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ABSTRACT 

In this thesis, the notion of quasiconvex functions on time scales and some properties are 

established. The subdifferential for quasiconvex function on time scales is presented as 

well as some properties regarding quasiconvex function. Some Jensen’s inequalities for 

quasiconvex functions on time scales are also given with some applications. The study 

again proves that Jensen’s inequality holds for quasiconcave monetary utility function in 

conjunction with convex, concave, quasiconvex and quasiconcave functions. Jensen’s 

inequality in addition holds for monetary utility functions with respect to quasiconvex 

and quasiconcave functions that are linear fractional functions. 
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CHAPTER ONE 

INTRODUCTION 

1.0 Introduction  

This chapter gives an introduction and background to the study. It briefly presents the 

problem statement and outlines the objectives as well as the research questions of the 

study. The scope and the limitations of the study are stated and the chapter concluded 

with information on the organization of the thesis. 

 

1.1Background of the study 

Convexity is a concept which can be traced back to Archimedes in connection with his 

famous estimate of the value of   and has a great indirect impact on our everyday life 

through applications in industry, business, medicine, etc. (Niculescu and Persson, 2006). 

Convexity plays a critical role in many areas of mathematics such as graph theory, partial 

differential equations, discrete mathematics, probability theory, and coding theory as well 

as in areas outside mathematics such as chemistry, physics, biology and other sciences 

(Dwilewicz, 2009).  

Convex and quasiconvex analysis is the study of sets with some algebraic and 

topological properties. A quasiconvex function is a real-valued function defined on an 

interval or a convex subset of a real   vector space such that the inverse image of the form 

(-∞, ∞) is a convex set (“Quasiconvex function”, n.d.). 

Quasiconvex programming is an aspect of optimization, introduced with the aim of 

curbing the weakness of convex programming and is applied to solving problems in 

meshing, scientific computing, information visualization, automated algorithm analysis 
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and robust statistics (Eppstein, 2005).They are relevant in the study of optimization 

problems where they are differentiated by a number of suitable properties. 

Dinu (2008) defined the notion of a convex function on time scales and established some 

results connecting this notion with the notion of functions on a classic interval and 

convex sequences. 

Stefan Hilger in his PhD thesis introduced the concept of time scales in 1988 in order to 

hybridize continuous and discrete analysis (Bohner and Peterson, 2001). Many results of 

problems can easily be carried from the continuous case to the discrete case, but others 

seem to be completely impossible. The study on time scales exposes such discrepancies 

and helps us to understand the difference between the two cases. Thus, time scale 

calculus is a very important tool in many computational and numerical applications. 

This time scale calculus has received a lot of attention in recent times and its applications 

are quite substantial. The most important ones among others include the dynamic 

equations, which involve both differential and difference equations, which are of great 

relevance in biology, mathematical modeling and engineering. Other applications are 

economics, neural networks, physics, optimization which have come lately (Dinu, 2008). 

From the optimization perspective, it can be revealing to model a problem which 

incorporates decision space which has both continuous and discrete nature, namely, an 

arbitrary closed subset of reals. A natural question to ask is whether it is possible to 

provide a framework which allows us to get some understanding of the nature of the 

problem and their solutions.  

The answer is yes especially for dynamic systems due to the recently developed theory of 

“dynamic systems in time scales” ( Kaymakcalan et al, 1996). 

www.udsspace.uds.edu.gh 
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Aulbach and Hilger initiated the development of time scales or measure chain (the union 

of disjoint closed intervals of R) with the aim of treating dynamic problems from the 

qualitative point of view (Bohner and Peterson, 2001). Later  KaymakCalan et al (1996)  

extended this theory to a unified analysis of nonlinear systems from the point of view of 

qualitative and quantitative behavior of such systems. Most of the results are contained in 

the monograph written by KaymakCalan et al, which is the earliest text containing 

extensive coverage in the area of time scales. Recently, Bohner and Peterson presented 

new results in the area in their monographs, which give very detailed insight (Gray, 

2007). 

 

1.2 Problem statement 

Bell intimated that a major task of mathematics is to harmonize the continuous and the 

discrete analysis to include them in a general mathematical framework in order to 

eliminate obscurity from both (Bohner and Peterson, 2001).  

The theory of timescales was introduced by Hilger in1988 in order to unite continuous 

and discrete analysis. The theory has received a lot of attention with researchers 

investigating into areas such as dynamic equations, inequalities and some functions such 

as gamma and convex functions.  

In the paper of Dinu (2008) on convex functions on time scales, a larger class of 

functions called quasiconvex functions was not investigated and this thesis seeks to 

extend the discussion to include such functions. 
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1.3 Objectives 

1.3.1Main Objective 

The main objective of this study is to explore the notion of quasi convex functions on 

time scales. 

 

1.3.2 Specific Objectives 

This study seeks specifically to: 

•  Present some definitions of quasiconvexity in the context of time scales together 

with some remarks. 

• Establish results connecting the notion of quasi convex functions on time scales. 

• Examine and present the sub-differential of a quasiconvex function on time scale. 

• Present some Jensen inequalities for quasiconvex and quasiconcave functions on 

time scales with some applications. 

 

1.4 Research questions 

1. Can time scales calculus as a tool be used to characterize the concept of 

quasiconvex functions and to what extent can results connecting the notion of 

quasiconvex functions on time scales be established? 

2. Is there a subdifferential for a quasiconvex function on time scale? 

3. Can Jensen inequalities for quasiconvex and quasiconcave functions on time 

scales be established with some applications? 
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 1.5 Scope of study 

The scope of the study is limited to quasiconvex functions on time scales with emphasis 

on the set of integers and reals as well as some time scales. The study is also confined to 

single variable functions of uni-dimensional range. 

 

1.6 Significance of the study 

At the end of the study, this thesis will  

• extend the frontiers of knowledge in the area of mathematical analysis. 

• bring to fore some notions in quasi-convex functions on time scales and their 

applications. 

 

1.7 Limitations of the study 

One major limitation is the inability to access some other relevant literature from certain 

non-free journals due to financial constraint. 

 

1.8 Organization of the study 

The study is organized into five chapters. Chapter One provides an overview of the 

research undertaken in this study. Chapter Two entitled “Literature Review” summarizes 

some research work done in the area of time scale calculus and quasiconvexity. The 

methods and materials utilized to carry out this study are described in Chapter Three. 

Chapter Four considers the results and discussion of the study. Chapter Five is devoted to 

summary of findings, conclusions and recommendation. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.0 Introduction 

This chapter reviews literature in the areas of time scales and quasiconvex analysis. In 

this regard, it begins with the groundbreaking exploits of Hilger and then to some related 

works in quasiconvexity. 

Background concepts on the theory of time scales are taken from Bohner and Peterson 

(2001) and Gray (2007) and that of convex and quasiconvex analysis from Dinu (2008), 

Greenberg and Pierskalla (1970) and Crouzeix (2005). The review on time scales is 

categorized into three areas namely: dynamic equations, inequalities and functions. 

 

2.1 Dynamic Equations on Time Scales 

In 1988, Hilger introduced the theory of time scales calculus in order to hybridize 

continuous and discrete analysis. This concept has received considerable attention in 

recent times. 

Agarwal et al (2002) in a survey of dynamic equations on time scales presented various 

properties of exponential function on an arbitrary time scales and used it to solve linear 

dynamic equations of the first order. They considered examples and applications 

especially the insect population model and used the exponential function to define 

hyperbolic and trigonometric functions to solve linear dynamic equations of second order 

with constant coefficients. 
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Stability and instability for dynamic equations on time scales has been studied by 

Hoffacker and Tisdell (2005). They used Lyapunov functions to develop an invariance 

principle regarding solutions of first order system of equations. 

Jackson (2006) presented findings regarding partial dynamic equations on time scales 

and generalized existing ideas of the univariate case of time scales calculus to the 

bivariate case. He discovered that, in particular, solutions of the homogeneous and 

nonhomogeneous heat and wave operators are found when initial distributions are given 

in terms of elementary functions by means of the generalized Laplace Transform for the 

time scale setting. 

In his PhD thesis, Jackson in 2007, studied general linear systems theory on time scales 

by considering Laplace transforms, stability, controllability, observability and 

realizability. He provided sufficient conditions for a given function to be transformable 

and an inverse formula for the transform. Also, he presented sufficient conditions for the 

inverse transform to exist and developed an analogue of the convolution theorem for 

arbitrary time scales as well as algebraic properties of the convolution. He investigated 

applications of the transform to linear time invariant systems and linear time varying 

systems. 

Zaidi (2009) studied the existence and uniqueness of solutions to nonlinear first order 

dynamic equations in his PhD thesis. He presented a series of results regarding non-

multiplicity, existence, uniqueness and successive approximations to solutions of first 

order dynamic equations on time scales that modeled nonlinear phenomena of hybrid 

stop-start nature. 
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Ucar et al (2012) worked on stability of dynamic equations on time scales via dichotomic 

maps to check the stability of ordinary differential equations and difference equations 

and extended the method to dynamic equations on time scales. Using dichotomic and 

strictly dichitomic maps they examined the stability and asymptotic stability to the trivial 

solution of the first order system of dynamic equations. 

 

2.2 Inequalities on Time Scales 

Bohner and Kaymakcalan (2001) worked on opial inequalities on time scales. They 

pointed out some of its applications to dynamic equations and offered various extensions 

of their inequality. 

Time scale integral inequalities were studied by Anderson in 2005. He extended some 

recent and classical integral inequalities to the general time scale calculus including the 

inequalities of Steffesen, Iyenger, Cebysev and Hermite-Hadamard. 

Li (2005) investigated certain new dynamic inequalities on time scales which provide 

explicit bounds on unknown functions. His results unify and extend some continuous 

inequalities and their corresponding analogues. 

Under the supervision of B.  Kaymakcalan, Gray (2007) studied opial’s inequality on 

time scales and an application in his MSc. Thesis. He gave an example that concerns 

upper bound estimates of dynamic initial value problems and illustrated the usage of the 

developed dynamic opial inequality. 

Agarwal et al (2007) presented a survey on inequalities on time scales. They gave time 

scales versions of the inequalities: Holder, Cauchy-Schwarz, Minkowski, Jensen, 

Gronwall, Bernoulli, Bihari, Opial, Wirtinger and Lyapunov. Ostrowski inequalities on 
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time scales were studied by Bohner and Mathews in 2008. They applied their results to 

the quantum calculus case. Liu and Bohner (2010) presented Gronwall-Oulang-type 

integral inequalities on time scales. Their results contained continuous Gronwall-type 

inequalities and their discrete analogues for some special cases. They also extended the 

Gronwall-type inequalities to multiple integrals. 

Xu et al (2010) worked on some integral inequalities on time scales and their 

applications. They established some new dynamic inequalities and observed that their 

results unified and extended some continuous inequalities and their discrete analogues. In 

2010, Saker studied some nonlinear dynamic inequalities and applications. He gave some 

sufficient conditions for global existence and an estimate of the rate of decay of solutions 

obtained. 

In their work on dynamic inequalities on time scales in permanence of predator-prey 

system, Hu and Wang (2012) provided conditions for permanence of predator-prey 

system incorporating a refuge on time scales. Numerical simulations were presented to 

illustrate the feasibility and effectiveness of their results. 

Agarwal et al (2014), in their monograph discussed extensively dynamic inequalities on 

time scales. They established some fundamental inequalities on time scales such as 

Young’s inequality, Jensen’s inequality, Holder’s inequality, Minkowski’s inequality, 

Steffensen’s inequality, Cebysev’s inequality, Opial’s inequality, Lyapunov’s  inequality, 

Halanay’s inequality and Wirtinger’s inequality. In 2016, Pachpatte obtained the 

estimates on some dynamic integral inequalities in three variables which can be used to 

study certain dynamic equations. 
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2.3 Some Functions on Time Scales 

Bohner and Guseinov (2005) presented an introduction to complex functions on products 

of two time scales. They studied the concept of analyticity for complex-valued functions 

of a complex time scale variable and derived a time scale counterpart of the classical 

Cauchy-Riemann equations. They introduced complex line delta and nabla integrals 

along time scales curves and obtained a time scale version of the classical Cauchy 

integral theorem. 

Lyapunov functions for linear nonautonomous dynamical equations on time scales were 

investigated by Kloeden and Zmorzynska in 2006. The existence of Lyapunov function 

was established following a method of Yoshizawa for the uniform exponential 

asymptotic stability of the zero solution of nonautonomous linear dynamic equation on a 

time scale with uniformly bounded graininess. 

A survey on exponential functions on time scales was investigated by Bohner and 

Peterson in 2007. They gave several recent results concerning this important function and 

stated some relevant properties regarding it. They also use this function to solve first 

order linear dynamic equations and second order linear dynamic equations with constant 

coefficients. They also solved certain second order linear dynamic equations with 

variable coefficients using exponential functions and discussed Euler-Cauchy dynamic 

equations on time scales. 

Kapcak (2007), in his MSc thesis, studied analytic functions on time scales. He worked 

on continuous, discrete and semi-discrete analytic functions and developed completely 

nabla differentiability, nabla analytic functions on the product of two time scales and 

Cauchy-Riemann equations for nabla case. 
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In 2008, Dinu defined the notion of convex functions on time scales. He presented some 

results connecting this notion with that of convex function on a classic interval and 

convex sequences. The subdiffrential of a convex function on time scale was defined and 

some properties regarding it presented. Bohner and Karpuz (2013) studied gamma 

function on time scales. They introduced the generalized gamma function on time scales 

and proved some of its properties which coincide with the ones known in continuous 

case. They also defined an appropriate factorial function for computing the values of the 

generalized gamma function in some special cases. 

 

2.4 Quasiconvex Analysis 

Many properties regarding convex functions have appeared in the literature since the 

pioneering work of Jensen. Some results have been obtained in recent times for a larger 

class of functions called quasiconvex functions. Greenberg and Pierskalla (1970) in their 

review summarized in condensed form results regarding quasiconvex functions and 

provided some refinements to gain further generality. In their work, they clarified the 

structure underlying quasiconvex functions by presenting analogues to properties of 

convex functions. 

Continuity and differentiability of quasiconvex functions have been studied by Crouzeix 

(2005). He obtained a result that the convexity of the epigraph of a convex function 

induces important properties with respect to the continuity and differentiability of the 

function. Moreover, the function is locally Lipschitz in the interior of the domain of the 

function. Also, he stated an important property that quasiconvex functions are locally 

nondecreasing with respect to some positive cone. 
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Daniilidis et al (2002) introduced a subdifferential that is related to quasiconvex 

functions in a similar way that the Fenchel-Moreau subdifferential is related to the 

convex ones. They showed that this quasiconvex subdifferential is always a cyclically 

quasimonotone operator that coincides with the Fenchel-Moreau subdifferential 

whenever the function is convex. 

In conclusion, time scale calculus, a relatively new theory has received a lot of attention 

from researchers and students establishing results that unify and extend continuous and 

discrete analysis. Based on this notion of time scales, there has been extensive 

development in areas of ordinary calculus such as dynamic equations, linear theory, 

uniqueness and existence of solutions, inequalities and functions. 

Applications in insect population and prey-predator modeling via time scales have been 

noted. Deep insights can be gained in the field of fluid mechanics by modeling problems 

in the time scale setting. This is possible since some work has been done on partial 

differential equations on time scales. 

It is also worth noting that much has not been done in employing time scale calculus in 

solving optimization problems and so this creates opportunities for further research in 

order to advance the development and applications of this great mathematical concept. 
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CHAPTER THREE 

METHODOLOGY 

3.0 Introduction 

This chapter captures the methods and tools utilized in this study. These methods are 

theoretical and analytical in nature and limited to time scales calculus and quasiconvex 

analysis. 

In this chapter we outline central concepts and definitions of the time scale calculus 

initiated by Hilger in 1988 under the supervision of Bernd Aulbach. Throughout this 

chapter the similarities and differences in considering the time scale as in the   and   

setup are remarked. Attention is given to the concepts such as continuity, Rd- Continuity, 

differentiability which are relevant in the analysis of hybrid continuous and discrete 

systems. Basic concepts of convex and quasiconvex functions are briefly discussed.   

 

3.1 Time scale calculus 

A time scale (which is a special case of a measure chain) is an arbitrary non empty closed 

subset of real numbers (together with the topology of subspace of  ). Thus the real 

numbers ( ), the integers ( ), the natural numbers (ℕ) and the non-negative integers 

(ℕ   are examples of time scales as well as [0, 1] U [2, 3], [0, 1] U ℕ, and the cantor set. 

The rational number ( ), the irrational number (   ), the complex number ( ) and the 

open interval between 0 and 1 are not time scales. The calculus of time scales was 

initiated by Stefan Hilger in his PhD thesis (Bohner and Peterson, 2001) in order to 

create a theory that can unite discrete and continuous analysis. Introducing the delta 

derivative    for a function    defined on  , and it turns out that; 
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(i)                                      and  

(ii)                                                          

In this section we introduce the basic notion connected with time scales and 

differentiability of functions on them and consider the above two cases as examples. The 

general theory is applicable to many more time scales  . The definitions of the forward 

and backward jump operators are given. 

Definition 3.1 Let    be a time scale. For       the mapping              such that  

 (      {        }     

  (       {        } 

are called the forward and backward jump operators respectively. In this 

definition we put 

          ( (                              and 

           (    (                                            the null set.  

If  (      we say that t is right-scattered, while if  (     we say that t is left-scattered. 

Points that are right scattered and left scattered at the same time are isolated. Also, if 

        and    (     , then t is called right-dense and if         and  (      then t 

is called left-dense. Points that are right-dense and left-dense at the same time are called 

dense (Bohner and Peterson, 2001). 

Throughout this thesis, time scale is denoted by   and for any interval    of        

   , is called a time scale interval. 

Let     |{ } if   has a right-scattered minimum m; otherwise     . If     has a 

left-scattered maximum M, then define     |{ },   otherwise     . 
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These jump operators enable us to classify the points {t} of a time scale as right-dense 

and left- scattered depending on whether  (      (      (          (      

respectively for any      (see Table 1.1 and Figure 1.1) 

Table 1.1 Classifications of Points 

                  (rs)    (   

              (rd)    (   

                  (ls)  (     

              (ld)  (     

             (      (   

           (      (   

Source: Bohner and Peterson, 2001 

 

      

Figure 1.1 Classifications of points (Source: Bohner and Peterson, 2001) 

     

From the definition above, both  (       (   are in    when     . This is because of 

the assumption that    is a closed subset of  . 
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To illustrate the classification of points in a time scale, consider the following example  

    {          }  ,
 

 
   ℕ-  {         }  { }. 

The points which are: 

 Right dense and left dense: all   [    ]  [   ]  

 Right dense and left scattered: 2,4 

 Right scattered and left dense: 3 

 Right scattered and left scattered: all   
 

 
   ℕ. 

Here,-1 is a minimal point and 4 is a maximal point respectively. Hence,  (      , 

thereby implying  -1 to be a left dense  point  and  (    , implying that 4 is also a 

right dense point. 

Table 1.2 Examples of Time Scales  

   (    (    (   

  t     

            

             

 ℕ     

 
 

(      

 ℕ        

ℕ 
  (√       (√       √    

Source: Bohner and Peterson, 2001 

 

Definition 3.2 The mapping         such that  (    (     is called graininess. 

When       (     and for       (      
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Definition 3.3 The mapping          
  such that  (      (   is called backwards 

graininess. 

Remark 3.1 

(1) The direction in a time scale has not been used in any symmetric manner (both in 

positive and negative directions), thus, we will consider the direction for a time-

scale    to be in the sense of increasing values of t, for     . 

(2) If a time-scale    has a maximal element, which is moreover left-scattered, then 

this point plays a particular role in several respects and therefore we call it 

degenerate. All other elements of    are called non-degenerate and the subset of 

non-degenerate points of   is denotes by   . Since each closed subset of A of 

time scale    is also time scale, it is possible that    can be formed. Naturally 

     is possible as long as A does not have a left-scattered maximum. Thus, 

    is defined as the set 

    [       (      ]                and 

                   

Likewise     is defined as the set 

    {
   
 

 [ (            ]                        
 

                                                             
          

If    has a left-scattered maximum m, then        { } otherwise         

Finally, if f:     is a function, then we   define the function         by 

  (     (                           where,   signifies some arbitrary binary 

operation. 

 Example 3.1 Consider the following three examples  
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(i) If       then we have for any     

 (      {       }     (         

Similarly 

 (      {       }     (        

Hence, every point               . The graininess function   is  

 (    (           for all     . 

 

(ii)          then we have for any     

 

 (      {       }     {             }       

Similarly  (      {            }      

Hence every point     is isolated. The graininess function   in this case is 

 (                         

(iii) If                                          

 (      {       }     {               }     {       ℕ}

     

And similarly  (      {        }     {       ℕ}       

Thus every point      is isolated and  

ℕ(    (                        . 
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From the three cases discussed in Example 3.1, the graininess function is a constant 

function. The graininess function plays a crucial role in the analysis on time scale. For 

the general case, many formulas will have some term containing the factor  (  . In 

various cases this fact is the reason for certain differences between the continuous and 

the discrete case. One example that illustrates this is the so-called Scalar Riccati equation 

on a general time scale   (Bohner and Peterson, 2001). 

    (   
  

 (    (   
  .  

Note that if       then we get the well-known Riccati differential equation (Bohner 

and Peterson, 2001) 

  

  
  (  

 

 (  
    ,  

and if     , then we get the Riccati difference equation (Bohner and Peterson, 2001) 

    (   
  

 (    
  . 

For the general time scale, the graininess function might become a function of     . 

Example 3.2   For each of the following time scales  ,  we can find           , and 

classify each point     as left-dense, less-scattered, right-dense, or right-scattered: 

(i)    {      }  { }. 

 

 (      {        }      {     [      } 

                                           =                   

                    for all               

                  (      {        }     {     (      ]} 
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                   (    (            

Thus, 
 

 
      . Hence t is both right-scattered and left-scattered and thus it is 

isolated.    is dense if     and isolated otherwise. 

(ii)     ,
 

 
   ℕ-   { } 

 

 At the point     

 (      {       }     {  
 

 
 
 

 
 } 

And  (      {        }               

  Since   (                           (     

 

   ,
 

 
-
   

 

  (      ,
 

 
 
 

 
   

 

   
-  

 

(    
 

 
   

 

 
 

   
 

     
 

 
              

      {  
 

 
 
 

 
  }   (      {

 

   
 

 

   
  } 

 (   
 

(    
 

 
 

 
  

 
 

   

 

 
 

   
      

 

 
             . 

It is clear that, 
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  (   

{
  
 

  
 

                                                 
                     

   
 

   
                              {

 

 
}
   

 

 
 
 

                                                     

   

 

 Similarly, 

 (   {

                                          
   

 

   
           {  

 

 
 
 

 
  }        

 

(iii).    {√    ℕ }  

 

 (      {       }      {√    [      √    √     

                    

 (      {       }     {√    (     ]}  √    √    

             

 (   √      

Clearly, 

 (     {

                                         
      

√                               {√ }
   

 
    

 

 

 (   {

                                           
 

√                                 {√ }
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Theorem 3.1 (Induction Principle)  

Let     and assume that  

{ (     [     } is a family of statements satisfying:  

I. The statement  (    is true. 

II. If   [     } is right-scattered and  (   is true, then  ( (    is also 

true.  

III. If   [      is right-dense and  (   is true, then there is a 

neighborhood   of t such that  (   is true for all      (    .  

IV. If   (      is left-dense and  (   is true for all  [       then  (   is 

true for all   [       

Proof: 

Let    {  [       (             } we want to show       To achieve a 

contradiction we assume       But since    is closed and non-empty, we have 

            

We claim that  (    is true. If      , then  (    is true from (i); if       and  (    

    then  (    is true from (ii). Hence, in any case,        Thus,    cannot be right-

scattered, and         either. Hence    is right-dense. But now (iii) leads to a 

contradiction. 

Theorem 3.2   Let      and assume that { (     (     ] is a family of statements 

satisfying: 

I. The statement  (    is true. 

II. If   (     ] is left-scattered and  (   is true, then  ( (    is also true.  
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III. If   (     ] is left-dense and  (   is true, then there is a neighborhood   of t 

such that  (   is true for all      (    ].  

IV. If   (     ] is right-dense and  (   is true for all   (     ]   then  (   is 

true.  

Proof: 

Let    {  (     ]  (             }  We want to show       to achieve a 

contradiction we assume       But since    is closed and non-empty, we have 

             

We claim that  (    is true. If      , then  (    is true from (i) if       and  (    

    then  (    is true from (iv). Finally if  (             (    is true from (ii).  Hence, 

in any case,        Thus,   cannot be left-scattered, and         either. Hence    is 

left-dense. But (iii) leads to a contradiction. See (Bohner and Peterson, 2001) for 

comprehensive and detailed discussion of the theory of time scale calculus. 

 

3.2 Order and Topological Structure 

As subsets of    time scales carry an order structure in a canonical way. A time scale   

may be bounded below or above. As a consequence of   being embedded in  , all other 

theoretical notions such as bounds, least upper bounds, greatest lower bounds and 

intervals are available in   as they are in  . 

The order and topological structure of any time scale   is induced by that of  . On time 

scales, there exist primarily three order structure, namely least upper bounds, greatest 

lower bounds and interval. (i.e. Time scale interval). 
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As a consequence of the definition of a time scale   being a closed subset of  , 

topological structure of    especially from the openness point of view has several 

features. Clearly any subset B of   which is open in  , is also open in  . 

The reverse is generally not true, though as the simple example     shows where any 

subset in the induced topology is open in   but not open in  . This is taken care of by 

distinguishing between  -openness and  -openness. In order to investigate the details of 

the notion of openness in time scales, we define the concept of neighborhood. We give 

two different versions of neighborhood definitions, differentiating between the concepts 

of  -neighborhood and  -neighborhood, giving way to  -openness and  -openness. 

Given a time scale  ,              we denote  

  (   {             } 

  (   {             } 

as the  -neighborhoods of t in   and   respecyively. An interval, in the time scale 

context, is always understood as the intersection of a real interval with a given time scale. 

For any interval    of   (open or closed),        a time scale interval. The following 

definition will lead to the concept of openness. For detailed study of the order and 

topological structure of time scales refer to Atasever (2011) and Gray (2007).  

Definition 3.5 Let   be a time scale and    . The set of    is called an  -

neighborhood of t provided that there is     with   (       The set     is called 

a  -neighborhood of  , provided that there is     with   (    . 

 

Neighborhood concepts give rise to further topological notions. 
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Theorem 3.3   Let      Every neighborhood is an open set. 

Proof: 

Consider a neighborhood   ℕ (   and let   be any point of  . Then there is a positive 

real number   such that 

 (         

For all points   such that  (        we have 

  (      (      (             

So that    . Thus   is an interior point of   . 

Definition 3.6   A subset   of time scale   is open in   if for each     there is a     

such that   (      

Remark 3.2   For any time scale           are open in    

Example 3.4 For the time scale   {          }  ,
 

 
   ℕ-           

     is of the form   
 

 
  for some   ℕ and since  

  (   {             ]  { }  { }  for all     { } is a  -open set. 

Similarly: for          (     is a            , and since 

  (    {               }  [    ]     and 

  (   {             }  { }  [    ] 

We observe that [    ] is a        set for    . Likewise, [      is a        

for all      For all            { } is         since for any  

    { } (      

  (   {             }     { } 

On the other hand, for           { } is not          since 

    (   {              }  { }  

www.udsspace.uds.edu.gh 

 

 



 

26 
 

Example 3.5   For the time scale   {          }  ,
 

 
   ℕ- the set 

  {
 

 
   ℕ} is open in  . This can easily be verified by observing that   is an 

arbitrary union of sets.  

The next result assists us to observe a connection between the concepts of the form ,
 

 
-  

which are shown to be         for each   ℕ by example 3.4. Hence   is also  

         

Example 3.6 Let    {          }  ,
 

 
   ℕ-  be a time scale.  We see from 

example 3.5 that the set   {
 

 
   ℕ} is       . Thus, by Theorem 3.4 there should 

be a set B, open in  , such that      . Clearly, the set      , where    

,     
 

  
   

 

  
- for each   ℕ being an  -open interval with this property: 

    ,
 

 
   ℕ-    and   is  -open. 

Definition 3.6 A subset   is called closed in   provided that   ⁄  is open in  . 

Definition 3.7 A subset   of a time scale   is called compact in   provided that    is 

bounded and closed in  . 

Next, we consider the concept of connectedness for time scale in the example below:  

Example 3.7 Consider the time scale   {          }  ,
 

 
   ℕ-. It is clear 

that  { } is both open and closed in   resulting from Examples 3.5 and 3.6. Thus,   can 

be written as a disjoint union of non-empty  -open sets, giving way to the 

disconnectedness of this particular time scale    . 

However, there exists obviously a connected time scale such as    . There is no 

single notion that applies to all time scales and thus we can say that a time scale   may 
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or may not be connected. The concept of jump operators is employed to deal with this 

topological deficiency. 

 

Remark 3.3 

(1) Time scale can be used in both directions (positive and negative) in a symmetric 

manner. However, it is not necessary to do that; hence we will consider the 

direction for time scale   to be in the sense of increasing or decreasing values of 

   . 

(2) If a time scale   has a maximal element which is left scattered, then this point 

plays a particular role in several respects and therefore is referred to as 

degenerate. All other elements of   are called non-degenerate and the subset of 

non-degenerate points of   is denote by   . Since each closed subset   of a time 

scale   is also a time scale it is possible that     can be formed. Naturally, 

      is possible as long as   does not have left scattered maximum. 

 

3.3 Continuity, Rd-Continuity and Ld-Continuity 

In order to describe and introduce classes of functions that are integrable, the notion 

related to the approximation of continuous functions by step functions is relevant. 

Definition 3.7 If a function is defined on a compact interval [      ] of a time scale   

and if there is a finite number of elements    ,   , …,   of    with 

                  such that    [      ]    is constant on [        ], for  

           , then   is called a step function. 
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It is possible to define the continuity concept for    -valued functions on time scales. 

The continuity definition can be adopted from Real analysis without any major changes. 

Definition 3.8 The function         is said to be continuous at      for all    , if 

there exists a neighbourhood    (    such that 

| (    (   |    for all     (    . 

Points of discontinuity are usually given by jump points graphically since time scales are 

not generally connected, a similar analysis is not necessary. In order to pave way for the 

concept of integration, we first have to obtain an appropriate class of functions having 

anti-derivatives. For this reason, the following notions are defined. 

Definition 3.9 Let   be an arbitrary topological space and   a time scale. The mapping 

      is said to be regulated if at each left dense    ,   (            (   exists 

and at each right dense point    ,  (            (   exists. 

Definition 3.10 The mapping         is called rd-continuous if  

(i) It is continuous at each left dense or maximal    . 

(ii) At each left dense point, left sided limit  (    exists. 

We denote by    [   ] the set of rd-continuous mappings from    to  . The class of rd-

continuous functions turns out to a “natural” class within the context of time scale 

calculus. The function         in the case of    [   ]  ℕ, for example is rd-

continuous but not continuous at 1. 

The following are implications from Definitions 3.8, 3.9 and 3.10. 

Continuous   rd-continuous  regulate. 

If   contains left dense and right scattered points, then the first implication is not 

invertible. However, on a discrete time scale all three notions coincide. 
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As a generalization of Definition 3.10, the following is given: 

Definition 3.11 The mapping            is called rd-continuous if  

(i) It is continuous at each (     with right dense or maximal  , and 

(ii) The limits  (        (     (     (         and        (     exist at each (     

with left dense  . 

Hence, in general for left dense  , the function  (            is no way a continuous 

continuation of the mapping    (          to the point   . 

Example 3.8 Given an rd-continuous function        , which is in the sense of 

Definition 3.10, let         and            be continuous functions, then the 

composite function  ( (    (    is rd-continuous in the sense of Definition 3.11.  

This section is concluded by introducing a tool which is useful with some qualitative 

properties and relevant definition. 

Definition 3.12 Consider the mapping      (    ]      which is defined for a 

fixed      as: 

  (     {  
 (                (     (       
 (                       (     { }    

 

Here   is assumed to be rd-continuous on    .    does not necessarily coincide with   

on (    ] if   is a left dense right scattered (ldrs) point, otherwise it does.  

Definition 3.13 Let        be a function.   is ld-continuous at each left dense point in 

  and          (   exists as a finite number for all right dense points    . 

3.4 Delta Derivative 

Considering functions which are defined on a time scale    and taking their values in a 

topological space    , the concept of continuity arises due the embedding of     in  . For 
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that of differentiation, however, the topological structure of    plays an important role. 

The lack of openness of   generally requires a procedure which leads to special cases of 

differential calculus and difference calculus (Gray, 2007). 

Definition 3.14 For               , we define the delta derivative of f in t, to be the 

number denoted by   (   (when it exists), with the property that, for any    ,  there is a 

neighborhood V of t such that 

         |[ ( (  )   (  ]    (  [ (    ]|   | (    |                             

for all     .   

     , whose   is any Banach space, is called delta differentiable if   is differentiable 

for each    . 

Remark 3.4 In the two special cases   and   the delta derivative is uniquely determined. 

In fact, one gets   
  (  

  
  and     (      (   respectively. 

Theorem 3.4 Let       be delta differentiable and      , then the following 

properties arise: 

(i). If f is delta differentiable at t, then f is continuous at t. 

(ii). If f is left continuous at t, and t is right-scattered, then f is delta differentiable at t 

with 

       (   
 ( (    (  

 (  
 

(iii). If t is right-dense, then f is delta differentiable at t, if and only if the limit  

             
 (    (  

   
 exists as a finite number. In this case,   (         

 (    (  

   
 

(iv). If f is delta differentiable at t, then   ( (     (    (    (  . 
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Remark 3.5 Sometimes we may need the generalized delta derivatives corresponding to 

Dini derivatives from the right, in which case we write 

 ( (  )   (   ( (        ( (      

for all    ;   being a right-neighbourhood of    . This is denoted by       (  . 

Note that if    is right-scattered, then     (   is the same as the   (   given above. In this 

case, we write  

  (   
 ( (  )   (  

 (    
 

For      , we have 

  (     (   (Usual derivative) and 

  (      (Forward difference operator) if     . 

Example 3.8 Let    {           }  ,
 

 
   ℕ-  and    (   | |, 

   (   |  
 

 
|,   ℕ, for all    . 

Then all functions     ’s are delta differentiable for all points of  , but the limit function   

has no delta derivative at 0, hence it is not delta differentiable. 

Example 3.9  For   { }  ⋃ ,     
 

  
   

 

    
-  ℕ  

and  (   {
                                        
 

  
                     

 

  
   

 

    

  

which gives,   (    . 

3.5 Nabla Derivative 

Following the development of delta dynamic equations, the corresponding theory for 

nabla derivatives was extensively studied. See Atasever ( 2011).    
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Definition 3.15                     , we define the nabla derivative of f in t, to be 

the number denoted by   (   (when it exists), with the property that, for any    ,  there 

is a neighborhood U of t such that  

 |[ ( (  )   (  ]    (  [ (    ]|   | (    |                             

 for all     . 

Theorem 3.5 Suppose that        is a function and     , then the following 

properties hold: 

(i). If f is nabla differentiable at t, then f is continuous at t. 

(ii). If f is right continuous at t, and t is left-scattered, then f is nabla differentiable 

at t with 

              (   
 (    ( (   

 (  
 

(iii). If t is left-dense, then f is delta differentiable at t, if and only if the limit  

           
 (    (  

   
 exists as a finite number. In this case,   (         

 (    (  

   
 

(iv). If f is nabla differentiable at t, then    ( (     (    (    (   

Theorem 3.6 Assume that          are nabla differentiable at     , then: 

(i). The sum         is nabla differentiable at   with  

      (     (     (     (  . 

(ii). The product        is nabla differentiable at   and we get the product rule 

       (    (     (   (     (    (    (    (       (        

(iii). If   (    (    , then 
 

 
  is nabla differentiable at  , and we get the quotient  

        rule:   

        ( 
 

 
 )

 
(   

 (    (    (    (  

 (    (  
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3.6 Antiderivative and Integral 

Having discussed the development of the concepts of time scale analysis up to delta and 

nabla differentiability, we consider the concepts of delta and nabla antiderivative and 

integration. For this purpose, we restrict ourselves to the class of differentiable functions 

and consider the definition of antidifferentiation. 

Once the main theorem which guarantees the existence for rd-continuous (ld-continuous 

for nabla derivative) functions is established, the concept of Cauchy-Integral can be 

introduced. 

  is a time scale and    is a subinterval of   in the discourse below. 

Definition 3.16 Let        be a delta differentiable function. The function 

   {
(     

    (  
 

is called the delta differentiable of   on   . In case     , the statement “on   ” 

disappears. 

Remark 3.6  

(i) From Theorem 3.6, it is clear that a mapping which is delta differentiable on     is 

continuous. 

(ii) If       is an interval which is open in   ; then the above concept coincides with 

the usual differentiation. 

Definition 3.17 A function        is called a delta antiderivative of   on    and for 

all      the condition   (    (   is satisfied. 

For each rd-continuous function on time scale, there corresponds a delta antiderivative as 

shown in the following theorem. 
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Theorem 3.7 For any rd-continuous mapping       , there exists a delta 

antiderivative function       , such that 

    ∫  (    
 

 
,       . 

Definition 3.18 Suppose that the function        has a delta antiderivative function   

on [   ]   , then  

∫ (      (    (  

 

 

 

is called the Cauchy-Integral from r to s of the function g. For    , the Cauchy-

Integral coincides with the Riemann integral. 

For       , where    , the identity 

∫ (     

 

 

{
 
 
 
 

 
 
 
 

   

∑ (              

 
 
  

  
 
 

                            

 ∑ (              

 
 
  

  
 
 

 

can be shown. 

Definition 3.19 A function       is called nabla antiderivative of       provided 

  (    (   holds for all     . 

We define the integral by 

∫  (     
 

 
 (    (  , for all    . 

Theorem 3.8 Suppose that f and     are continuous, then  

www.udsspace.uds.edu.gh 

 

 



 

35 
 

(∫  (      

 

 

)

 

  ( (      ∫   (      

 

 

 

Theorem 3.9 Assume that       is ld-continuous and       , then  

∫  (      (   (  
 

 (  
. 

Theorem 3.10   Let         ,     and         be ld-continuous, then 

(i)  ∫ [ (    (     
 

 
∫  (     ∫  (    

 

 

 

 
 

(ii)  ∫   (      
 

 
∫  (    

 

 
 

(iii)  ∫  (    
 

 
  ∫  (    

 

 
 

(iv)   ∫  (    
 

 
 ∫  (    

 

 
 ∫  (    

 

 
 

(v)  ∫  ( (  )  (     (   (   (   (   
 

 
∫   (   (    

 

 
 

(vi)   ∫  ( (  )  (     (   (   (   (   
 

 
∫   (   ( (     

 

 
 

(vii)  ∫  (      
 

 
 

The theorem following gives some relations between delta and nabla derivatives. 

Theorem 3.11 

(i). Assume that       is delta differentiable on    . Then f is nabla differentiable at t 

and  

      (     ( (  ) for       such that   ( (  )   . If, in addition,    is continuous on  

  , then f is nabla differentiable at t and   (     ( (  ) holds for any     . 

(ii). Assume that       is nabla differentiable on   . Then f is delta differentiable at t 

and   (     ( (  ) for      such that  ( (  )   . If in addition,    is continuous 

on  , then f is delta differentiable at t and    (     ( (  ) hold for any     . 
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3.7 Some Time Scale Formulae 

The following are formulas pertaining to time scales. 

(i).          

(ii).          

(iii). (              (Product rule) 

(iv).  (              (Product rule) 

(v). (
 

 
)
 

 
(        

(    ⁄  (Quotient rule) 

(vi).  (
 

 
)
 

 
(        

(    ⁄  (Quotient rule) 

 

3.8 Convex and Quasiconvex functions 

Some brief discussions on the properties of Convex and Quasiconvex functions are 

considered in this section. 

Definition 3.20 A function       defined on a convex subset of    is said to be 

convex if  

 (   (         (   (      (   

for each        and    [   ]. 

The function       is called strictly convex if the above inequality is true as a strict 

inequality for each       and     [   ]. 

Examples of Convex functions: 

(i) Powers:   (           . 

(ii) Exponential:  (                  . 
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Definition 3.21 A real-valued function       defined on a convex subset subset of    

is said to be concave if 

 (   (         (   (      (   

for each        and    [   ]. 

Examples of Concave functions: 

(i).  (       

(ii).  (   √  

(iii). The function  (        on [   ]. 

Definition 3.22 A function       defined on a convex subset   of a real vector space 

is said to be quasiconvex for any       and    [   ] if  

 (   (           { (    (  }. 

Furthermore if  (   (           { (    (  } for any     and   [   ] then f is 

strictly quasiconvex. The function is said to be quasiconcave if –f is quasiconvex and a 

strictly quasiconcave function if a function whose negative is strictly quasiconvex. 

Equivalently, a function f is quasiconcave if  

  (   (           { (    (  } and strictly quasiconcave if 

  (   (           { (    (  }. 

 Examples of Quasiconvex functions: 

(i). √| | is quasiconvex on  . 

(ii).      is quasilinear (both quasiconvex and quasiconcave) on   . 

Definition 3.23 Given a sequence {  } written as            , a sequence  {  } is 

said to be quasiconvex if 

 ∑ (    |    |     
  where   ℕ and 

www.udsspace.uds.edu.gh 

 

 



 

38 
 

       (      (                  (Mazhar, 1976). 

Refer to Crouzeix (1999) and Pierskalla (1971) for detailed discussion on the properties 

of quasiconvex functions. 
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

4.0 Introduction 

In this chapter some results regarding quasiconvex functions on time scales are 

established and discussed. Furthermore, definitions, lemmas, propositions and theorems 

are considered. 

4.1 Quasiconvex functions on Time scale 

In this section, quasiconvex function on time scale is defined and some properties are 

established. 

Definition 4.1 A function        is called quasiconvex on       if   

 (   (          { (    (  }       (1)                                                

for all           and   (    .                      

Some examples of quasiconvex functions are: 

 (   √| |     (   
    

     
     (   ⌊ ⌋. 

Remark 4.2  

The function f is strictly quasiconvex on       if  

 (   (          { (    (  }        (2)                                               

for each   (     and each        
such that  (    (  .    

Definition 4.3 A function        is called quasiconcave on        if  

 (   (          { (    (  }.       (3)                                                

for all           
 and   (    .      
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 Remark 4.4 

(i). For             ., Definition 4.1 is exactly the definition of a quasiconvex 

function. 

(ii). For   S and S  ℕ, Definition 4.1 gives the definition of quasiconvex sequences.   

Some examples of quasiconcave functions are:                    

 (    √| |  (   
     

     
  (    ⌊ ⌋  

Remark 4.5  

The function f is strictly quasiconcave on       if  

 (   (          { (    (  } for each   (        (4)                                               

and for all          
such that  (    (      

Remark 4.6  

From Definition 4.1, a function f  is called quasiconvex if  

  (   (        (           (5)                                                                                             

where     {  (    (   }   (                                                                    

at all convex combinations of t and r. Thus, f increases locally from its value at a point 

along the curve. 

Definition 4.7 Let        The function f is quasiconvex on      if the sublevel set of f 

     {     (    } is convex and 

   ̅  {     (    } holds in the strict case, where    . 

Lemma 4.8 

For any monotonically increasing or decreasing quasiconvex function, the inequality 

  (   (         (   (     (      { (    (  }      

holds for all            and    (       
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We proof Lemma 4.8 geometrically. 

                                                    

                                                    

 

  

 

 

 

 

   

 

 

Figure 4.1 Geometrical Illustration of Lemma 4.8 

Clearly, the first inequality is trivial because it defines convexity. 

That is, 

 (   (         (   (     (   

Suppose           such that       implies    (    (    for increasing case. 

For any   (      from the vertical axis, we have 

  (   (     (      { (    (  }.      (6)   

This proofs the Lemma.                                                         

Proposition 4.9 

Let        be a convex function that is increasing. Let           
with      and 

       such that        and       (      then f is quasiconvex if 

t 

f(t) 

r 

f(r) 
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(     (   (     (   (    (     (         (7)                                       

 holds. 

Proof 

From       (     , we have  

   
   

   
           

   

   
          (8)                                                                                 

Thus by convexity, we have 

 (    (   (         (   (     (          (9)                                             

Using Lemma 4.8, the above inequality becomes 

 (     (   (     (      { (    (  }              (10)                                                                                  

Since f is increasing      { (    (  }   (  .  

Substituting (8) into (10), we have 

 (   
   

   
 (   

   

   
 (    (          (11)                                                                        

Rearranging (11), yields the required inequality (7).                    

Proposition 4.10 

Let        be a convex function that is decreasing. Let           
with      and 

       such that        and       (      then f is quasiconvex if                

 (     (   (    (     (   (     (     .                                    (12) 

Proof  

 By convexity, we have 

 (    (   (         (   (     (                                                (13) 

Using Lemma 4.8, the inequality (13) becomes 

 (     (   (     (      { (    (  }                                                 (14)                                         

Since f is decreasing      { (    (  }   (  .  
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Substituting (8) into (14), we have 

 (   
   

   
 (   

   

   
 (    (                                                                         (15) 

Rearranging (15), yields the required inequality (12).                                 

Lemma 4.11  

Let             f is quasiconvex if and only if the sublevel set 

   (   {     (       for any     } is convex. 

Proof 

Let f be quasiconvex and suppose that        is isolated. Then there exist          

    . 

Thus,  (      and   (     . 

Let   [   ] and         (              . 

Thus,  (    (    (            { (     (     

 (      {   }   . 

Hence,       and thus     is convex. 

Conversely, suppose that    (   is convex. Then there exists               such that  

    (          for any   [   ]. 

Therefore,   (    (            { (     (     

Thus, f is quasiconvex. 

Now consider the case where t is dense and f is quasiconvex, then there exists 

[   ]     [    ] in   . 

Let  (     and   (      such that       (      . 

Thus,  (    (   (            { (    (    

 (    , therefore,       is convex. 
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Conversely, assume    is convex, clearly f is quasiconvex. 

Definition 4.12 The set         is closed if and only if for any convergent sequence of 

points {  } contained in S the limit point  ̅   . 

Definition 4.13 The set         is called closed if its closure (clS) is equal to S and open 

if its interior is equal to S. 

Theorem 4.14 A quasiconvex function on  [   ]       is lower semi-continuous (lsc) if  

  (   is closed and  upper semi-continuous (usc) if     
̅̅ ̅(   is open,      . 

Proof 

1. Suppose that s is left scattered and right dense, then two cases arise: 

(i). There exists    [   ]       such that [     ]   [   ]      . 

       Since     is convex, then for any    [   ], 

              (          [   ]      . 

        Let   (      and   (     . 

       Suppose that f is quasiconvex on[   ]      . Then from Definition 4.1, we have, 

         (    (    (            { (     (     

         (      {   }     

       Therefore,      and we conclude that     is convex. 

        Now, we show that    is closed: 

        Let        and       , for all         . 

       Then for any   (    , we get 

          (        . 

       In the limit as    ,     . Thus,        . 

From Definition 4.12     is closed and therefore f is lower semicontinuous. 
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Considering the argument for the convexity of the strict sublevel set ,   ̅  follows the 

same argument for   that of    . Thus, we show that it is open. 

Let s be an interior point of     ̅  and         ̅ .  

Then, 

      (          ̅  for all   (    . 

   In the limit as    ,    (            ̅ . 

  Therefore,    ̅      ̅   ̅      ̅  and  ̅  is open. Hence f is upper semi 

   continuous on  [   ]      . 

(ii). s is the limit of a decreasing sequence           . Thus, we have    of   

      isolated points. 

For   ℕ such that  {   }   
  is qasiconvex sequence. Thus, by the Definition 3.23 there is 

a point   {   }   
   such that             and therefore S is closed. Let   (      and 

 (      for all       such that        (          [   ]  for all   (    . 

Since f is quasiconvex, we have 

  (    (    (            { (     (   } 

  (       {   }    . 

 Thus,      [   ]  and therefore    is convex and closed and hence f is lower   

semicontinuous. 

 If the sublevel set is lower semicontinuous, then f is quasiconvex. The same argument 

goes for the the strict sublevel set. 

2. If s is a dense point on   [   ]  , there are two quasimonotone  sequences  {   }   
  and  

{   }   
  such that                         and s is the limit of both 

sequences. 
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 Thus, taking arbitrarily        [   ] . Let  (      and  (      with  

        (          [   ] , we have 

   (       (           { (     (   . 

Thus,  (    , which implies that    is convex and closed. Hence f is lower 

semicontinuous. 

The same argument goes for   ̅  which is also convex and open and therefore f is     

upper semicontinuous. 

3. Finally, for the case where s is isolated (that is both left and right scattered), the 

argument is the same for case 1(i). Therefore the assertion holds in both directions. Since 

all the cases are true, we conclude that a quasiconvex function on  [   ]  is lower and 

upper semicontinuous.         

Definition 4.15 A sequence {  } is said to be quasimonotone if and only if      and 

            for some     and             . 

Remark 4.16 A set     is said to be evenly convex if it is the intersection of half 

spaces. A function f is said to be evenly quasiconvex if all    (   are convex. Lower 

semi-continuous functions and upper semi-continuous quasiconvex functions are evenly 

quasiconvex. 

Let   (  (  ,  (  (  ,     (   and   ̅̅̅(   denote the closure, the convex hull, the evenly 

convex hull and closed convex hull of S respectively. Let   ̅,              ̅  be functions 

obtained respectively from the sets above and known respectively as the greatest semi-

continuous, quasiconvex, evenly quasiconvex and lsc quasiconvex functions bounded 

above by f. 
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Proposition 4.17 Suppose that f is quasiconvex on     and     (  (       Then  

   (  (        (       

Proof 

Suppose t is right and left dense, then there exists    and     in      , such that  

[    ] [    ] are all in       . 

Thus for   [    ]     , let   (      and  (     such that 

      (        (   for all    [    ]       and    . 

Since f is quasiconvex we have, 

 (    (    (          { (     (  } for any   (     

Thus   (      { (     (  }     {   }    

Therefore      (   and   (   is convex. 

Now, let      (      and         (    and for any    (    , we have 

   (           (   

In the limit as    ,    (             (  . 

Therefore,    (  (        (    . 

Consider the case where t is right and left scattered (isolated). Then there exist two 

quasimonotone sequences such that 

                        

Thus, we have    [     ]. 

Let  (      and    (      such that         (         (   [     ]. 

Since f is quasiconvex, we get 

 (    (    (           { (     (   }     {   }    
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 (     and therefore     (  .   (   is convex and closed since the sequences 

converge. 

Thus,     (     (  . This implies that     (  (        (    . 

Definition 4.18 A function f is said to be quasi-monotonic if and only if  

   {   (    }        {    (    } are convex. 

Theorem 4.19 Let     (       be quasiconvex. Then f is lower semi-continuous 

at         if and only if    ̅(    (   . 

Proof 

Suppose that    ̅(    (  . Then their sublevel sets are the same. That is, 

  (     (  ̅)  {        (    (̅        }. 

Now, consider that t is isolated. Then  

                        

 Taking any two arbitrary points    and     from the sequence , let   (      and 

 (     . 

For any   (    , we have       (         (       . 

Since f is quasiconvex, then we have 

 (    (    (           { (     (   }     {   }   . 

Therefore,     (   and   (   is convex. 

From Definition 4.12,    (   is closed and hence f is lower semicontinuous. 

Conversely, suppose f is lower semi continuous. That is to say   (   is closed. Then, 

  (   {         (        }  

  (  (    {       (̅        }  

Now, we show that    (     (  (    and therefore   (̅    (  . 
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Let      
    (  (    and       (  , then we have 

    (         (   for all   (    . 

Thus, suppose that    (    , then 

    (    [(    (       ]    (  . 

In the limit as    ,     (         (  . This implies that     
    (  .  

Therefore,   (  (      (     

Thus, we can write   (  (      (   {         (̅    (          }. 

Hence  (̅    (  . 

Consider the case where t is dense, then there are closed intervals [    ] [    ] in      . 

Let   (̅    (  . For any arbitrary points    and    , let  (      and  (      be such 

that 

      (         (   for any   (    . Since f is quasiconvex, we have 

 (    (    (           { (     (   }     {   }    

Thus,     (   and   (   is convex and closed because it’s within a closed interval 

[     ]  

Therefore f is lower semicontinuous on       . 

Conversely, suppose that f is lower semicontinuous. Then 

  (   {        (        } and 

  (  (    {       (̅        }. 

Already   (  (      (   is shown to be true. Therefore, we have  

  (  (      (   {         (̅    (          }. 

Hence,   (̅    (  . 
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Definition 4.20 A quasiconvex function is called monotonically decreasing or 

nonincreasing if whenever           (    (    

Theorem 4.21 Let           be quasiconvex. If the sub-level set 

   (   {        (             }  is convex, then 

   (    {         (                 }                 

Proof 

                                                      

   (   {     (                             Therefore for every         , 

 (   (          { (    (  }      

    (         (                                     

                   

  (   (           { (    (  }                                

                                                

   (    {         (                 }. 

Thus for any        , there exists    (         and therefore     is convex. 

Theorem 4.22  

Let           be delta differentiable function on     . If  
  is quasimonotone on     , then 

   is quasiconvex  on     . 

Proof 

First, we establish that the function is delta differentiable and show that it is 

quasimonotone and therefore quasiconvex. 

                                                 [        

      [               
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  (    
 (    (  

   
   (                                                        

  (    
 (    (  

   
   (                        (17) 

                         (             

 (    (  

   
   (       (    

 (    (  

   
                                (18) 

                                  

 (    (  

   
   (        (    

 (    (  

   
                                 (19) 

Thus the delta function    exists. Next we establish that    is quasimonotone, that is to 

say the sublevel sets     ( 
          (      are convex. 

                                         

   ( 
   {         

 (           }  

Thus for any          there exists     (           since     is convex. 

Hence     is convex. Theorem 4.23 already establishes that     (     is convex if     is 

convex. 

Therefore,    is quasimonotone. From Definition 4.1     is quasiconvex.  

Theorem 4.23 Let          be nabla differentiable function on    . If    is 

quasimonotone on    
, then f is quasiconvex on    

. 

Proof 

 Suppose           
                 (   ]          (   ]            

  (    
 (    (  

   
   (         

 (    
 (    (  

   
   (       (20) 

Since           equation (20) becomes 

 (    (  

   
   (       (    

 (    (  

   
                          (21) 
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                       (             

 (    (  

   
    (      (    

 (    (  

   
                          (22) 

                                                                         

                  

Theorem 4.24 Let    be the relative interior of    and         be quasiconvex 

function. Then f is continuous almost everywhere over   . 

Proof 

                                                                  [   ]     

 (    . 

                        (                              (               

(            

                                                   [   ]                   

                          

| (    (  |        (              (      (    (       (23) 

      (                                  (           

  (         (           

           (                               (           

  (         (           

Theorem 4.25 A function         is quasiconvex on        if and only if there 

exists a quasiconvex function  ̅       such that  (̅    (          . 

 Proof 

For the sufficient part, since if there exists a quasiconvex function  ̅ on   such that  

 (̅    (        
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 (̅    (         (   (     (      { (  }   (  } 

                             [   ]  When       (         (    then we get 

inequality (1), which is the quasiconvexity on      

Thus, 

 (̅   {

 (                                                                                                       
                    

 (   
 ( (    (  

 (  
(             (   (                                 

} (24) 

For any        and   [   ], we have       

  (̅   (         (̅   (     (̅                   (25) 

For        and    (    the chord joining (   (  ) and (   (  ) is above all points 

(   (  )  with     . If      and     ⁄  with    (  , then (   (  ) is on the chord 

from (   (  ) to ( (    ( (    and so are all the points 

(   (       (   (         

If    (    then we can find      such that     and      (    such that 

 (    (  

   
 

 (    ( (   

   (  
         (26) 

                    ̅   [   (            

 (    (  

   
 

 (    ̅(  

   
 

 (    ( (  )

   (  
         (27) 

           [   ]      (      [   ]           

 (̅   (        (   (         

           (                                          

Proposition 4.26 A quasiconvex function on [   ] is lower semicontinuous on (      

Proof 

       [   ]                          (        
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  (   {   (          }                 [   ] . 

  (   is closed within the interval (      if and only if   
̅̅ ̅(   is open. 

Suppose   
̅̅ ̅(   is the limit point of   (    Then every neighbourhood of t contains a point 

of   (    so that t is not in an interior of   
̅̅ ̅(    Since   

̅̅ ̅(   is open, this means that 

    (    It follows that   (   is closed. 

Next assume that   (   is closed. 

Let     
̅̅ ̅(    This means that t is not a limit point of   (  . Therefore the exists a 

neighbourhood   of t such that 

  (     (   (                       

      
̅̅ ̅(    Thus t is an interior point of    

̅̅ ̅(   and hence   
̅̅ ̅(   is open. 

This concludes the proof that   (   is closed and therefore f is lower semicontinuous at 

   [   ]    and hence lower semicontinuous on(       

Proposition 4.27 A quasiconvex function is continuous at   [   ] if and only if it is 

upper and lower semicontinuous at   (    . 

Proof 

                  

 (    (  

   
 

 (    (  

   
 

 (    (  

   
          

       (                                   (                 

                 

  (                           

       (          
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where, 

   
    

   
                 (28) 

Taking the limit superior of both sides of (28), we consequently have 

   
   

    (        
   

    (    (            
   

   (   (    (      (   

      (             (                                                                     

Hence f  is upper semicontinuous at   (      

                   (                                 

                    

       (                                                                                 

where 

   
   

    
                                                                                                      

  
   

    

   
                                                                              

Thus 

 (    (     (            (    (      (                        29 

Rewriting (29) gives 

(  
   (     (           

   (                                                     

Taking the limit inferior of both sides, we have 

          (   
   (             (  (           

   (            

Thus, 

 (             (                                                                                     

                                         (      

                                                        (      
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 (    (             

                  (            (               

                     (      . 

This implies that 

| (    (   |         |    |      

where   is a very small number. 

Thus, f is continuous. 

Similarly, if f is lower semicontinuous, then for every    , there exists         such 

that  (    (       for all     when  (        (   tends to     and t tends to 

   when  (      . 

        (     (          30 

Rewriting (30), we have 

|  (     (  |      | ( (     (    |    

Therefore, 

| (     (    |         |    |                                                                

Hence f is continuous. 

 

4.3 The Subdifferential 

We briefly define the left nabla and right delta derivatives of a quasiconvex function 

before examining the quasiconvex subdiffrerential. 

                                            

  (          
 (    (  

   
                                        

                        (                
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  (          
 (    (  

   
                                       

The existence or otherwise of the limit may be caused by the lateral limits in the above 

relation. 

Thus, for a dense point      , we define 

  
 (      

       

 (    (  

   
  

  
 (      

       

 (    (  

   
  

For an arbitrary quasiconvex function       and a point       , such that 

  (        
 (    exist, we define  

  
 (   {

  (                                       

  
 (                                                

 

          (        
 (                              

  
 (   {

   (                                      

       
 (                                                

 

  
 (         

 (    are respectively the left nabla and right delta derivatives of    in  . 

It is clear that if   is left scattered or right scattered, 

   
 (      (          

 (     
 (       

Then we have, 

  
 (     (     

 (     (      

Elsewhere, the function is neither right delta nor nabla differentiable at  . 

Remark 4.28 

Let        be quasiconvex and     
   such that there exist    

 (         
 (   

And suppose    (   is closed and   
̅̅ ̅(   is open. Then the function is semicontinuous.  
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Now, if    is scattered,    (   is closed and   
̅̅ ̅(   is open, then the existence of   

 (     and   

  
 (    is the existence of   (         (   and which implies the semicontinuity of   in  . 

If    is dense then we have    
 (   and   

 (    as finite numbers.   

Using the above, we present a theorem which is the quasiconvex variant of Theorem 4.1 

of the Dinu (2008). 

Theorem 4.29 

Let   [   ]    be quasiconvex function. Then for all      [   ]  with      ,we 

have    
 (      

 (      
 (      

 (   and hence both   
  and    

  exist and they are 

increasing on  [   ] . 

Proof 

Let           [   ] .Then from the definition of convexity and Remark 4.28, 

we get 

 (    (  

   
 

 (    (  

   
 

 (    (  

   
   

Suppose   is right scattered and left dense and y approaches  , we have 

   
   

 (    (  

   
   (   

 (    (  

   
   

We notice that 

   [   ]     (   
 (    (  

   
         (31) 

Is nondecreasing and bounded above as a function of  . 

If we substitute    (   into (31), we obtain 

  (   
 ( (  )   (  

 (    
   (   

  (     (   
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A similar argument will give the same conclusion for   being left scattered and right 

dense. Assume that    is left scattered and right dense and z approaches  , we have 

      
 (    (  

   
   (   

 (    (  

   
       (32) 

             (        (                 

  (   
 ( (  )  (  

 (    
   (          (33) 

Re-writing (33), we get (31). 

                                   (      (          

 ( (  )  (  

 (    
 

 ( (  )  (  

 (    
   (     (         (34) 

                       (      (    

                                                                           we get, 

   
       

 (    (  

   
    

       

 (    (  

   
  

                  [   ]           

   
 (      

 (          (35) 

                              

 (    (  

   
 

 (    (  

   
 

 (    (  

   
       (36) 

Concise form of (35) gives 

   
 (     

 (          (37) 

Combining (36) and (37) concludes the proof. 

Remark 4.30 

From Remark 4.28 and Theorem 4.29, the semicontinuity of a quasiconvex function in 

[   ]   is well established. 
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Next, the subdifferential of a quasiconvex function is presented. This is a time scale 

variant of the quasiconvex subdifferential introduced by Daniilidis et al (2002). 

Definition 4.31 The quasiconvex subdifferential         of a lower semicontinuous 

function f is defined for all      as follows 

   (   {
  (      (               ̅̅ ̅̅ (   { }

                                    ̅̅ ̅̅ (   { }
          

where     (   {      (    (               } 

whenever f is convex; 

   (   {                       } 

is the normal cone to sublevel set.  

  (          ̅̅ ̅̅ (    is the normal cone to the strict sublevel set    
̅̅ ̅(   and “      is an 

inner product. 

                                                                             (    This 

subdifferential provides the gradients of the lines that touch the graph of the function. 

The subdifferential is usually a nom empty convex compact set or convex closed set but 

however it can be an empty set (Daniilidis et al, 2002). 

Mostly, the subdifferential generalizes the derivative of the functions at points that are 

not differentiable. However, the subdifferential of a function be found espercially when it 

is continuous. 

The function         admits a hyperplane at      if there exists a       such that 

 (    (      (            (38) 

Thus, equation (38) becomes 

 (    (  
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Proposition 4.32 Let the restriction of     on line segments be continuous (that is f is 

radially continuous). Then  

(         , we have 

           (   {
  (      (               ̅̅ ̅̅ (   { }

                                    ̅̅ ̅̅ (   { }
   

(        
  (  

{ }⁄    (   

      

(          (     (                (           

   ̅̅ ̅̅ (   { }                                   (              ̅̅ ̅̅ (   { }  

 Note that         (              (    (         

                                    (                                 (      

             (                                  
   (  

{ }
⁄    (            

   
   (  

{ }
⁄                                  

                                                       

                          (       (    

                                                  (    (            

     (             (           

    (      (      (    

(                                                      

        
   (  

{ }⁄  
   (  

{ }
⁄  

   ̅̅ ̅̅ (  

{ }
⁄     (    
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Definition 4.33 Let        be a multivalued operator. Then     is cyclically 

quasimonotone, if for any      and              , there exists   {        } such 

that  

                           (      (                If n is restricted to     , 

then    is quasimonotone. 

Proposition 4.34 For every lower semicontinuous quasiconvex function, the 

quasiconvex differential (     is quasimonotone. 

Proof 

                            (              

                           (                

      (       (                                   

 (     (                           

                              and hence from Definition 4.33   is 

quasimonotone. 

Theorem 4.35 Let   [   ]    be a quasiconvex function on a time scale. Then   

   (    ,     (     . For any function    [   ]    such that    (      (  , 

verifies the inequality 

  (    (     (    

For all    (      and thus f is nondecreasing. 

Proof 

          [   ]                                                     

 (    (  

   
 

 (    (  
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 (    (  

   
            

 (                                

                     
 (    (  

   
            (              

 (    (     (  (     

                               [   ]          

 (    (     (  (      

                           

  (     (             (39) 

          (                    (            [   ]    
 (      (       (   

and therefore the left nabla and right delta derivatives belong to 

                                                             (  .Thus, for every 

  (   [  (     (  ] , we have 

  (    (     (                            

Remark 4.36 If   [   ]    is a quasiconvex function and       is a function 

such that   (      (  , for all      
 , then 

 (       { (      (    } 

for all        and    (     . Moreover, if f is lower semicontinuous, then the above 

relation holds for all    [   ] . 

Theorem 4.37 Let   [   ]    be a function such that     (     for all  (     . 

Then f is quasiconvex. 

 Proof 

        (            [   ]             (      (       

               (   (              
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 (    (   (        (            (40) 

 (    (   (       (    (           (41) 

               (       (        (                 

(     (   (     (   (        (    (         (42) 

  (     (   (        (    (          (43) 

        (        (            

  (   (     (   (     (   (         (   (        (44) 

            (           

 (   (         (   (     (      { (    (  } 

Thus, 

 (   (          { (    (  }  

Hence the quasiconvexity of  f 

 

4.4 Applications of Quasiconvex functions on Time Scales 

 We present some Jensen type inequalities for quasiconvex functions and give some 

applications in the area of probability theory and mathematical finance in this section.   

Proposition 4.38   For an arbitrary mapping      (     and       being convex for 

all            we can define the map    
 [   ]     by    

(     (∑   
 
         

For    [   ]  

The following statements are equivalent: 

(i). f is quasiconvex on  . 

(ii). For every       the mapping    
 is qiasiconvex on [0, 1]. 

Proof 
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Assume that f is quasiconvex on  . 

Let     [   ] and      with ∑     . Then 

   
(∑     

 
      (∑       

 
                                                                                     

We proof by induction by letting        be two fixed points in   and       with 

        . 

   
(∑     

 
      (∑        [  ∑     

 
   ] 

                                     

   
(∑     

 
      (              [  (          ]                 

   
(∑     

 
      (                                                (45) 

Rewriting (45), we have 

   
(∑     

 
      (∑   [     (       ]

 
                                            

   
(∑     

 
             [ (     (        ]                                      

   
(∑     

 
              {   

(   }                                                          

Thus, 

   
(∑     

 
                  {   

(   }                                                     

which shows that the mapping     
 is quasiconvex on [   ]. 

Conversely, suppose that (ii) holds. Then for any isolated points           and   [   ]  

 we have, 

 (    (              (                                                                    

 (    (              ((                                                                                                      

 (    (                {      
(         (    }                                

 (    (           { (     (   }                                                                      

Proposition 4.39 Suppose that    is quasiconvex on [   ] for         . Then 
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             is quasiconvex on [   ]. 

Proof 

Let         [   ] be isolated points. Then 

 (                     (                                              

 (                             (                                        

 (              
     

       
     

  (                                                      

 (               (   
     

                                                                

which establishes the quasiconvexity of  . 

 

4.4.1 Discrete Probabilistic Interpretation of Jensen’s Inequality for Quasiconvex 

functions On Time Scales  

Suppose that     is a discrete random variable such that   {          }    with 

probabilities  (         where      with  ∑      
   . Let  (   be an arbitrary 

discrete probability mass function. Then the following properties are satisfied: 

Property 1:   (      for            . 

Property 2:  ∑  (      
   , where the summation is over all the possible values of the 

random variable  . 

Property 3: The expectation of    is  (   ∑   
 
     . 

Example 4.40 

From Table 4.1, find the expectation  (   and show that for an arbitrary function 

      [   ]  we can define a mapping (expectation function)  

   
 [   ]     by  
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(     ( (   . 

Table 4.1 Probability Distribution of S 

 

  

 

  

 

  

 

  

 (     

  
 

 

 
 

 

 
 

 

Solution 

The probability mass function is  

 (   {
 

  
(                    

                                        
                                                            

 (   ∑    (
 
         

 

  
   

 

 
   

 

 
 

  

  
                                 

Let     
(     ( (   .                                                                                   

Thus, 

   
(     ( (  )   (

  

  
)  

 

  
( (

  

  
)   )  

   

   
                            

   
(     (∑   

 
        (                                                          

   [   ]. 

 (                          {   }.                                                       

Thus, we have 

   
(              {   }.                                                                                  

   
(        

 

  
     ;    

(        
 

 
     ;    

(        
 

 
      

   
(         

           and therefore confirms proposition 4.38. 
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Proposition 4.41 

Suppose that        is quasiconvex and   is a discrete random variable taking 

values in    with    {          }    and probabilities  (        , then 

 ( (     ( (  . 

Proof 

Suppose that        is quasiconvex and              are arbitrary random 

variables which are right scattered with  

           (     arbitrary weights. The arithmetic mean 

 (    ̅  ∑   
 
      is a point in   . 

Therefore, the support function below satisfies  all     , such that 

 ( ̅   ( ̅ (   ̅   (                                                                                 (46)                                                                                                                                

where   ( ̅  is the gradient at  ̅. 

Putting      , multiplying (46) by    and summing gives 

∑ [  
 
    ( ̅   ( ̅ (    ̅   ]  ∑    (   

 
     ( (                                

∑ [  
 
    ( ̅  ∑  ( ̅ (    ̅   ]

 
     ( (                                                   

∑ [  
 
    ( (   ∑  ( (   (    (     

 
   ]   ( (                                   

 ( (  )  ∑  ( (    
        ∑  ( (    (     

 
      ( (                      

  ( (  )   ( (   ∑     
 
     ( (    (   ∑   

 
      ( (                    

  ( (  )   ( (  ) (    ( (    (     ( (                                                      

 ( (  )   ( (                                                                                              

This is the well-known arithmetic-mean inequality for    . 
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4.4.2 Continuous Probabilistic Interpretation of Jensen’s Inequality for 

Quasiconvex functions on Time Scales  

Proposition 4.42 

Let  (   be a probability density function for random variable     such that   [   ]  

suppose  (   is integrable,  (     and  ∫  (      
 

 
. The expectation of   is 

 ̅   (   ∫   (    
 

 
. Therefore, 

 ( (  )   ( (  )       

Proof 

Let t be left and right dense in an interval  [   ]  Since the probability density function is 

quasiconvex, there exist a subdifferential  

      which is convex for all    . Then  

 (  ̅   (  ̅(    ̅   (                                                                                 (47) 

 Integrating (47), we have 

∫ [ (  ̅   ( ̅ (    ̅]
 

 
 (     ∫  (  

 

 
 (                                                   

∫  (  ̅
 

 
 (     ∫  (  ̅(    ̅ (     ∫  (  

 

 
 (     

 

 
                                              

 (  ̅ ∫  (     
 

 
∫  (  ̅ 

 

 
 (     ∫  ( ̅  ̅

 

 
 (     ∫  (  

 

 
 (                    

 (  ̅   (  ̅ ̅   (  ̅ ̅   ( (                                                                          (48) 

Simplifying (48) gives  ( (     ( (    confirming the proposition. 

This is the continuous time scale version which is the same as the classical Jensen 

inequality when     . 

Proposition 4.43 Let [   ]    and      (      . Suppose that   [   ]  (     is 

right dense continuous;   (       is quasiconvex. Then 
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 .
∫  (    
 
 

   
/  

∫  ( (     
 
 

   
.  

Proof 

Let   ̅  (    . Then there exists a      such that 

 (    ( ̅   (   ̅                                                                                 (49) 

for all   (    .Since   is rd-continuous, 

 ̅  
∫  (    
 
 

   
                                                                                                     (50) 

 ( (  ) is also rd-continuous and hence we can apply (51) and set    (   and integrate 

from   to   to get 

∫  ( ( 
 

 
     (     .

∫  (    
 
 

   
 /  ∫  ( ( 

 

 
     (     ( ̅               (51) 

From (49) (     ( ̅  ∫  ( ̅   
 

 
 and therefore (51) yields 

∫  ( ( 
 

 
     (     .

∫  (    
 
 

   
 /  ∫ [ ( (    ( ̅ ]  

 

 
                          (52) 

Substituting (49) into (52) we have   

∫  ( ( 
 

 
     (     .

∫  (    
 
 

   
 /  ∫  (   ̅   

 

 
                                     (53) 

But    (   and therefore (127) gives 

∫  ( ( 
 

 
     (     .

∫  (    
 
 

   
 /   ∫ ( (    ̅   

 

 
                                 (54) 

∫  ( ( 
 

 
     (     .

∫  (    
 
 

   
 /   (∫  (     ∫  ̅

 

 

 

 
  )                      

∫  ( ( 
 

 
     (     .

∫  (    
 
 

   
 /   [(     ̅   ̅(    ]                     
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∫  ( ( 
 

 
     (     .

∫  (    
 
 

   
 /   (                                                     

∫  ( ( 
 

 
     (     .

∫  (    
 
 

   
 /                                                            

This yields the Jensen’s inequality. 

Example 4.44 

The probability density function of a  random variable   is given by 

 (   {

                                               
 

 
                                       

                                               

                                                   

Find the cumulative density function  (   and verify that Proposition 4.43 holds. 

Solution 

If      , then 

  (   ∫  (      
 

  
.                                                                            

If        , then 

 (   ∫  (     ∫  (       ∫
 

 

 

 

 

 

 

  
   *

  

 
+
 

 

 
  

 
                        

If      , then  

 (   ∫  (     ∫  (     ∫  (     ∫
 

 

 

 
   *

  

 
+
 

 
 

 

 

 

 

  
 

 

 
 =1      

Thus, 

 (   {

                                                  
  

 
                                       

                                                 

                                                

From Proposition 4.43, we have 

  .
∫  (    
 
 

   
/  

∫  ( (     
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[   ]  [   ] and  (     (    . 

Solving the left-hand side of Proposition 4.43, we have 

∫  (    
 

 
 ∫

 

 
   *

  

 
+
 

 
 

 
 

 

 
                                     

 (
 

   
)   (

 

 
)  

(
 

 
)
 

 
 

 

  
                                                                      

Solving the left-hand side of Proposition 4.43, we get 

∫  (
 

 
)  

 
 

   
 

∫ (
 

 
)
  

 

   
 

∫ (
  

  
)  

 
 

 
 

[
 

 
 
  

  
]
 

 

 
 

 

  

 
 

 

  
                                         

Therefore, 
 

  
 

 

  
 , which verifies  Proposition 4.43.                                        

 

4.4.3 Jensen’s Inequality for Monetary Utility Functions on Time Scales 

 Monetary utility functions are non- linear functions that are bounded and asymmetric 

about the origin. They have attracted much attention in mathematical finance in recent 

times because of their usefulness and profound applications in the decision making 

process. In situations where outcomes of choices influence utility through gains or losses 

of money which is usual in the business environment, the optimal choice for a given 

decision depends on the possible outcomes of all other decisions in the same period of 

time. 

Jensen’s inequality holds for classical expectation, which in terms of operator, can be 

seen as a particular type of monetary utility function (Liu and Jiang, 2012). The interest 

in this section is to examine the application of quasiconcave (the negative of 

quasiconvex) functions on time scales. The monetary utility function is quasiconcave in 

nature. 
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Notations and Assumptions 

Let (        be a probability space with   describing the set of all possible outcomes; 

  the collection of complex events used to characterize groups of outcomes and   the 

probability measure function. 

Assume that    { {  }   
   |  |        ℕ                } is a space of bounded 

random variables. 

Definition 4.45 A function         is called a monetary utility function if it is 

nondecreasing with respect to the order of     and satisfies  

(i)  Normalization condition:  (     if     . 

(ii) Quasiconcavity:  (   (           { (    (  }, for all        and     

              (      . 

(iii) Monotonicity:   (    (   for all        such that    . 

(iv) Monetary or cash invariance property:   (      (    , for all      and  

           . 

(v) Fatou property: If   {   ‖  ‖}   
   , if       in probability, then  

     (           (   . 

Remark 4.46 The monotonicity and monetary property suggest that    is finite and 

Lipschitz-continuous on    . Thus, the normalization   (     does not restrict the 

generality as it can be obtained by adding a constraint (Jouini et al, 2008). 

Proposition 4.49 is of vital importance in order to establish our main results. This 

proposition is the same as proposition 2.1 in Liu and Jiang (2012) though we imposed 

quasiconcavity on the monetary utility function. 
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Proposition 4.47 Let          be a monetary utility function which is quasiconcave. 

Then for any      ,     , the inequalities 

(i).  (      (  , if                                     (55) 

(ii).  (      (  , if                             (56)     

hold.    

Proof 

(i). For        and quasiconcavity of  , we have 

       (   (         (   (     (       { (    (  },  

      for all        . 

       For the property of monotonicity of     and      , we have 

       (   (         (   (     (    (  .   

        (   (         (    (     (    (      

        (   (         (     (   

        Take      (      (Normalization condition) 

  Thus, 

        (      (  . 

(ii). Consider    , then    
 

 
  . By (55), 

        ((
 

 
) (   )  

 

 
 (    

         ((
 

 
) (   )   (    

         (    (    

       For        , then       . By (55) 

        ((      (    (                                           (57) 
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       But, 

          (    (
 

 
    

 

 
(    )  

 

 
 (    

 

 
 ((       

           
 

 
 (    

 

 
 ((         

        (     ((       

          ((        (                                              (58) 

Combining (57) and (58), we have 

           (    ((        (                        

Thus,  

           (     (      or           

              (    (                     

This completes the proof of proposition 4.47                 

Next, we consider two theorems that characterize Jensen’s inequality for monetary utility 

functions. Here, we disregard the conditions in Liu and Jiang (2012) and establish similar 

results. 

Theorem 4.48 Let        be any monetary utility function for all       . Then for 

any convex function    on  , we have 

 ( (  )   ( (     

Proof 

Based on the subdifferential inequality in (Dinu, 2008), we have 

 (    ( (  )   (   (     for all      and    . 

For generality of    , we have 

 (    ( (  )   (   (  )    
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Considering the monotonicity and cash invariance of   together with (55) under 

proposition 4.47, then we obtain 

 ( (     ( ( (  )   (   (  ))    

 ( (  )   ( (  )    (     (  . 

 ( (  )   ( (  ). 

Hence, 

    ( (  )   ( (  ). 

Theorem 4.49   Let    be any concave function on   . Then for any       and any 

monetary utility function         , the inequality  

 ( (  )   ( (  )  

Proof 

Again from Dinu ( 2008), 

 (    ( (  )   (   (  )       

Following the same steps in Theorem 4.49, we have 

 ( (  )   ( (  )  

We see that it is possible to get Jensen inequality for quasiconcave monetary utility 

functions with respect to convex and concave functions. It is well established that 

Jensen’s inequality is not true for all monetary utility functions even when the associated 

convex or concave function is linear (Liu and Jiang, 2012). 

Next, we consider when   and   are quasiconvex and quasiconcave respectively. 

Theorem 4.50 Let    be a quasiconvex function on    . Suppose that        is a 

monetary utility function, then  
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 ( (  )   ( (  )  for all      . 

Proof 

Based on the subdifferential for quasiconvex function in Daniilidis et al (2002), we have 

 (   (       (    ( (   . 

     (      (    ( (   . 

From the cash invariance property of  , we have 

 (     (       ( (     ( ( (  ) . 

 (      (     ( (     ( (  ). 

 (      (     ( (  )   ( (   . 

It is possible to establish the Jensen inequality for monetary utility functions with respect 

to quasiconcave functions (Theorem 4.51) and prove based on the subdifferential 

inequality in (Daniilidis et al, 2002). Since the proof follows the procedure as Theorem 

4.50, we state only the theorem. 

Theorem 4.51 Let    be a quasiconcave function on   and        be any monetary 

utility function. For all        , then  

 ( (  )   ( (  ). 

The example below shows that Jensen’s inequality is true for all quasiconcave monetary 

utility functions with respect to certain quasiconvex and quasiconcave functions. 

Example 4.52 Let  (   
    

    
 (              and   (   

    

    
 (     

         be quasiconvex and quasiconcave functions respectively on    . We see that 

Jensen’s inequality is true for all quasiconcave monetary utility functions in respect of 

quasiconcave and quasiconvex functions that are linear-fractionals. 
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 (   
    

    
 

 
 
(        

  
 

    
 

 ( (  )  

 
 
(  (        

  
 

  (    
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(        
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 (     
 

 ( (  )   .

 

 
(        

  

 

    
/  

Thus, 

         ( (  )   ( (  ). 

 (   
    

    
 

 
 
(        

  
 

    
 

 (   

 
 
(  (        

  
 

  (    
 

 (
 
 
(        

  
 
)

 (     
  

 (    .

 

 
(        

  

 

    
/  

Therefore, 

    ( (     ( (  ). 

Thus Jensen’s inequality holds. 

We examine the entropic utility function in Liu and Jiang (2012) which is similar to 

Acciaio (2007) and defined as  

  (       [   (   ]  

via quasiconvex and quasiconcave functions. The example below serves as an 

illustration. 
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Example 4.53 Let  (   
   

   
 and  (    

   

   
  be quasiconvex and quasiconcave 

functions respectively. Choose      such that   (      (          

Thus, for      , 

 (   
 

 
  and   (       [   (   ]     

 ( (  )   (   
 

 
 . 

 ( (  )   (
 

 
)      *   ( 

 

 
)+  

 

 
. 

Taking      , we have 

 (   
 

 
 and   (       [   (   ]     

Therefore, 

 ( (  )   (   
 

 
. 

 ( (  )   (
 

 
)      *   ( 

 

 
)+  

 

 
. 

Similarly, for     , 

 (    
 

 
  and   (       [   (   ]    

 ( (  )   (    
 

 
. 

 ( (  )   ( 
 

 
)      *   (

 

 
)+   

 

 
. 

For      , we have  

 (    
 

 
 and   (       [   (   ]     

 ( (  )   (    
 

 
 

  ( (  )   ( 
 

 
)      *   (

 

 
)+   

 

 
.  
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An application of Jensen’s inequality for monetary utility functions is given which is 

similar to the results in Liu and Jiang (2012). 

Example 4.54 

Using the entropic utility of the future outcome    , it is possible to estimate the entropic 

utility of     or      . Jensen’s inequality is a useful tool. Suppose that  (      and 

 (       are quasiconvex and quasiconcave functions satisfying theorems 3.3 and 

3.4, we have 

     [   (    ]       [   ( (     ]. 

     [   (    ]       [   ( (     ]. 

Jensen’s inequality for quasiconcave type monetary utility functions is examined. 

Examples 4.53 and 4.54 show that the inequality of Jensen holds for for quasiconcave 

and quasiconvex functions of linear fractional form and that the Jensen inequality is a 

useful tool for estimating the entropic utility of a future outcome. 
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CHAPTER FIVE 

SUMMARY, CONCLUSION AND RECOMMENDATIONS 

5.0 Introduction 

The main results of the study are summarized and some conclusions and 

recommendations are drawn in relation to quasiconvex functions on time scales. 

 

5.1 Summary of findings 

 Time scales analogues of quasiconvex functions have been developed. Thus, the 

study unified and extended corresponding continuous and discrete versions in the 

literature.  

 The time scales version for the subdifferential of a quasiconvex is introduced in a 

similar way that Dinu’s  subdifferential is related to the convex ones. 

 Some Jensen inequalities for quasiconvex functions on time scales have been 

presented and applied in the areas of probability theory and mathematical finance. 

The study investigated quasiconcave-type monetary utility function and 

established that the Jensen inequality holds for such a monetary utility function 

regarding some convex, concave, quasiconvex and quasiconcave functions. 

 

5.2 Conclusion 

In the study, the structure underlying quasiconvex functions can be presented in the 

context of time scales. Some properties such as set relations, semicontinuity, 

differentiability and inequalities of quasiconvex functions in the domain of time scales 

were established. Also the study defined the subdifferential of a quasiconvex function on 
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time scales with the condition of convexity of the function .This study further proved that 

the Jensen inequality holds for a quasiconcave monetary utility function in relation to 

quasiconvex and quasiconcave functions of linear fractional form. 

 

5.3 Recommendations 

It is recommended that further studies be carried out on quasiconvex functions on time 

scales in other areas such as boundedness, extreme values, and transformations to 

ascertain the validity of the properties. 

Furthermore, it is recommended that further investigation be done on the applications of 

quasiconvex functions on time scales in optimization, economics, mathematical 

modeling and among others. 
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