vuuren et al., 2011). Current predicted area and the future 

predicted area was calculated using ArcMap 10.4.1. Available at 

https://www.esri.com/arcgis/about- ArcGIS. 

The MaxEnt algorithm used to juxtapose presence positions and variable 

interactions to close interactions of background positions, and established the 

maximum entropy probability distribution coming close to uniformity, subject to 

the limitations thrusted by observed spatial distributions and connected 

environmental factors. The decreasing of relative entropy between known positions 

and background location data in such a situation optimizes the maximum entropy 

probability distribution (Elith et al., 2006). 

3.1.5 Model Evaluation 

MaxEnt was used to project the species distribution in the study area. Models were 

evaluated using the True Skill Statistic (TSS), Area Under the Curve (AUC) and 

Kappa Statistic. Here, a confusion matrix was computed to first calculate the 

“Sensitivity” and “Specificity” of the species occurrence. Confusion matrix in this 

modelling studies sought to address the discrepancies in the species occurrence 

dataset such that, it was used to compute for the possible observed location points 

and predictions, either present or absent or both observed and predicted absent. In 
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this way, the sensitivity and the specificity are easily derived for the calculation of 

the True Skill Statistics.  

Table 1 below is an illustration of a confusion table, indicating the observed 

occurrence data and the highest possible predictions which could be made.  True 

positives are locations in which the species were observed to occur and for which 

the model predict the species to be present. False positives are locations in which 

the species was observed to be absent but which the model predict the species to be 

present. False negatives are locations in which the species was observed to be 

present but which the model predicts to be absent. True negatives are locations in 

which the species was observes to be absent and for which the mode predict the 

species to be absent. 

Table 1: A Confusion Table Used to Derive Parameters Used in Calculating TSS 

 

Occurrence data 

Present Absent 

P
re

d
ic

ti
o
n

 

Present True positives (a) False positives (b) 

Absent False negatives (c) True negatives (d)  

 

 Sensitivity =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑑𝑎𝑡𝑎
   

 Specificity =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝐴𝑏𝑠𝑐𝑒𝑛𝑐𝑒
 (ALLOUCHE et al., 2006; Bean et al., 2012) . 
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The AUC is an indication of the area under the receiver operating characteristics 

(ROC) curve. An ideal model would have an AUC to be equal to 1 while models 

which have 0.5 are regarded to be no different from random (Bean et al., 2012).  

Jaccard similarity index measures the extent to which the predicted ranges 

accurately predict the true range and the true accuracy of the models. Ranging 

from zero (0) to one (1), values predicted below 0.7 are considered poorly 

overlapped and those equal to and above 0.7 are good models, predicting the 

measure to which the models perform accurately. 

Table 2: Parameters Underlying the Computation of the Accuracy Measures Used 

for the Modelling 

Measure  Formula 

Overall accuracy A = 
𝑎 + 𝑑

𝑛
 ……………………………………………. Equation 1 

Sensitivity  Se = 
𝑎

𝑎 + 𝑐
 …………………………………………… Equation 2  

Specificity  S = 
𝑑

𝑏+𝑑
 ………………………………………...……. Equation 3 

True Skill Statistic T = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 − 1……..... Equation 4 

Kappa statistic  K = 
(

𝒂+𝒅

𝑵
)− 

(𝒂+𝒃) (𝒂+𝒄)+(𝒄+𝒅) (𝒅+𝒃

𝑵𝟐

𝟏−
(𝒂+𝒃) (𝒂+𝒄)+(𝒄+𝒅)(𝒅+𝒃)

𝑵𝟐

 ………………..… Equation 5 

N   = a + b + c + d ……………………………….……. Equation 6 

 

www.udsspace.uds.edu.gh 

 

 



 

 

38 

 

3.1.6 Most Important Variables 

To measure the most important variables that affect the models on the distribution 

of the species, MaxEnt was set to create response curves and calculate the 

percentage contribution of the variables to the model to measure variable 

importance. Percentage contributions of each variable were compared and the 

variable with the highest contribution was taken to be the most important for each 

of the model. The response curves show the extent to which each of the 

environmental factors affects MaxEnt prediction.  The curves show how the 

forecasted probability of presence changes as each environmental factor are varied, 

keeping all other environmental variables at their average sample value. 

3.1.7 Transformation and Analysis of Data 

The ranges (areas) of the species generated from the models and their accuracy 

measures (AUC, TSS and Kappa) were analysed using ANOVA in GenStat 

version 12 ed. Exploratory plots (Box- plots) suggested the data were suffering 

from heteroscedasticity and the main cause was the sample sizes. Smaller sample 

sizes had higher variability than larger sample sizes. In order to use ANOVA, log 

to base 10 and the Box-Cox group of transformation were explored. In most cases, 

the best transformation from the Box-Cox transformations improved the data 

significantly and were used before ANOVA was performed. 

3.2 Experiment Two 

3.2.1 Virtual Species 

This experiment concentrates on the development of a virtual species using the 

Virtualspecies Programme running on R (Leroy, 2014; Leroy, 2019). The virtual 
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species was used to determine which sample size and resolution gave the best 

model predictions made in the first experiment in terms of the predicted range and 

model accuracy. This is possible because the virtual species afford the modeler the 

insight and foreknowledge of species distribution in the range. 

3.2.2 Sample Size and Resolution 

For consistency and validation purposes, all the eight (8) sample sizes used in 

experiment 1 were repeated in this experiment. That is; sample size 5, 10, 25, 50, 

75, 150, 200 and 305. These were combined with the three resolutions; 2.5, 5, 10 

arc minutes and replicated 100. 

The virtual species was generated using the routine Virtual species  Leroy et al., 

(2018) running in R (R core team, 2019). Two environmental variables were used, 

namely Annual mean temperature (BIO1) and Annual precipitation (BIO12). The 

specific values were determined using the location data obtained from GBIF site. 

The mean and standard deviation of the two environmental variables (BIO1 and 

BIO12) were determined (annual temperature: mean = 27℃; standard deviation = 

11.1℃; annual precipitation: mean = 181mm; standard deviation = 261mm), and 

used for the virtual species. This ensured that the virtual species mimicked the real 

species in at least two environmental variables. By generating the virtual species, 

the exact range of virtual species was known and this was necessary to determine 

how close model predicts were to the real range. It also enabled us to put model 

accuracy validation (AUC, TSS and Kappa) in their right context. Validation 

statistics that were too high or two low could be detected because by comparing 
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the predictions of each model to the known range of the virtual species, the true 

accuracy of the model could be inferred.  

3.2.3 Modelling Software 

This experiment like the first one used Maximum Entropy for species distribution 

modelling, MaxEnt (ver. 3.4.4) to build the models. For consistency, all settings in 

experiment one was maintained. 

3.2.4 Model Evaluation 

MaxEnt models were evaluated using the same accuracy measures used in 

experiment one. That is, the True Skill Statistic (TSS), Area Under the Curve 

(AUC) and Cohen’s Kappa. 

Since the range of the virtual species was known, it was possible to compare the 

predicted range from each model to the actual range. This enable the modeler to 

determine precisely which of the model was the most accurate without necessarily 

using model evaluation statistics. 
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CHPATER FOUR 

RESULTS 

4.1 Experiment One: Species Distribution Models of Parkia biglobosa Using 

Global Biodiversity Information Facility (GBIF) Dataset 

4.1.1 Present Range Prediction 

Analysis of variance (ANOVA) was conducted on the predicted range produced by 

the models. The interaction of resolution and sample size was significant (p< 

0.001). The interaction of the resolution and the sample size showed that with 

smaller sizes (≤ 50), range predictions were not significantly different among 

resolutions (Figure 1). With larger sample sizes however (75-305) lower 

resolutions predicted larger ranges than higher resolutions (Figure 1). At lower 

sample sizes (example sample size 5), there was very high variability in range 

predictions. For example, the maximum predicted range was 19.5 times larger than 

minimum. This variability decreases as sample sizes increases. At sample size 305, 

the maximum prediction was only 1.7 times larger than the minimum prediction. 

This appeared to make smaller sample sizes (<50) very imprecise and probably 

unreliable (Figure 1). 

www.udsspace.uds.edu.gh 

 

 



 

 

42 

 

 

Figure 1: Effect of resolution and sample size on the predicted range 

4.1.2 Future (2080) Predicted Range 

ANOVA conducted on the future (2080) predicted range showed that the 

interaction between resolution and sample size was significant (p<0.005). At the 

lower sample sizes (5-50), resolutions were not significantly different within each 

sample size. However, at sample sizes greater than 50, the coarser resolutions 

tended to predict larger ranges than the lower sample sizes (Figure 2). The main 

effects, namely size and resolution were both significant (p<0.005). For sample 

size, predicted ranges decreased as sample size increased (Figure 2). For 
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resolution, predicted range increased with coarseness of the resolution. However, 

resolution 5 arc minutes was not significantly different from resolution 10 arc 

minutes.  

 

Figure 2: Interaction effect of resolution and the sample size on the future 

predicted range  

www.udsspace.uds.edu.gh 

 

 



 

 

44 

 

4.2 Sample Size and Resolution on The Accuracy of The Modelling 

Distribution (Model Accuracy Assessment) 

4.2.1 True Skill Statistic (TSS) 

The ANOVA of TSS showed that interaction effect of the sample size and 

resolution was not significant (p> 0.956). Sample size (Figure 3) showed 

significant differences (p< 0.001). TSS values increased with increasing sample 

size and each higher value was significantly different from the one immediately 

below except sample size 200 and 305 which were not different (using lsd). The 

TSS values ranged from 0.4 for sample size 5 to 0.8 for samples size 305. This 

shows that all sample sizes gave fairly accurate models for TSS since a TSS value 

of ≥ 0.2 are often regarded as fairly accurate.  

The resolution was also significant (p<0.005). TSS values decreased as the 

coarseness of the resolution increased. Each resolution was significantly different 

from the other (lsd <0.05; Figure 4).  
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Figure 3: Effect of sample size on TSS 
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Figure 4: Effect of resolution on TSS 

4.2.2 Kappa Statistic  

The ANOVA of Kappa showed that the interaction between resolution and sample 

size was not significant (p> 0.274). However, sample size was significant (p< 

0.001). Kappa values increased with increase in sample size and that the 

relationship with sample size was non-linear. increase in sample size. Smaller 

sample sizes (5, 10 and 25) were all significantly different (p< 0.001) from each 

other, however, sample size 25 compared with sample sizes from 50 up to 200 

were not significant (p>0.05). There was no significance between sample sizes 50, 

75, 150 and 200, sample size 305 was significantly different from the rest of the 

sample sizes (p< 0.001) (Figure 5). The Kappa Statistic values ranged from 0.10 

for sample size 5 to 0.30 for sample size 305. The results indicate that all sample 
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sizes from 5 to 200 produced models with poor accuracies (Figure 5). Sample size 

305 however produced a model with marginal accuracy. 

Resolution was significant (p< 0.001) The values of Kappa decreased as 

coarseness of the resolution increased. Each level of resolution was significantly 

different from the others (LSD, p <0.05) (Figure 6). Kappa values ranges from 

0.15 to 0. 18 for resolution 10 and 2.5 arc minutes. This is an indication that, all 

resolutions produced models with very poor accuracies. 

 

Figure 5: Effect of sample size on Kappa 
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Figure 6: Effect of resolution on Kappa 

4.2.3 Area Under the Curve (AUC) 

The ANOVA of AUC showed that the interaction between the resolution and the 

sample size was not significant (p>0.05). The main effects of resolution and 

sample size were  both significant (p<0.001) (Figure 7 and Figure 8). For sample 

size, AUC values increased with increase in sample size. All sample sizes were 

significantly different from each other except for sample size 200 and 305 which 

were not different from each other but had significantly higher AUC values than all 

other sample sizes (Figure 7). 

For the resolution, AUC values decreased with increase in the coarseness of the 

resolutions. All three resolutions were significantly different from each other 
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(Figure 8). The results suggests that model accuracy increases with increase in 

sample size as well as increase in resolution at which the modelling was done. 

 

Figure 7: Effect of sample size on AUC 
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Figure 8: Effect of resolution on AUC 

4.3 Pictorial Comparison of the Predictions from Sample Size 5 and 305 with 

the True Range 

The following presentations are maps of the distribution of the species as modelled 

by MaxEnt. The minimum, average, maximum and the true range predicted areas 

for the least and the highest sample sizes were selected with resolution 5 arc 

minutes and are represented in the maps. These maps served to indicate the 

variability associated with predictions baseed on sample size 5 compared with 

predictions based on sample size 305. While there is very high variability in 

sample size 5, in predicting the range of the species, sample size 305 predicted a 
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very stable range and closest to the true range of the species. For the minimum 

with sample size 5, (Figure 9), map A, there was very high underprediction while 

the maximum for sample size 5 (map C) over predicted the true range. Only the 

mean prediction (map B) predicted closest to the true range. However, maps A, B, 

C representing the minimum, the mean and the maximum predictions for sample 

size 305 all predicted similar range sizes, closet to the true range (Figure 10). This 

implies that, estimating the range size of the species with sample sizes with fewer 

records gives imprecise predictions. 

 

Figure 9: Maps of predicted (A=Min, B=Mean, C=Max, D=True range) 

distribution of Parkia biglobosa with sample size 5 
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Figure 10: Maps of predicted (A=Min, B=Mean, C=Max, D=True range) 

distribution of Parkia biglobosa with sample size 305 

4.4 The Effect of Climate Change on the Potential Distribution of Parkia 

biglobosa  

A paired t-test between the present predicted range and the future predicted range 

showed that the range of P. biglobosa will likely expand by about 110% (t-test, 

p<0.001) by 2080. 

Although this potential may exist there are obvious challenges that may obstruct its 

realization namely, the ability of the species to disperse to the new locations and 

human degradation of the environment through several activities. 
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4.5 Most Important Environmental Variable 

The results from MaxEnt showed that, BIO 16 (Precipitation of the wettest quarter) 

was the most important variable determining the distribution of Parkia biglobosa. 

This was followed by BIO 11 (Mean annual temperature of the coldest quarter), 

and BIO 4 (Temperature seasonality) came third as the most important variable for 

models of the distribution of the species. However, the most important 

environmental variable varied with sample sizes. Large sample sizes (Table 3), 

shows that BIO16 was selected for the most important variable followed by BIO11 

and BIO4 and this was consistent across all resolutions. 
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Table 3: Percentage contributions of environmental variables to determining the 

distribution of Parkia biglobosa with sample sizes 305 and resolution 5 and 2.5 arc 

minutes  

SN Variable Percent (%) 

Contribution 

Variable Percent (%) 

Contribution 

1 Bio16 31.8 Bio16 31.1 

2 Bio11 16.4 Bio11 18.4 

3 Bio4 12.4 Bio4 10.6 

4 Bio19 6.8 Bio19 7.7 

5 Bio12 5.9 Bio1 5.9 

6 Soil texture 5.2 Bio9 5.4 

7 Bio1 4.8 Bio12 5.1 

8 Bio6 4.3 Bio6 3.5 

9 Bio5 3 Soil texture 2.9 

10 Bio9 1.9 Bio18 1.8 

11 Bio10 1.5 Bio2 1.6 

12 Bio2 1.4 Bio10 1.4 

13 Bio18 1 Bio15 1.3 

14 Bio15 0.9 Bio7 0.8 

15 Bio14 0.9 Bio3 0.7 

16 Soil organic matter 

(t_ocx100) 

0.5 Soil bulk density 

(Bulk_dnx10) 

0.6 

17 Bio8 0.4 Soil organic matter 

(t_ocx100) 

0.6 

18 Bio13 0.2 Bio5 0.2 

19 Bio17 0.2 Bio14 0.2 

20 Bio3 0.2 Bio8 0.2 

21 Bio7 0.1 Soil pH (t_phx10) 0.1 

22 Soil bulk density 

(Bulk_dnx10) 

0 Bio13 0.1 

23 Soil pH(t_phx10) 0 Bio17 0 
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However, for small sample sizes, the most important environmental variable 

differed from resolution to resolutions. For example, in resolution 5, the most 

important environmental variables include BIO11, BIO14 and BIO15 and 

resolution 2.5 arcminutes includes BIO11, BIO16 and BIO18. 

Table 4: Percentage contributions of environmental variables to determining the 

distribution of Parkia biglobosa with sample sizes 305 and resolution 5 and 2.5 arc 

minutes 

SN Variable Percent (%) 

Contribution 

Variable Percent (%) 

Contribution 

1 Bio11 58.6 Bio 11 61.2 

2 Bio14 24.1 Bio 16 8.6 

3 Bio16 8.5 Bio18 7.8 

4 Bio15 2.8 Bio8 7.1 

5 Bio8 2.6 Soil texture 3.1 

6 Bio10 2.4 Bio13 2.1 

7 Bio13 0.5 Bio3 1.9 

8 Bio2 0.5 Bio14 1.8 

9 Soil organic 

matter(t_ocx100) 

0 Bio2 1.1 

10 Bio19 0 Bio12 0.9 

11 Bio18 0 Bio1 0.2 

12 Bio17 0 Bio19 0 

13 Bio12 0 Soil organic 

matter(t_ocx100) 

0 

14 Soil pH(t_phx10) 0 Bio17 0 

15 Soil texture 0 Bio7 0 

16 Soil bulk density 

(bulk_dnx10) 

0 Bio15 0 

17 Bio9 0 Bio9 0 

18 Bio7 0 Soil bulk density 

(bulk_dnx10) 

0 
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29 Bio6 0 Bio5 0 

20 Bio5 0 Bio6 0 

21 Bio4 0 Soil pH(t_phx10) 0 

22 Bio3 0 Bio10 0 

23 Bio1 0 Bio4 0 

 

4.5.1 How Does the Most Important Variable Affect the Distribution of Parkia 

biglobosa (Response of The Species to The Variables) 

Parkia biglobosa respond well to precipitation of the wettest quarter. Below 

400mm of precipitation, Parkia biglobosa has low probability of occurrence (<0.5, 

Figure 11). At about 700mm, Parkia biglobosa attains the highest probability (0.7) 

of occurrence. However, excessive rainfall beyond 700mm diminishes its cloglog 

probability of occurrence only marginally. The small sample size (Figure 12: The 

effect of precipitation of the coldest quarter (mm) on cloglog probability of 

occurrence of Parkia biglobosa for sample size 5), shows a similar situation. 

Error! Reference source not found., Figure 14 and Figure 16). For the 

precipitation of the wettest quartile (BIO 16), Figure 11 showed that. P. biglobosa 

is quite tolerant to low rainfall (0.6 probability of presence at 500mm). However, it 

reaches its maximum probability presence (1.0) at 1500mm. Further increase in 

rain does not harm the species as its probability of occurrence remains constant at 

1.0. 
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Figure 11: The effect of precipitation of the coldest quarter (mm) on cloglog 

probability of occurrence of Parkia biglobosa for sample size 305 

 

Figure 12: The effect of precipitation of the coldest quarter (mm) on cloglog 

probability of occurrence of Parkia biglobosa for sample size 5 
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The second most important variable, (Figure 14) shows how BIO11, the 

temperature of the coldest quarter affects the distribution of Parkia biglobosa. 

Parkia biglobosa is very sensitive to temperature of the coldest quarter and only a 

very narrow range (24-27℃) is optimal for its growth where the probability of 

occurrence is above 0.5. The probability of occurrence declines rapidly outside of 

this temperature range. For sample size 5 (Figure 13) Parkia biglobosa appeared to 

be insensitive to high temperature. However, this might be due to a statistical 

artefact rather the real situation because of the extremely small sample size. 

 

 

Figure 13: The effect of mean temperature of the coldest quarter (℃) on the 

cloglog probability of occurrence of Parkia biglobosa for sample size 305 
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Figure 14: The effect of mean temperature of the coldest quarter (℃) on the 

cloglog probability of occurrence of Parkia biglobosa for sample size 5 

P. biglobosa is also sensitive to temperature seasonality (standard deviation of 

mean annual temperature) Figure 15. The optimum range suitable for P. biglobosa 

is between 10 -17 standard deviation unit. This means that extreme fluctuations in 

temperature may not be suitable for the existence of P. biglobosa (Figure 16). 

Figure 16 depicts temperature seasonality for sample size 5. The differences in the 

graphs may be attributed to the small sample size of Figure 16. 
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Figure 15: The effect of temperature seasonality (Standard deviation × 100) on the 

cloglog probability of occurrence of Parkia biglobosa for sample size 305 

 

 

Figure 16: The effect of temperature seasonality (Standard deviation × 100) on the 

cloglog probability of occurrence of Parkia biglobosa for sample size 5  
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4.6 Experiment Two: Modelling of the Virtual Species 

4.6.1 Range Prediction 

To determine the extent to which sample size and resolution affects range 

prediction, virtual species data was analysed and compared with the results 

obtained from the GBIF dataset. Analysis was based on percentage deviation of 

predicted ranges from the true range of the virtual species.  

The interaction between sample size and resolution was not significant (p>0.05). 

The three resolutions were not significantly different from each other (p = 0.333; 

Figure 17). The three different resolutions predicted an average of 20% below the 

real range. Sample sizes were significantly different from each other (p< 0.001; 

Figure 18). However, all the sample sizes resulted in under prediction of the true 

range. The amount of under prediction reduced as the sample size increase. For 

sample sizes below 50, there was high variability in the ranges predicted, for 

example, for sample size 5, the range of predictions varied from about 80% under 

prediction to 200% over prediction (Figure 18). For sample sizes (75-305), the 

under predictions ranged from 22% to 12% respectively.  
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Figure 17: The effect of resolution on the range predicted 

 

Figure 18: The effect of sample size on the range predicted 
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4.7 Sample Size and Resolution on The Accuracy of The Modelling 

Distribution (Model Accuracy Assessment) 

4.7.1 The Kappa Statistic for Virtual Species 

The ANOVA showed a significant interaction between resolution and sample size 

with respect to the Kappa Statistic. The interaction indicated that for small sample 

sizes, the resolutions did not dffer significantly from each other (5-50). For sample 

sizes above 50, the higher resolutions have higher Kappa values  than the lower 

resolutions (Figure 19).  

For sample size it was clear that Kappa values increased as sample size increased 

(Figure 19) over the entire range of ther sample size. The mean Kappa values range 

from 0.23 for sample size 5 to 0.44 for sample size 305. This suggest that all 

sample sizes produced models with fair to good acuracy. 
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Figure 19: Interaction effect of resolution and sample size on Kappa 

4.7.2 True Skill Statistic (TSS) for Virtual Species 

The result of TSS shows that, the interaction effect of sample size and resolution 

was not significant (p> 0.197). TSS increased with increase in sample size (Figure 

21). All mean differences were significantly different from each other. This 

suggest that model accuracy increased as sample size increased. The mean TSS 

values ranged from 0.38 for sample size 5 to 0.76 for sample size 305. This 

indicates that all sample sizes produced accurate models based on TSS. 
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It was also noted that at small sample sizes (5, 10, 25), there was high variability in 

TSS values which may also suggest that accuracy measurement was imprecise for 

smaller sample sizes (Figure 20) 

Base on the ANOVA, the resolutions were significantly different from each other 

(p = 0.038). Separating the means by LSD, resolution 2.5 and 5 arc minutes were 

not significantly different from each other (Figure 20; p>0.05). However, 10 arc 

minutes had significantly higher TSS value than the other two. 

 

Figure 20: The effect of resolution on TSS 
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Figure 21: The effect of sample size on TSS 

4.8 The Area Under the Curve for Virtual Species 

The interaction between the resolution and the sample size was significant (p < 

0.003; Figure 22). The interaction showed that at sample sizes 5 and 10, the 

different resolutions were not significantly different from each other but sample 

sizes 25 to 305; coarser resolutions gave larger values of AUC than smaller sample 

sizes. The sample size was also significantly (p<0.001). With sample sizes, AUC 

rose from 0.87 at sample size 5 to 0.94 at sample size 75. Then it decreased 

gradually to 0.93 at sample size 305. Sample size 75 could therefore be regarded as 

an optimal sample size where the models had maximum accuracy. 
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The mean AUC values ranged from 0.854 for sample size 5 to 0.936 for sample 

size 305. Based on these values, it appeared that all the sample sizes were able to 

produce fairly accurate models since an AUC value of 0.70 is often regarded as a 

good model.  

 

Figure 22: Interaction effect of resolution and sample size on AUC  
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4.9 Comparison of Standard Accuracy (AUC, TSS and Kappa) with Jaccard’s 

Similarity Index 

The ANOVA of Jaccard’s Similarity Index showed that the interaction between 

resolution and sample size was not significant (p=0.068). The main effects of 

resolution and sample sizes were both significant (p<0.05). For the sample size, 

Jaccard’s Similarity Index increased as the sample sizes increased (Figure 23). 

This suggests that larger sample sizes predicted the real range better than the 

smaller sample sizes. It was also evident that smaller sample sizes produced high 

variability in Jaccard’s Similarity Index implying these predictions were imprecise. 

The mean values of JSI varied from 0.31 (s.d. = 0.095) for sample size 5 to 0.83 

(s.d. = 0.019) for sample size 305. This clearly indicated that on average models 

based on sample size 5 predicted ranges which had only about 30% overlap with 

the true range of the species while models based on sample size 305 predicted 

ranges which on average overlapped the true range about 80%. Models with 

sample size 5 could not be regarded as good models since they predicted only 30% 

of the true range. 
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Figure 23: Effect of sample size on Jaccard Similarity Index 

For the resolution, Jaccard’s Similarity Index decreased as the grids became 

coarser (Figure 24) since Jaccard’s similarity measures the overlap between the 

predicted ranges and the real range, this result shows that, the finer the resolution, 

the better the overlap between predictions and real area probably meaning more 

accurate predictions. 
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Figure 24: Effect of resolution on Jaccard Similarity Index 
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CHPATER FIVE  

DISCUSSION 

5.1 Present Predicted Range 

Prediction of range size or areas using the maximum entropy (MaxEnt) algorithm 

has been reported to produce more representative ranges than α-hull convex 

polygon method when sample sizes are small (Pena et al., 2014). Results derived 

from such methods (convex polygon) includes areas that may be unsuitable for the 

species, or ignore suitable areas; a situation species distribution models may 

correct for (Pena et al., 2014). 

MaxEnt models are often selected for good model performance even with small 

sample sizes. For instance, van Proosdij, Sosef, Wieringa, & Raes, (2016) found 

sample size as low as three sufficient for species in  narrow ranges and 13 for wide 

spread species to  predict reliable  ranges, though small sample sizes have been  

reported to be unable to predict  reliable ranges (Mateo et al., 2010; Wisz et al., 

2008).  Larger sample sizes produced  more reliable range predictions (Feeley & 

Silman, 2011). The range predictions in this study showed that small sample sizes 

(< 50) showed very wide variability (Figure 1). For example, for sample size 5, the 

highest predicted range was 19.8 times larger than the minimum predicted range 

(compared with 1.6 times for sample size 305). This makes the predictions 

imprecise irrespective of the mean for small sample sizes. 

Some studies have indicated that, high resolutions produce small predicted ranges 

while lower resolutions give larger predicted ranges (for example; Gaston, 2003; 

Soe et al, 2009). Using a high resolution for species with narrow ranges capture 
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more details of important environmental variables (Connor et al., 2018). A study  

by   Jiménez-Alfaro, Draper, & Nogués-Bravo (2012) showed that, while high 

resolution models produced more robust models than the lower resolutions, they 

nonetheless predict significantly lower ranges, even  when the threshold based on 

the minimal predicted range was used. That is, resolution with larger grid cells (> 1 

arc minutes) predicts larger areas especially when large number of occurrence 

records are used. Results of this study (Figure 1) have shown for small sample 

sizes, the effect of resolution may be indistinguishable, however, for large sample 

sizes, high resolutions predicted smaller ranges than lower resolutions as found in 

(Gaston et al., 2003); Jiménez-Alfaro et al., (2012) and Guisan et al., (2007).  

From this study, it was observed that studies of sample size and resolution were 

conducted independently from each other.  This study combined the two and found 

that these factors do not act independently.  The range size predicted when 

studying resolution depends on sample size. For example, Jiménez-Alfaro et al., 

(2012), observed that lower resolutions predicted larger ranges while higher 

resolutions predicted smaller ranges. At the same time Guisan et al., (2007) 

observed no significant effect of resolution on range predictions. Both were 

observed in this study but depended on the sample size. It is possible that their 

different conclusions might have been influenced by sample sizes. For smaller 

sample size (≤50) one might conclude that resolutions are not important in range 

prediction when studying resolutions (Figure  1). However, for larger samples size 

(>50), it might be concluded that, coarser resolutions predict significantly larger 

rangers than finer resolution (Figure 1). 
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5.1.1 Future Predicted Range 

Prediction of range size (future) is based on assumptions made by algorithms  

chosen in the modelling of the species (Pearson et al., 2006). MaxEnt assumes that 

the range of suitable environmental variables will be occupied by the species 

(Phillips et al., 2006). 

The result showed that, the interaction between the sample size and the resolution 

were significant (p<0.01). This suggest that predicting far into the future accurately 

would be a difficult issue since it would depend on both the sample size and the 

resolution at which the modeling is done. The results also indicated that as the 

sample size increased, the predicted range decreased (Figure 2). This intend adds 

to the complexity of predicting future range since sample size alone might lead to 

either under-prediction or over-prediction of the future true range. Likewise, given 

a specific sample size, the resolution alone may also lead to over-prediction or over 

prediction of the future range. Finally, the result showed that with small sample 

sizes (≤ 25), future range was very variable and imprecise (Figure 2). This may 

suggest that, for reliable predictions of the future range, sample sizes above 25 may 

be required. 

5.2 Accuracy of Predictions of Models as Affected by Sample size and 

Resolution 

The interaction effect of sample size and resolution on the accuracy of models has 

not been widely reported by the literature except few like the work of (Soultan & 

Safi, 2017). This study measured the interacting effect of sample size and spatial 
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resolution on model accuracy using metrics such as the True Skill Statistic (TSS), 

Area Under Curve (AUC) and Kappa Statistic (Kappa). 

5.2.1 True Skill Statistic 

TSS is one discriminatory metric that test the accuracy of species distribution 

models such that, TSS values for a model greater than 0.2 but less than 0.6 are 

considered fairly moderate accuracy, and values greater than 0.6 are considered 

good models (ALLOUCHE et al., 2006). 

From the results (Figure 3), TSS values increased with increasing sample size. At 

lower sample sizes, the estimates of accuracy were variable. 

Some studies such as that of van Proosdij, et al, (2016), have reported that, small 

sample size as low as 3 produced  an accurate model, other studies were contrary 

to this findings. For example, McPherson, Jetz, & Rogers, (2004), reported 

increasing model accuracy with increasing sample size though Jiménez-Alfaro et 

al., (2012), have reported good model accuracies with small sample size.  

For sample sizes, the TSS values ranged from 0.41 for sample size 5 to 0.80 for 

sample size 305. Accuracies increased with increasing sample sizes, but showed no 

significant differences between sample size 200 and 305 (Figure 3). However, for 

sample sizes less than 50 although TSS showed a fairly accurate value, they were 

very variable (Figure 3), this makes the values imprecise. 

For the resolution, the mean TSS values were 0.69, 0.67 and 0.65 for resolution 

2.5, 5 and 10 arc minutes respectively. TSS values decreased as the coarseness of 
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the resolution increased. The resolutions were significantly different from the other 

(Figure 4). 

The higher the resolution, the higher the accuracy of the models. Reduction in 

model accuracy as resolutions decreases has been reported by (Connor et al., 2018; 

Antoine Guisan et al., 2007; Lee et al., 2004) among others. In most studies, the 

impact of models developed with lower resolution only degrades the models and 

make them inaccurate. The accuracy of models in Figure 3 of the results conforms 

with findings of these authors including (Connor et al., 2018; Antoine Guisan et 

al., 2007; Lee et al., 2004). However, these authors did not report that small sample 

sizes (<50) produced imprecise predictions of accuracy. 

5.2.2 Kappa Statistic 

Kappa statistic values ranges from -1 to +1, with +1 indicating perfect agreement 

and values ≤ 0 considered as performance no better than random. Kappa values ≤ 

0.4 are fairly accurate and values > 0.4 are good models (Landis & Koch, 1977). 

In Figure 5, accuracy increased with increasing sample size. Higher resolution 

predicted higher values of Kappa than lower resolutions. For sample size, Kappa 

values were 0.1 for sample size 5 and 0.23 for sample size 305. This is an 

indication that Kappa Statistic produced very poor accuracy for all models except 

for sample size 305 which had a marginal accuracy. 

The accuracy of models based on kappa statistics is greater with species with larger 

sample sizes (McPherson et al., 2004). These authors called for the use of different 

methods in assessing the accuracy of models with small sample sizes. Similarly, 

Bean, Stafford, & Brashares, (2012), disagreed with studies which suggest that 
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accurate models could be produced from small sample sizes, making the claim 

that, models built with small sample sizes without a fair knowledge of the true 

range of the species only complicated the confidence of its accuracy. This study 

confirms the results of  Bean et al., (2012), however, the results of this study 

appear to be conservative since only a sample size above 300 are considered large.  

Kappa Statistic values for the resolutions are 0.15, 0.17 and 0.18 for resolutions 10, 

5 and 2.5 arc minutes respectively. Lowering the resolution produces less 

accuracies (Guisan et al., 2007). For resolution, kappa predicted all models to be 

questionable accuracy (all were below 0.2). 

5.2.3 Area Under Curve (AUC) 

Models with AUC values of 0.5 and below are models which do not predict any 

better than random models. (Alberto Jiménez-Valverde, 2012), values of 1 indicate 

perfect models (Xiaoping Liu et al., 2017) while values above 0.7 are often 

considered as good models (Drew et al., 2011). Results of this study (Figure 7) 

showed that, the AUC values ranged from 0.88 for sample size 5 and 0.95 for 

sample size 305, indicating that, the models predicted very good accuracies. 

Higher resolutions have been, reported to show better accuracies while the lower 

resolutions produce less accuracy (Connor et al., 2018; A. Guisan et al., 2007; 

Jiménez-Alfaro et al., 2012). Results of this study (Figure 7) corroborate with 

findings of (Connor et al., 2018; Antoine Guisan et al., 2007; Jiménez-Alfaro et al., 

2012), with resolution 2.5 arc minute predicting higher than 5 and 10 arc minutes 

respectively. 
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For AUC, all the models in relation to sample size were good. Implications may 

be, that  if smaller sample sizes (<5) were modelled such as van Proosdij et al., 

(2016) stated 3 sample sizes, they could still have produced good models which 

makes it more complicated for chosen a threshold sample size for modelling. 

5.3 The Effect of Climate Change on The Potential Distribution of Parkia 

biglobosa 

Climate change is not only detrimental but beneficial from time to time. An 

important reason for studies into climate change is especially geared towards 

mitigation and economic changes. Though one may expect that the effect of the 

current climate will have negative impact on Parkia biglobosa, results from this 

study showed a significant increase in the range size of the species with a 

likelihood expansion for the future predicted range (That is, t-test (p<0.001) 

between the present and future predicted range gave about a 110% expansion in the 

future range by 2080). 

This suggest that, though the climate have or may have changed, bioclimatic 

variables which affects the distribution more are likely to be more beneficial to the 

species as they might not be affected beyond the current climate. The implication 

of this result may be severe as there are obvious challenges that may militate its 

realization. For example, the ability of the species to disperse to the new locations 

and human degradation of the environment through several activities. This results 

also, clearly indicate that the species is not under threat to be in the global red list 

of species that are endangered due to the effect of climate change.  
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5.4 Most Important Climate Variables 

Variable importance changes with increasing resolution (Connor et al., 2018). 

Modeling at higher resolutions for species specialist probably capture in details 

difference in environmental variables (Connor et al., 2018). In this study, the 

sample sizes affected the most important environment variables for the species. 

Small sample sizes (< 25) produced different most important environmental 

variables from different models. This finding is similar to Connor et al, (2018). 

This result may be due to incomplete environmental variable representation in the 

small sample size (Kadmon et al., 2016). 

5.8 How Does the Most Important Variable Affect the Distribution of Parkia 

Biglobosa  

The first most important environmental variable affecting the distribution of 

Parkia biglobosa differs with sample size. For large sample size (>50), 

precipitation of the coldest quarter (BIO16) was selected as the most important 

variable (Figure 11). The results indicated that, the optimum rainfall for Parkia 

biglobosa is around 700mm during the coldest quarter. In some parts of the range 

especially in west Africa, the coldest quarter often coincides with the peak of the 

rainy season. This implies that, the amount of wet season rain is an important 

determinant factor and from the graph (Figure 11) (Br & Don, 2021) a minimum of 

400mm of precipitation is required for the existence for the Parkia biglobosa. 

The second most important environmental variable was the mean temperature of 

the coldest quarter (BIO11).  From the result (Error! Reference source not 

found.), Parkia biglobosa has a narrow range of temperature for the coldest 

www.udsspace.uds.edu.gh 

 

 



 

 

79 

 

quarter (24 – 270C). However, the species has a wide geographical range 

(Dotchamou et al., 2016) which may suggest that it may tolerate temperatures 

outside this range particularly during warm weather (Br & Don, 2021). 

5.8.1 Effect of The Least (5) And Highest (305) Sample Sizes Compared to 

The True Range of The Species 

Many studies have investigated the effect small sample sizes have on the range 

predicted. However, none have shown (graphically) the extent to which sample 

sizes affect the prediction of range at a minimum, average and maximum levels. 

The variability in range prediction made by the small sample size (Figure 9) is a 

deviation from the predicted true range of the species. Conclusions made on range 

size and smaller sample sizes however must be carefully studied to avoid under 

estimation or over estimation.  

In Figure 10, range predictions are about the same size of the predicted true range. 

This corroborate with earlier conclusions and findings that; stable areas are 

predicted for the species with larger records than lesser ones. 

5.9 Experiment Two (Virtual Species) 

5.9.1 Range Prediction 

Models were validated with virtual species and the ranges were estimated as the 

deviation of range predictions from true range, where the true range is equal to 

zero (0). Results of the study showed that the resolution was not significant. The 

three resolutions underpredicted the true range by an average of 20%. However, 

the sample sizes were significantly different from each other (p>0.01). The sample 
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sizes also underpredicted the true range of the species. It appeared in this 

experiment, maxent predictions of ranges were smaller than the true range. 

 Soultan & Safi, (2017), concluded that predicting useful distribution ranges, 

samples sizes with few records as few as 10 could be representative. Though there 

have been several suggestions on the minimum required number of record for 

modelling using different algorithms and MaxEnt algorithm for example used by 

Wisz et al., (2008), suggested sample size with a minimum records of 30.  

In this study, based on the sample size studied, it is clear that maxent 

underpredicted the true range irrespective of the sample size used. However, it 

appeared the larger the sample size, the closer the prediction is to the true range. 

In this study, smaller sample sizes (< 50) gave very high variability in the ranges 

predicted, for example, for sample size 5, the range predictions vary from about 

80% under prediction and 200% over prediction (Figure 18). These findings 

corroborate to the results found from the GBIF data. From the result, the amount of 

under prediction reduced as the sample size increase, implying samples with more 

records are more likely to predict ranges close to the true range of the species. 

5.10 Accuracy of Model Prediction of Predictions as Affected by Sample size 

and Resolution 

5.10.1 Kappa Statistic 

Accuracy assessments made using Kappa statistic values ranges from -1 to +1, 

with +1 indicating perfect agreement and values ≤ 0 considered as performance no 
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better than random. Kappa values ≤ 0.4 are fairly accurate and values > 0.4 are 

good models (Landis & Koch, 1977). 

Studies by Antoine Guisan et al.,(2007) reported that, lowering the resolution for 

building models makes the models less accurate. From this study, higher 

resolutions result in higher accuracies for the models than lower resolutions 

(Figure 19).  This result is in line with  Guisan et al., (2007). 

McPherson et al., (2004) reported that Kappa statistic increases with increasing 

sample sizes. Bean, Stafford, & Brashares, (2012), also agreed with the assertion of  

(McPherson et al., 2004). Results from this study agreed with (Bean et al., 2012; 

McPherson et al., 2004) (Figure 19). 

Kappa values in Figure 19 showed that small sample sizes (<50) had Kappa values 

below 0.40 which cannot be considered as good models (Landis & Koch, 1977).  

5.10.2 True Skill Statistic (TSS) 

TSS is one discriminatory metric that test the accuracy of species distribution 

models such that, TSS values for a model greater than 0.2 but less than (< 0.6) are 

considered fairly moderate accuracy, and values greater than 0.6 (> 0.6) are 

considered good models (ALLOUCHE et al., 2006). 

From the results (Figure 21), TSS values increased with increasing sample size. 

For lower sample sizes (5-25), TSS values were very variable. The results also 

indicated that, resolution 10 arc minutes had significantly higher TSS values than 

resolution 2.5 and 5 arc minutes. For small sample sizes, (5-25), there was high 

variability in TSS values. 
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Higher resolutions have been reported to produce good accuracies; that is, the 

higher the resolution, the higher the accuracy of the models (Connor et al., 2018; 

Antoine Guisan et al., 2007; Lee et al., 2004). Studies that reported higher 

accuracies with increase in resolution. Similarly, it has been reported of the loss 

important of variables which lead to the overestimations at lower resolutions 

(Connor et al., 2018). It is also known that the impact of models developed with 

lower resolution only make them inaccurate (Connor et al., 2018). However, 

accuracy of models in this study (Figure 21) suggested that TSS values increased 

with reduction in resolution. This deviation may be an inability for some important 

variables to be accounted for, perhaps similar to the report of  Connor et al., 

(2018). 

Alberto Jiménez-Valverde, (2012); van Proosdij et al., (2016), have reported that, 

small sample size as low as 3 could produce accurate models. However, 

McPherson, Jetz, & Rogers, (2004), reported the minimum sample size should be 

at least 30.  

In this study, the TSS values varied from 0.38 for sample size 5 to 0.76 for sample 

size 305. For this study, sample size 50 to 305 produced TSS values above 0.60 

which can be considered as good models (ALLOUCHE et al., 2006). Sample sizes 

below 50 are only random to no agreements (0.38-0.50). 

5.10.3 Area Under Curve (AUC) 

Models with AUC values of 0.5 and below are models which do not predict any 

better than random models. (Alberto Jiménez-Valverde, 2012), values of 1 indicate 

perfect models (Xiaoping Liu et al., 2017) while values above 0.7 are often 

www.udsspace.uds.edu.gh 

 

 



 

 

83 

 

considered as good models (Drew et al., 2011). Results of this study (Figure 25) 

showed very high values for all samples sizes (above 0.8). Though MaxEnt AUC 

values had been shown to decrease with increase in sample size in some studies 

including (Raes, & Steege, 2007; van Proosdij et al., 2016), accuracy increased 

slightly with increasing sample size as accuracy have also been reported to 

increases with a small increase in sample size (Loiselle et al., 2008; Wisz et al., 

2008). 

Large spread of AUC are indications of poor accuracies while smaller spreads 

show better accuracy (van Proosdij et al., 2016). Higher resolution has been, in 

many studies shown better accuracies while lowering the resolution decreases the 

accuracy (Connor et al., 2018; A. Guisan et al., 2007; Jiménez-Alfaro et al., 2012). 

Results of this study (Figure 22) corroborate with findings of authors stated above 

such that, the interaction between resolution and sample size (Figure 22) showed 

the variability in predicting accuracy with smaller sample sizes and having 

resolution 10 to predict higher accuracy than higher resolutions.  

For each sample size, (except sample sizes 5), higher resolutions outperformed the 

lower resolutions. Predictions of the effect of resolution models of sample sizes < 

25 had similar accuracies especially for sample size 5, which confirms the 

dependency of spatial resolution on the number of occurrence records. 

Implications could be that, stronger accuracy are observed with large sample sizes 

and at lower resolutions for species with similar geographic characteristics as the 

one studied.  
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5.11 Comparison of Standard Accuracy (AUC, TSS and Kappa) with 

Jaccard’s Similarity Index 

Jaccard’s Similarity Index measures the overlap (0-1) between the true range and 

the predicted ranges of the models fitted with the data generated by the factorial 

combination of the resolution and the sample size. Hence, it is the most accurate 

reproduction of how closely each model predicted the virtual species true range 

because a value of 0 represents no overlap at all and a value of 1 represents perfect 

reproduction of the range of the virtual species. Therefore, Jaccard’s similarity 

index can be used to assess the traditional measures of the goodness of fit of 

models, namely AUC, TSS and Kappa. These measures have been criticized in 

different ways ranging from whether they are even appropriate to their accuracy 

measures in species distribution models (Alberto Jiménez-Valverde et al., 2008; 

Lobo et al., 2008, 2010). In these studies, it was shown that AUC was a misleading 

measure of accuracy mainly because it was designed to be used for presence-

absence data and not for presence-only data (Alberto Jiménez-Valverde, 2012; 

Lobo et al., 2010; Peterson et al., 2008). Yet AUC is consistently used for models 

with presence only data. The other measures are vulnerable to the same arguments, 

i.e., without good quality presence absence data, their accuracy is in question (B. 

Leroy et al., 2017; Somodi et al., 2017). These concerns required an empirical 

evaluation of the accuracy of the models for which the extent of overlap (Jaccard’s 

Similarity Index) was used. 

The results of the measures of accuracy based on AUC, TSS, and Kappa compared 

with Jaccard’s similarity index reveals important information. Taking AUC for 

example, all sample sizes produced models with AUC values above 0.70 (0.85 - 
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0.94) which may be considered as good models (Raes et al., 2007). However, JSI 

indicated that for models based on a sample size of 5, although the mean AUC 

value was 0.85, predicted ranges had only about 30% overlap with the true range 

of the virtual species. In real life situations such models would be obviously 

misleading and cannot be regarded as good models. It might appear that AUC in 

this context might be providing inflated accuracy for models with sample size 5. 

This property of AUC had be reported earlier (Bayor, 2012; Veloz, 2009). Models 

for sample size 305, however, could be regarded as good models since the ranges 

they predicted overlapped with the true range on average 80%. 

The mean values of kappa ranged from 0.23 - 0.44. Based on Landis & Koch 

(1977), models with Kappa values above 0.4 are regarded as good models. In this 

study, this would coincide with sample size 50 and above and an overlap of 64% to 

83% using JSI. 

For TSS, the values regard as representing good models must be above 0.6 

(ALLOUCHE et al., 2006). In this study, the sample size of models with TSS 

values with 0.6 and above are 50 and above. Therefore, only models with sample 

sizes above 50 may be regarded as good models as regard to TSS. The JSI showed 

that this corresponds to 64% to 83% overlap between the ranges predicted by the 

models and the true range of the species. 
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CHAPTER SIX 

CONCLUSION AND RECOMMENDATION 

6.1 Conclusion  

This study showed that MaxEnt can be used to predict the present and future 

ranges of Parkia biglobosa successfully. Parkia biglobosa, does not appear to be 

adversely affected in the future (2080) under climate change. The predictions 

indicate that there is a potential for expansion of its range by about 110%. Sample 

size affects both the precision of predictions and the accuracy of predictions of 

MaxEnt models. Small sample sizes (<50) produced less precise predictions with 

high variability while larger sample sizes produced more precise predictions. 

Accuracy of models increased with increasing sample size as measured with AUC, 

TSS and Kappa. The effect of resolution does not appear to affect the precision of 

prediction but it affected the accuracy of prediction. The effect of resolution on the 

accuracy of predictions depended on sample size in this study. For smaller sample 

sizes (<50), the effect of resolution was not clear, probably because of the high 

variability in the predictions. However, for larger sample sizes (≥50), it was clear 

that higher resolutions produced more accurate models than lower resolutions. 

Climate change is likely to improve the potential for range expansion for Parkia 

biglobosa. However, given that the seeds of Parkia biglobosa are used for various 

products for human consumption and therefore actively harvested, coupled with 

environmental degradation, human assisted dispersal into the suitable ranges may 

be required to achieve this potential. The three most important environmental 

variables that affect the distribution of Parkia biglobosa into the future are; 

precipitation of wettest quarter, mean temperature of coldest quarter and 
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temperature seasonality respectively. When the standard accuracy measures of 

species distribution models (AUC, TSS and Kappa) were compared with Jaccard 

Similarity Index, the results are interesting. It appears AUC values were 

overpredicting the accuracy of MaxEnt models while Kappa values were probably 

underpredicting accuracy of MaxEnt models. This clearly shows that the values of 

the traditional accuracy measures (AUC, TSS and Kappa) do not necessarily 

correspond with the accuracy of range prediction. 

The results and conclusion of this experiment must be interpreted cautiously since 

the premise is based on a snapshot of data retrieved from the Global Biodiversity 

Information Facility at a specific point in time. GBIF data is continuously 

increasing and may change significantly with time. 

6.2 Recommendation 

Since the species has the potential to expand, human beings can facilitate the 

expansion by actively aiding dispersal into the new ranges. 

Species distribution modellers using small sample sizes (<50) should interpret their 

results cautiously since both range prediction and accuracy may be imprecise. It is 

therefore, suggested that model evaluation should use a large number of 

replications. It is further suggested that where possible, higher resolutions should 

be used for species distribution modelling. 
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APPENDICES 

 

Appendix 1: Parkia biglobosa plant (picture taken in Nyankpala/Tamale – Ghana) 

 

Appendix 2: Picture of the locust bean, both unripe and dried (in Tamale - Ghana) 
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Appendix 3: Africa Locust bean plant, parts and uses 

The Flower (pollinated by bees in their quest for nectar for the production of 

honey), Bean (brown covering when ripped, yellow pulp and sour, indication of 

vital nutrients and vitamins like vitamin A and ascorbic acid) Pulp (used as a feed 

supplement in pig production)  and “Dawadawa” – a protein rich condiment made 

from fermented seeds of the bean, and the back being chopped for medicinal 

purpose. (Pictures taken in Ghana and derived from Alamy Stock photos on the 

internet) 
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Appendix 4: Summary of some uses of Parkia biglobosa (African Locust bean). 

Source: Resources et al., (2020) 
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Appendix 5: Countries with the greatest multi-hazard population exposure, with 

country rankings for cyclones, drought, and floods. Source: Christenson et al. 

(2014) 

Country Cyclone 

rank 

Drought rank Flood rank Multi-hazard 

exposure rank 

Hong Kong 5 139 3 1 

Philippines 11 74 22 2 

Macao 10 132 1 3 

Guatemala 63 10 5 3 

South Korea 22 118 15 5 

Bangladesh 53 29 2 4 

Veitnam 36 80 12 7 

Saint Kitts and 

Nevis 

20 6 181 8 

Guadeloupe 17 65 83 9 

Guam 1 68 132 10 

Lebanon 93 2 42 11 

Ecuador 93 27 17 12 

Nepal 93 44 6 13 

Japan 7 182 64 14 

British Virgin 

Island 

8 45 181 15 

Thailand 73 35 20 16 

Puerto Rico 14 193 48 17 

Antigua and 

Barbuda 

9 70 134 18 

New Caledonia 6 66 166 19 

Mozambique 40 31 73 20 
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