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ABSTRACT 

The main objective of this study was to apply estimation maximization concept to assess 

residuals through structural equation modelling. This was achieved through simulation 

setup. Data was obtained from test scores of some selected course lecturers of Kumasi 

Technical University to validate the results from the simulation. The results showed that 

the estimated residuals of the measurement errors using all three estimators correlate 

negatively with the estimated residuals associated with measurement errors of items that 

load on the same factor.  These correlations are strongest when using the Bartlett’s method-

based estimator and weakest when using the regression method-based estimator. Thus, the 

Bartlett’s method-based residual estimators are among the three estimators that achieved 

very close values. Also, it can be deduced from the results on the various simulation of 

quantile-quantile plots that all these methods demonstrate the ability to detect outliers 

and potential influential observation in a SEM framework. It is worth noting that the 

Anderson-Rubin method provided a quantile-quantile plot which was more efficient in 

terms of visual display for detecting outliers and potential influential observations as 

compared to the other class of residual estimators. 

Finally, it was therefore found from the comparative model fits information, by 

comparing among the three existing residual estimators, that the Bartlett’s based method 

gave better residual parameter estimates over the regression based method and the 

Anderson Rubin based method. However, the estimation maximization method gave 

better residual parameter estimates than the other three existing methods. It is therefore 

worth noting that this present study contribution to knowledge is demonstration of the 

fact that estimation maximization method could be a better residual estimator within the 

SEM framework compared to other existing methods. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background to the Study 

Structural equation models (SEM) are extensions of the usual linear regression models 

potentially involving unobservable random variables that are not error terms. Also, a 

random variable may appear as an independent variable in one equation and a dependent 

variable in another. A random variable in a structural equation model can be classified 

in two ways. It may be either latent or manifest, and either exogenous or endogenous 

(Blalock 1971, Goldberger 1972, Goldberger & Duncan 1973, Aigner & Goldberger 

1977, Bielby & Hauser 1977, Bentler & Weeks 1980, Aigner et al, 1984, Joreskog & 

Wold 1982, and Bollen 1989). Latent variable is a random variable that is not observable. 

Manifest variable is a random variable that is observable. It is part of the data set. 

Exogenous Variable is a random variable that is not written as a function of any other 

variable in the model. Endogenous variable is random variable that is written as a 

function of at least one other variable in the model. 

 

According to Ringle et al (2009) the manifest model links every construct variable to the 

measured variables for which it is related to and therefore indicating the synthesis of 

many variables into a combine (and at times latent) variables. On the other hand, the 

structural model (Ringle et al, 2009) links the combine (latent) variables in a model to 

every other. Therefore, a procedure for computing purposes, usually known as estimation 

method, becomes imperative in order to estimate the parameter values that describes 

these associations. Under the SEM concept, both the explanatory and the response 

variables could be construct or manifest (Lee & Xia, 2008). Therefore, structural 

equation modeling is said to be a method for assessing a number of associations as well 
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as examining a quantitative value to every case base on the covariances among the 

variables. The quantitative values are known as parameter estimates, which are numeric 

approximations of the degree as well as the direction of without-variable associations 

that might be considered under a population (Bollen, 1989; Kline, 2011). SEM is also 

the commonest method which is applied across varied fields including education, 

psychology, sociology, economics, marketing research, just to list a few (Monecke & 

Leisch, 2012). SEM is basically calculates the coefficients all together for multiple 

regression regarding a system in which explanatory as well as the response variables are 

supposed to be interrelated in possibly complicated ways since some particular variables 

can be both response and explanatory variables while some response variables have many 

explanatory variables, among others (Bollen, 1989; Haenlein & Kaplan, 2004; Kline, 

2011). Moreover, SEM seeks, mainly, to identify a particular set of parameter estimates 

(i.e., path coefficients, error terms, etc.) which reduces the total difference between the 

implied covariances through the model and those measured under population. Thus, 

generally, SEM is made up of manifest model(s) as well as the structural model (Bollen, 

1989; Kline, 2011). 

 

SEM is a general concept which adapts to different aspects of the life of people, both 

socially and scientifically. Contrary to many other statistical methodologies that lay 

emphasis on modelling single and/or many variables, SEM often lay place prominence 

in modelling measured observations which in terms of covarience matrices so that the 

parameters attained could minimize the disparity among the measured and the predicted 

convariance during the modelling process. A residual in SEM mainly refers to the 

disparity among measured and predicted covariance. As a result of the aforementioned 

reason the term residual in SEM is significantly different form that which apply in 
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traditional statistics. Thus SEM differ hugely as it emphasizes on the measured 

convariance observations.  

Moreover, SEM is very amenable technique and has the ability to model intricate problems 

with pictorial models which the other statistical methodologies would not be able to generate. 

Again it has the capability of modeling every facet of human life by adopting and utilizing 

manifest observations and observed variables along with their error terms. As a result of its 

convenience it is utilized in societal issues and scientific related disciplines.  

 

1.2 Statement of Problem 

There is substantial disparity between structural equation modelling and other statistical 

methodologies. This can be attributed to the former’s ability in modelling the covariances 

associated with measured or indicator variables contrary to the latter which can model 

only the individual elements. Again, the process of analyzing residuals clearly 

demonstrates the how SEM differ from other statistical methodologies. For quite a 

number of statistical methodologies, analyzing residuals basically involve displaying 

graphics regarding residuals. Diagnostics of a model using residuals, testing hypothesis 

about residuals to examine assumptions of a model as well as spotting possible outliers 

and controlling elements are among the commonest methods utilized regarding the 

application of residuals in many statistical methodologies other than SEM. Meanwhile, 

many established model diagnostics, have been utilized in assessing fitness of any 

hypothesized structural equation model as well as a number simulation researches that 

have examined the influence of misspecifying models, departure from assumptions as 

well as outliers.   
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However, it is worth noting that the use of residual analysis and by extension residual 

estimators akin to what is often utilized under other statistical methodologies to estimate 

residuals for a structural equation model has been largely neglected. Moreover, the 

estimation maximization method has rarely been utilized in SEM. To this end, the study 

applied the estimation maximization (EM) concept, through simulation, to analyze 

residuals under the SEM framework.  

 

1.3 Objectives of the Study 

The study is generally aimed at modelling residuals, via simulation, in structural equation 

models using the EM method. 

Also, this study would specifically seek to:  

i. assess some of the finite sample properties of a group of residual estimators 

which are functions, in terms of weight, of the measured variables;  

ii. determine the ability of residual estimators in detecting outliers and 

influential observations; 

iii. compare the EM method against other methods of residual estimations. 

 

1.4 Significance of the Study 

The research would provide sufficient basis for assessing, estimation maximization, 

residuals in SEM concept. It will also bring to fore how key properties, which are 

asymptotically in nature and linearly functions of the measured observations, can be 

obtained via suggested simulations. Derivations of various estimators of residuals would 

provide basis in theory for application to real life situations across all disciplines or field 

of study.    
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The estimators utilized here would make it easier for adoption and application as its 

weaknesses and strengths would be highlighted. The selection and application of a 

weight in order to make the estimators robust would make them suitable for its 

application different data sets.   

This study is very general, chiefly linear, chiefly cross-sectional statistical modeling 

technique in terms of assessing errors or residuals. That is, researchers are more likely to 

use this study to determine whether or not which residual estimator to use in estimating 

residuals. 

Also, the study has shed light on how outliers and influential observation within the SEM 

framework, which often cause model fit indices to be exaggerated, could be detected 

through an efficient graphical display residuals.   

Compared to other dimensions of SEM, this study in particular is a relatively young field, 

having its roots in papers that appeared in recent years. As such, the methodology is still 

developing, and even fundamental concepts are subject to challenge and revision. This 

rapid change is a source of excitement for some researchers and a source of frustration 

for others for furthers studies. 

 

1.5 Organization of the Study 

Chapter one entails the background, the statement of problem, the study objectives, 

significance of the study and the organization of the study. Chapter two reviewed 

literature based on SEM, the concept of spotting outliers and comparing various 

estimation methods in SEM. Chapter three looks at the adopted SEM model, how it can 

be identified and subsequently evaluating the model under certain specific tests. Chapter 

five looked at the properties, statistically, of the various residual estimations and the 
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derivation of conditionally unbiased, univocal, among others. Again, the Chapter looked 

at the weighing concept of the various existing residual estimators and their derivations. 

The chapter also entails the derivations of the various residual estimations utilized in the 

study in examining how to spot outliers and influential observations and which estimator 

estimates residual better in SEM. The Chapter six comprised the summary of key 

findings, the conclusions and the recommendation. The recommendation were divided 

into two sections; general and further studies for research. Lastly, the chapter also entails 

the gains made in terms of contribution to knowledge.  
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

A number of researches have been carried out on residuals in the structural equation 

modeling framework and its related issues, in this Chapter, a review of literature on these 

previous studies would be discussed. 

 

2.2 Asymptotic Properties of SEM 

 Maximum likelihood (ML) estimation of univicality in SEMs with categorical outcomes 

are numerical integration with many dimensions (Muthén, 2010), making the estimation 

process computationally tedious. Moreover, estimation methods like ML, relying on 

finite sample properties, tend to produce either reliable or unreliable outcomes depending 

of the sample involved (Asparouhov & Muthén, 2010b; Hox & Maas, 2001; Meuleman 

& Billiet, 2009). In univocal analysis, estimation of the parameters on the between 

various techniques is based on as many observed variables as there are latent variables 

in the data, needing a sufficient number of latent variables in order for the asymptotic 

properties of estimators to hold (Asparouhov & Muthén, 2010b). 

 

As volition to classical estimation methods, Bayesian estimation could help to overcome 

some of the weaknesses when estimating in univocal correlation in SEMs with finite 

samples. The estimation maximization approach has recently been applied successfully 

in many complicated SEMs, such as two-level nonlinear SEMs (Song & Lee, 2004), 

multivariate latent curve models (Song et al, 2009), or semiparametric SEMs (Song et al, 

2013; Yang & Dunson, 2010). Bayesian analysis can also deal with very convoluted 

models in cases where classical approaches such as ML estimation often unsuccessful, 
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as it is the case for the estimation of complicated multilevel SEMs with categorical 

indicators (Asparouhov & Muthén, 2010b; Muthén & Asparouhov, 2012). Also, 

sampling based estimation maximization methods do not rely on asymptotic theory and 

exhibit better finite sample performances for factor analyses (Lee & Song, 2004) or when 

there are only few clusters in multilevel models (Muthén & Asparouhov, 2012; Hox et 

al, 2012), and could overcome convergence difficulties in finite samples (Depaoli & 

Clifton, 2015). Moreover, variations in estimation accuracy for a model with continuous 

and categorical indicator variables, as well as the influence of different prior input in 

Bayesian analysis were examined. Inaccurate informative prior conditions were included 

in the simulation to examine the influence of possible prior misspecifications. Again, 

they compared Mplus (Muthén & Muthén, 1998, 2012) and Stan (Stan Development 

Team, 2014b) in their performance with regard to the estimation technique. With 

increasing computational power and the availability of Markov chain Monte Carlo 

(MCMC) technique, the number of statistical software packages for Bayesian data 

analysis has evolved hugely, with widely different implementations of MCMC 

techniques and algorithms.  

 

In the conventional SEM architecture, ML estimation emphasis on covariances rather 

than observed variables and/or individual observations, with the goal of minimizing the 

variation between selected covariances and the covariances predicted by the model at 

stake (Bollen, 1989). If the model is rightly specified, ML produces consistent and 

asymptotically unbiased, asymptotically efficient, and asymptotically normally 

distributed parameter estimates (Bollen, 1989). Challenges with ML estimation 

technique arise when numerical integration is required with multiplex measurements of 

integration, as same is observed in confirmatory factor analysis (CFA) for categorical 
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outcomes (Muthén, 2010; Wirth & Edwards, 2007). Computational demands of 

numerical integration technique increases as the quantity of factors, currently hitting its 

limits at a maximum of three to four dimensions of integration, corresponding to models 

with at most three to four latent variables (Asparouhov & Muthén, 2012a). An alternative 

estimation technique is weighted least squares (WLS) estimation, which relies on a 

polychoric correlation matrix using pairwise information and can be utilised even with a 

comparably more number of latent variables (Asparouhov & Muthén, 2012a). The robust 

WLSMV estimator as implemented in Mplus uses a diagonal weight matrix for the fitting 

function, with standard errors and a mean- and variance-adjusted chi-square test statistic 

that utilises the full weight matrix (Muthén & Muthén, 1998–2012; Asparouhov & 

Muthén, 2007). 

 

A more extensive study was done on the WLSMV estimation technique and the two-

level WLS estimator employed in Mplus by Muthén (1983, 1984) and Asparouhov and 

Muthén (2007). It is worth noting that the categorical weighted least squares technique 

is not peculiar to Mplus, but similar, if not identical, application of WLS estimation in 

other software should produce similar or identical results. However, the WLSMV 

estimator has been demonstrated to perform well for SEMs with ordinal indicator 

variables (Beauducel & Herzberg, 2006; Nussbeck et al, 2006) or multilevel SEMs with 

continuous and categorical indicator variables (Asparouhov & Muthén, 2007; Hox et al, 

2010). Previous Monte Carlo researches also showed a deterioration of performance in 

complex models (Nussbeck et al, 2006) and convergence problems for multilevel SEMs 

(Depaoli & Clifton, 2015). Furthermore, ML estimation is based on finite sample theory, 

Bayesian technique does not assume asymptotic arguments and can give better reliable 

outcome for finite samples (Lee & Song, 2004; Song & Lee, 2012). For instance, in 
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multilevel SEM with few number of independent observations, Bayes estimation might 

perform better than ML (Asparouhov & Muthén, 2010b; Baldwin & Fellingham, 2013; 

Hox et al., 2012). Nonetheless, ML and Bayesian approaches are asymptotically 

equivalent, with Bayesian estimates partaking in the optimal properties of ML estimates 

(Song & Lee, 2012). The likelihood often relies on the estimation method, while the prior 

does not, and the posterior approximates the likelihood (Lynch, 2007). Statistical 

evolution in SEM basically depend on asymptotics, or properties of estimators in finite 

samples. In small samples, SEM parameter estimates can be biased, but they become 

unbiased in large samples (Bentler, 1993). SEM parameters cannot easily be ranked in 

terms of their relative sampling variability (their relative efficiency), and their relative 

performance is context-dependent. However, in large samples, some SEM estimators 

become clear “winners” in that they achieve the smallest sampling variability compared 

to other estimators. This property is called asymptotic efficiency. To put it simply, 

asymptotic efficiency means the same thing as efficiency, but a large sample is required 

before the property always holds. 

 

Furthermore, just a few studies have compared these estimation techniques for 

computing univocal correlations in SEMs (Hox et al, 2012; Depaoli & Clifton, 2015). 

However, Hox et al (2012) solely focused on between-level finite samples in the context 

of international comparative surveys, assuming asymptotic properties. In other applied 

researches, involving the assessment of interpersonal relationships with family members, 

friends, or colleagues, within-level finite sample often do not comprise less than two 

and/or more than ten observed variables. Moreover, one current study compared 

Bayesian with frequentist approaches for a multilevel SEM with dichotomous indicators 

(Depaoli & Clifton, 2015). The outcome of their study showed the merits of Bayesian 
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estimation as compared to WLSMV (weighted least squares, mean and variance 

adjusted) when utilized in combination with informative priors. According to previous 

researches (Asparouhov & Muthén, 2010b; Lee et al, 2010), their results indicated that 

for models with categorical items in the observed variable there was a substantial effect 

of the choice of priors (Depaoli & Clifton, 2015), a phenomenon termed prior assumption 

dependence (Asparouhov & Muthén, 2010b). As there is less empirical information 

available in data with categorical indicators, inaccurate prior information may have 

particularly detrimental effects in these situations. Nonetheless, simulation researches 

investigating the effect of inaccurate priors on the estimation of multilevel SEMs are 

scarce. For this section, the current study fills the gap, to the best of our knowledge, by 

first assessing the finite sample properties of residual estimators which are functions, in 

terms of weight, of the measured variables in SEMs. 

 

2.3 Detecting Outliers and Influential Observation in SEM 

Issues associated with outliers are often looked at in in textbooks, whilst in practical 

sense academics tend to have divergent views on its meaning and how it can rightfully 

be determined and managed, if possible (Mark and Jiaqi, 2017). Managing outliers of 

various kind require different techniques.  According to Aguinis et al (2013) there are 14 

varied perspectives about outliers including, but not restricted to, issues of high leverage 

and the ability to overwhelm parameter estimation and model fitness in SEM. Also, 

outliers of different nature require different treatments, and Aguinis et al (2013) 

summarized the definitions of outliers in three categories: (a) those due to correctable 

errors such as input error, (b) those exhibiting idiosyncratic characteristics and of interest 

themselves (c) those exerting disproportionately large influence on the substantive 
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conclusion regarding a model of interest. Again, Muthén (2015) defined outliers as 

extreme observations that have the ability to exaggerate model coefficients. 

 

Outliers are different from controlling observations as was established by Pek and 

MacCallum (2011). Moreover, Mark and Jiaqi (2017) noted that outliers often cause 

dissimilar stir on model adequacy as well as parameter estimation. Some techniques for 

spotting outliers and possible controlling observations in SEM were the likelihood, 

Mahalanobis and Cook’s distances (Aguinis et al, 2013; Pek & MacCallum, 2011; and 

Yuan & Zhang, 2012). Other studies Yuan and Zhong (2008, 2013) and Asparouhov and 

Muthén (2015) identified a linear notation for modelling outlier residuals in SEM. 

However, contemporary methods for identifying and controlling outliers and possible 

controlling observation in SEM require scientist to utilize special programs which creates 

more burden for researchers (Sterba & Pek, 2012; Yuan & Zhang, 2012). 

 

In a normal SEM model, very little portion of outliers and potential controlling 

observations can have a huge impact on model fit and parameter estimates. For instance, 

Yuan and Bentler (2001) and Yuan and Zhang (2015) demonstrated mathematically that 

existence of outliers can hugely inflate the Type I error rates of likelihood ratio test (LRT) 

and associated test statistics balancing for non-normality when using maximum 

likelihood (ML). The LRT statistic could be exaggerated by, at least, five times in figures 

as opined by Yuan and Zhong (2008). It was also showed that in confirmatory factor 

analysis (CFA), by Yuan and Zhong (2008) and Yuan and Hayashi (2010), that about 

3% of outliers could necessarily bias the estimates of factor loading by not less than 50% 

and increase the covariance estimates and the latent factor variance about 3–10 times, as 

oppose to about 3% of bad controlling observations which could yield even higher biases 
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on all parameter estimates. Yuan and Zhong (2013) again demonstrated mathematically 

with improved actual data sets that outliers produce worse fit indices; including but not 

limited to RMSEA and CFI, whereas potential controlling observations can lead to poor 

RMSEA value but better CFI for some cases. 

 

According to Yuan and Bentler (2001) and Yuan and Zhong (2013), SEM based on 

normal-theory is not sturdy to outliers to the extent that a little presence outliers and 

potential controlling observations could bias both the model fits and parameter. 

However, robust modelling by substituting the normality assumption with an error term 

that follow a heavier-tailed t distribution which has since been developed in regression 

models and multilevel models (Pinheiro et al, 2001; Gelman & Hill, 2006). Moreover, 

using the t-based SEM and other robust SEM methods are preferred, as opposed to 

deleting outliers and controlling observations directly, since the complex nature of SEM 

makes it very challenging to apply common methods including Mahalanobis and Cook’s 

distance to identify outliers and potential controlling observations (Flora et al, 2012; 

Sterba & Pek, 2012). Outliers and controlling observations are not mutually exclusive, 

notwithstanding the conceptual disparity, as some outliers can also exert strong influence 

on research results (Pek & MacCallum, 2011; Yuan & Zhang, 2012; Aguinis et al, 2013; 

O’Connell et al, 2015). They again assessed how the commonest fitness statistics perform 

base on simulations that were conducted regarding ML-Norm, ML-t, as well as using the 

Huber-type weights for a contaminated data. Further they examined how effective the 

criteria of information was in terms of the choice of either ML-Normal or ML-t for 

various conditions of misspecifying a model, a given sample sizes as well as the 

proportions of outliers and controlling observations. 
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Also, Pek and MacCallum (2011) opined in their research that there was an emphatic 

distinction between outliers and controlling observations under SEM which they further 

indicated that both terms have dissimilar effects estimated parameters as well as model 

fitness statistics. They affirmed that outliers are items or observation that lie afar from 

majority of the observations under consideration. For regression analysis which has just 

one independent variable then the outliers refer to the observations that depart largely 

from the predicted value considering the line of regression. However, for multivariate 

analysis including SEM, an observation length considered from the center of majority of 

the data points is often quantifiable using Mahalanobis distance. However, controlling 

items or observation is said to be those that have huge effect on the model fitness statistics 

as well as the estimated parameters. That is to say that the absence of the influential 

observation shows remarkable changes in terms of the estimated parameters and model 

fitness. Though there are conceptual variations between outliers and controlling 

observations, they sometimes may overlap in terms of their effect as some outliers can 

equally have huge effect on the results. Meanwhile, some of the techniques noted for the 

identification outliers as well as controlling observations under SEM consist of Cook’s, 

Mahalanobis, and likelihood distances. Past researches (Aguinis et al, 2013; O’Connell 

et al, 2015; Pek & MacCallum, 2011; Yuan & Zhang, 2012) have succinctly discussed 

the tools as well as the procedures required for the identification of outliers and 

controlling observations. 

  

Aguinis et al (2013) reviewed 232 varied methods on organizational science matters 

about outliers and controlling observations, and just five of them were related to SEM, 

in spite of the popularity of SEM in the recent times. The main possible reason is that 

practical guidelines on managing outliers and potential controlling observations were 
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evolved just recently (Pek & MacCallum, 2011; Aguinis et al, 2013). Notwithstanding 

the reported essence of outliers and controlling observations, detection and diagnostics 

of such observations were rarely performed and practice in real research, and in particular 

the use of SEM methods that are robust has been very scarce though SEM is notably 

made up of a measurement model(s) and a structural model (Bollen, 1989; Kline, 2011). 

Again, a plausible backdrop for current techniques regarding how outliers could be 

spotted and managed and by extension controlling variables demand for sophisticated 

software in SEM (Sterba & Pek, 2012; Yuan & Zhang, 2012), hence making the 

reseachers work more difficult, particularly when they are not in tune with the software. 

Asparouhov and Muthén (2015) modeled SEM concept by proposing mathematical 

equations, with linearity, and also defining what outliers and controlling data sets stands 

for based on earlier works done by Yuan and Zhong (2008, 2013). Meanwhile, t-

distribution technique in SEM is preferred alongside like robust methodologies in SEM 

instead of basically taking off outliers and controlling observation. This often arises in 

SEM which normally present complex situations which does not allow it to utilize 

universal methods including Mahalanobis as well as Cook’s distances in identifying 

outliers and controlling observations (Flora et al, 2012; Sterba & Pek, 2012). 

 

Furthermore, SEM usually is broadly embodied by measurement models and manifest 

models (Bollen, 1989; Kline, 2011). The process of identifying outliers and controlling 

data is a normal routine in regression analysis but not much work has been done about 

the situation under SEM (Pek & MacCallum, 2011). Yuan and Bentler (2001) 

demonstrated in a mathematical sense the presence of outliers and how it can hugely 

impact the likelihood ratio test statistic to the extent that it can raise its value, at least, six 

times. Yuan and Zhong (2008) and Yuan and Hayashi (2010) have further indicated that 
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during CFA process, the factor scores loaded can be biased due to outliers which could 

constitute at least 3% of the estimates. Also, 232 varied methods reviewed from a chunk 

of published papers on issues bordering on outliers and controlling observation, just five 

of them were utilized in SEM though it has been widely used in many other areas in the 

last 20 years (Aguinis et al, 2013).  

 

2.4 Residual Estimators in SEM 

Varied methods utilized in SEM to estimate could be viewed based on covariance (such 

as ML) as well as component based (such as PLS, GSCA), or the frequentist approach 

(such as ML, PLS, GSCA) as well as the Bayesian method (such as MCMC). Methods 

such as the covariance based were developed for modelling, evaluating as well as 

validating. On the other hand, the component based methods were meant to achieve how 

to compute and predict (Tenenhaus, 2008). In simple sense, the main difference is that 

covariance based was designed for to test models whilst the component based methods 

were meant to provide succinct meaning to variances as well as predict (Hulland et al, 

2010; Tenenhaus, 2008). Meanwhile the frequentist technique usually identifies values 

of parameters which are due to measured data whereas the Bayesian methods looks at 

estimate obtained from a parameter which are theoretical depictions of relations that rely 

on measured data. Again, adding to the varied reasons and dimensions of ML, PLS, 

GSCA, as well as MCMC usually varies in terms of how robust they appear due to 

different data scenarios. This is attributable, but not limited, to size of the sample, 

variables considered, misspecifying the model as well as the kind of measurement-

manifest observation link. 
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Also, inference and deductions made from outcomes of modeling generally rely on the 

methods adopted and implemented in SEM. It remains though to point out whether 

hypothetical model normally presents correct information based on an application of a 

study or simulated study that has the capacity to shine light on the effect of misspecified 

parameter among methodologies of estimations (Asparouhov & Muthén, 2010; Hwang, 

et al, 2010). Moreover, the degree upon which parameters could be affected as a results 

of misspecifying a given model relies on the architectural makeup of the sample utilized 

(Henseler, 2010; Tanaka, 1987) and overall complexity of the model (Tanaka, 1987). 

 

Whether or not the link amid measured and manifest observations are developing or 

contemplative in its form, is essential to the method of research since it is conceptually 

motivated in applied study. For SEM, manifest variables could be utilized as the basis 

for measured observations in modeling (Bollen & Lennox, 1991), and also for 

representing the unified figures of the measured values (Curtis & Jackson, 1962). It is a 

necessity in specifying SEM to mirror the right conceptual links, however the estimation 

methodologies most often differ in terms of how they perform based on the kind of 

association described. Developing indicator models were often deemed unsuitable for 

classical maximum likelihood method but for recently (Chin, 1998; Ringle et al, 2009). 

In contemporary times, it has been noted that ML was much possible to over-estimate a 

parameter under contemplative model, particularly where the sample size is small. Ringle 

et al (2009) opined contrary to the aforeassigned notion that PLS was could possibly 

under-estimate parameters under contemplative models. Meanwhile, owing to the 

amenable nature of GSCA to contain either developing or contemplative items is 

effectively on record, though the assertion widely relies on conceptually motivated 
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anticipations of the methodology without evidence from experimental studies (Hwang & 

Takane, 2004). 

  

Many estimation methodologies as well as modifications of these methods have been 

researched upon and utilize in SEM, bordering on ML, plus ML which are robust 

standard errors, GLS and WLS (Muthén & Muthén, 1998-2010). Meanwhile, it is notable 

fact that these methodologies are not efficient when subjected to certain assumptions. 

For instance, ML as well as WLS basically fail to give definite parameters where the 

sample is not large (Hoogland & Boomsma, 1998; Hu et al, 1992; Olsson et al, 2000); 

the higher the degree of precision to produce an estimate under MLR the more generally 

it is restricted to estimates of standard errors rather than coefficient of the structural or 

measurement pathway. GLS is to a large extent unaffected by model misspecifications 

that may lead to overwhelming fitness (Olsson et al, 1999). By reacting to these 

hindrances as well as related estimation methodologies, more estimation methods have 

been utilized in estimating under SEM, such as PLS (Wold, 1975), standard structured 

component modeling (Hwang & Takane, 2004; Kline, 2011), as well as MCMC 

(Hastings, 1970).  

 

According to Hoyle (2000) the commonest method of estimating parameters in SEM is 

maximum-likelihood. Studies on ML is across wide range of fields as well as data 

conditions and its challenges are on record. One of the conditions under which ML 

performs abysmally is when the sample is not large (Kline, 2011). Owing to this 

challenge, it is very essential that studies pay attention to the performance of other 

methods in terms of improving parameter estimates; partial least squares (PLS), 

generalized structural components analysis (GSCA) as well as Markov Chain Monte 
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Carlo (MCMC). should how weak or strong any different methodology in the presence 

of small sample study was well understood, researchers could have been adequately 

resourced to undertake decisions from an informed position regarding the selection of an 

exact method of estimating and making sense of results 

 

Over the period advances has been made in the methods used in SEM. Even more 

pronounce are the different methodologies that have been established such as LS, WLS, 

PLS, GSCA as well as MCMC approaches. However, it is imperative to underscore the 

fact that these different methods are yet to be comprehended as their performance in 

terms of using real life data is normally challenging to predict (Henseler, 2012; Hwang 

et al, 2010 & Malhotra et al, 2010). Some estimation methods, besides what has been 

described earlier in this study, were developed for specific use in SEM whenever 

assumptions underpinning ML were violated, particularly robust ML and WLS 

(Henseler, 2012; Hwang et al, 2010; Malhotra et al, 2010). It is worth noting that it is 

almost impossible to compare and examine the performance of these different estimation 

methods in one study. Therefore, the current study will mainly focus on differential 

performance of the regression, Bartlett’s, Anderson-Rubin and the EM methods to 

estimate residuals emanating from both manifest and construct variables in SEM.  
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CHAPTER THREE 

STRUCTURAL EQUATION MODELING 

3.1 Introduction 

This chapter provides the basic concepts of SEM. The key main steps in SEM comprising 

model specification, identification, estimation and evaluation were also highlighted. This 

chapter also looks into details the concept of residual estimators under SEM. It also 

comprised the derivation of residuals and its diagnostics based on varied residual 

estimators. It again looks at how to estimate latent variables or factor scores and residuals 

which are not direct in terms of latent variables are unobserved. Further, the focus will 

be on utilizing individual cases in constructing the matrices as oppose to relying on 

covariance matrix of the measured variables. 

 

3.2 Meaning of Structural Equation Modeling    

The structural equation model (SEM) is a statistical methodology that adopts a 

confirmation approach (for example, hypothesis testing) for the analysis of a structural 

theory related to some phenomena. Typically, this theory represents ‘causal’ processes 

that generate observations in several variables (Bentler, 1988). The term structural 

equation model conveys two important aspects of the procedure: (a) the causal processes 

under consideration are represented by a series of structural equations (i.e. regression), 

and (b) that these structural relationships can be graphically modeled to allow a 

conceptualization clearer than the theory in question. The hypothesized model can be 

statistically tested in a simultaneous analysis of the entire system of variables to 

determine the extent to which it is consistent with the data. If the goodness of adaptation 

is adequate, the model supports the plausibility of the postulated relations between the 

variables; if it is inadequate, the tenacity of these reports is rejected. 
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Different aspects of SEM differentiate it from the previous generation of multivariate 

procedures. First of all, as noted above, it requires a confirmatory approach rather than 

an exploratory approach to data analysis (although some aspects of the latter can be 

addressed). Moreover, requiring that the scheme of inter-variable relations be specified 

a priori, SEM lends itself to the analysis of data for inferential purposes. In contrast, most 

other multivariate procedures are essentially descriptive (for example, exploratory factor 

analysis), so hypothesis testing is difficult, if not impossible. Second, while traditional 

multivariable procedures are not able to assess or correct the measurement error, the SEM 

provides explicit estimates of these error variance parameters. Indeed, alternative 

methods (for example those rooted in regression or the general linear model) assume that 

errors in explanatory (i.e. independent) variables disappear. Therefore, applying these 

methods when there is an error in the explanatory variables is equivalent to ignoring the 

error, which can lead, in the final analysis, to serious inaccuracies, especially when the 

errors are considerable. Such errors are avoided when the corresponding SEM analysis 

is used (in general terms). Third, although data analyzes using the above methods are 

based only on observed measurements, those using SEM procedures may incorporate 

observed (non-latent) and unobserved variables. Finally, there are no alternative methods 

of wide and simple application for the modeling of multivariate relationships or for the 

estimation of indirect effects and/or intervals; these important features are available using 

the SEM methodology (Byrne, 2003). 

 

For these heavily desirable characteristics, SEM has become a famous method in terms 

of non-experimental studies, in which methodology for purposes of testing theoretical 

related issues are not properly developed and considerations of ethics make experimental 

design not feasible (Bentler, 1980). The modeling of structural equations can be used 
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very effectively to address numerous research problems involving non-experimental 

research (Arbuckle, 2007). 

 

3.2.1 Basic Concepts 

Latent versus observed variables 

In behavioral science, researchers are often interested in studying theoretical 

constructions that cannot be directly observed. These abstract phenomena are called 

latent variables or factors. Examples of latent variables in psychology are self-concept 

and motivation; in sociology impotence and anomie; in education, verbal ability and 

teacher expectancy; and in economics, capitalism and the social class. Consequently, as 

the latent variables are not directly observed, they cannot be measured directly. 

Therefore, the researcher must be defined operationally to represent the latent variables 

of interest in terms of behavior. As such, the unobserved variable is linked to an 

observable variable that allows it to be measured. Performance assessment, then the 

direct measurement of an observed variable, albeit indirect measurement of an 

unobserved variable (i.e. the underlying construct) (Byrne, 2010).  

 

It is important to note that the term behavior is used here in the broadest sense, in 

particular to record notes on a meter. Therefore, the observation may include, for 

example, answers to self-report a scale of attitude scores on a performance test, 

observation scores in vivo representing a specific task or physical activity, encoded 

interview questions and answers, similar (Byrne, 2010). These measured values (i.e. 

measurements) are referred to as observed or open variables. In the context of the SEM 

methodology, they serve as indicators of the underlying construct they are intended to 

represent. Given the need to bridge observed and unobserved latent variables, 
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methodologists should now explain why researchers recommend that researchers be 

careful when choosing assessment measures. Although the selection of psychometric 

tools is important for the credibility of all the study results, this selection becomes even 

more critical when it is assumed that the observed measure represents an underlying 

construct (Byrne, 2010). 

 

Exogenous versus endogenous latent variables 

When working with SEM models, it is helpful to distinguish between exogenous latent 

variables and endogenous variables. Exogenous latent variables are synonyms for 

independent variables. They ‘cause’ variations in the values of other model latent 

variables. The variations in the values of the exogenous variables are not explained by 

the model. Rather, it is believed that they are influenced by other factors outside the 

model. The underlying variables such as gender, age and socioeconomic status are 

examples of such external factors. The endogenous latent variables are synonyms of 

dependent variables and, as such, are directly or indirectly influenced by the exogenous 

variables of the model. The variability of the values of endogenous variables is explained 

by the model, since all the latent variables that affect them are included in the 

specifications of the model (Byrne, 2010). 

 

The factor analytic model 

The oldest and best known statistical method for studying the relationships between the 

quantities of observed and latent variables is that of factor analysis. Using this data 

analysis approach, the researcher investigates the covariation between a set of observed 

variables to gather information about their underlying latent constructs (ie factors). There 

are two types of factor analysis: exploratory factor analysis (EFA) and confirmatory 
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factor analysis (CFA). We now turn to a brief description of each. Exploratory factor 

analysis (EFA) has been developed for situations where the links between observed and 

latent variables are unknown or uncertain (Byrne, 2010). 

 

The analysis therefore proceeds as exploratory to determine how and to what extent the 

observed variables are related to their underlying factors. In general, the researcher wants 

to identify the minimum number of factors that underlie (or explain) covariation among 

the observed variables. Suppose a researcher develops a new tool to measure five facets 

of the physical self-concept (e.g, health, fair play, physical appearance, coordination, and 

physical strength). 

 

After formulating the questionnaire elements designed to measure these five latent 

constructs, it would perform an EFA to determine to what extent the element's 

measurements (the observed variables) were related to the five latent constructs. In factor 

analysis, these relationships are represented by factor loads. The researcher hopes that 

the elements designed to measure health, for example, have high loads for this factor and 

low or negligible loads for the other four factors. This factorial analytical approach is 

considered exploratory as the researcher has no prior knowledge that the elements 

actually measure the factors sought (Comrey, 1992; Gorsuch, 1983; McDonald, 1985; 

Mulaik, 1972; Byrne, 2005a; Fabrigar et al, 1999; MacCallum et al, 1999; Preacher & 

MacCallum, 2003; Wood, Tataryn & Gorsuch, 1996). 

 

Unlike EFA, confirmatory factor analysis (CFA) is used appropriately when the 

researcher knows something about the underlying structure of the latent variables. On 

the basis of theoretical knowledge, empirical research or both, it postulates a priori the 
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relationship between the observed measures and the underlying factors, and thus 

statistically verifies this hypothetical structure. For example, using the example above, 

the researcher would support the loading of articles designed to measure self-

understanding of sports skills based on this specific factor and not on health, physical 

appearance, coordination or the size of the concept, even the physical force. As a result, 

the prior specification of the CFA model would allow all elements of sportsmanship who 

understand each other to self-understand to play freely on this factor, but limiting 

themselves to factors remaining at zero. The model would then be evaluated by statistical 

means to determine the appropriateness of its fit to the sample data (Bollen, 1989a; 

Byrne, 2003, 2005b; Long, 1983a.) 

 

In summary, the factor analysis model (EFA or CFA) focuses only on how the observed 

variables are reported underlying latent factors and to what extent. More specifically, it 

is determined to what extent the observed variables are generated by the underlying latent 

constructions. The strength of the regression pathways of the factors with respect to the 

observed variables (factor loadings) is therefore of primary interest. Although inter-

factorial relations are also of interest, no regression structure between them is taken into 

account in the factor analysis model. Since the CFA model focuses exclusively on the 

connection between factors and measured variables, it is in the context of SEM, which 

has been called a measurement model (Byrne, 2010).  

 

The full latent variable model 

Unlike the analytical factorial model, latent complete variable model (LV) to specify the 

regression structure between latent variables. In other words, the researcher can make a 

hypothesis on the impact of latent construction on the modeling of causal direction. This 
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model is called complete (or total) because it includes both a measurement model and a 

structural model: the measurement model that describes the relationship between latent 

variables and measured measurements (CFA model), and the structural model describes 

the connections among the latent variables themselves.  

 

A complete LV model that specifies the direction of the cause of a single direction is 

called a recursive model; what allows reciprocal effects or feedback is called a non-

recursive model. Only the applications of the recursive model are considered in this study 

(Byrne, 2010). 

 

3.3 Fitting the Structural Equation Model 

There are often four principal steps in terms of fitting SEM. These include specifying the 

model, identifying the model, estimating the parameters and subsequently evaluating the 

model. The section here also looked at diagnostics that available to examine a given 

model under SEM. In the first step, under the model specification, the notations utilized 

under SEM would be introduced. For the second step, the model is identified by a 

theoretical examination to ascertain model identification and the possibility of 

estimation. In the third step, estimating the model concerns the application of estimation 

methods such maximum likelihood and the assumptions, which are normally used under 

the procedure, which underpins the distribution. The final step, which borders on 

evaluating the model, concerns the assessment of the model fitness and perhaps utilizing 

model diagnostics to examine the departure from assumptions, particularly in the midst 

of outliers and controlling observations (Byrne, 2010).      
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In the SEM concept, models are arrived at such that it specifies the associations between 

measured and manifest variables which often results in a system of linear equations so 

that the relationships among remain linear or can be transformed into linear. The 

variables in these linear equations are related by structural parameters which can be 

denoted as 𝜃. As a result, the covariance matrix of the population measured variables 

denoted as Σ symbolized the function of the parameters, 𝜃, contained in the model.     

The basic hypothesis of SEM was defined by Bollen (1989) as  

Σ = Σ(𝜃) 

where Σ connotes the covariance matrix of the populations observed variables, 𝜃 depicts 

vector of parameters of the model, and Σ(𝜃) represents the covariance matrix as a 

function of 𝜃. 

 

3.3.1 Model Specification 

As in indicated section 3.3, the starting point of every SEM is the specification of the 

model the researcher is interested in using as a result of the relationship emanating from 

theory which needs examination. The hypothesized link created among the variables such 

as linear equations comprising factor (or latent), measured and the error terms are 

achieved through structural parameters. The structural parameters then summarizes the 

associations between the variables and thus defines the causal relationships among factor 

variables, measured variables and the factor and measured variables. These system of 

structural equations comprise only two main sub-systems; the factor variable model, 

which links factor variables whereas the measurement model is the one that links the 

indicator variables. The notation, which was developed first by Joreskog (1973, 1977), 

Wiley (1973), and Keesling (1972) and cited later by Bollen (1989), of our SEM is 

introduced under this section. The notation is usually known as LISREL, which stands 
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for Linear Structural RELationships, model notation because of the software that made 

it popular. 

 

The path diagram shown in Figure 3.1 was adopted, from Hildreth (2013), throughout 

this study. A recursive model containing a mediation component was utilized to facilitate 

the application of various residual estimators to enable to estimation of both the observed 

and the manifest variables. As often is the case for all path diagrams, the squares as well 

as the rectangles represents the indicator or measured variables whiles the circular or 

ovals represents the factor variables and the error terms. Again, the single arrow head 

represents a causal link between variables where the variable at the tail is deemed to be 

responsible for the cause of the variable on the arrow head. Also, a double arrow head 

represents a reciprocated link among any two variables and a curved double arrow head 

denotes relationships among any two variables which are not analyzed.           
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Figure 3.1: Adopted Hypothesized Recursive Structural Equation Model 

(Hildreth, 2013) 

 

The factor variable model, which is also usually known as the structural or causal model, 

is made up of a system of linear equations that defines the relationships among factor 

variables. From Figure 3.1 above, consider a SEM framework. The factor (or latent) 

variables are taken to be either be exogenous, such as 1 , since their causes is derived 

from outside the model, or endogenous, such as 1  and 2 , since their causes is from 

within the model. In Figure 3.1, it was hypothesized that 1 is the cause of both 1  and 

2 . Also 1  is the cause of 2 . The factor (or latent) variable of the hypothesized model 

in Figure 3.1 can be shown as follows: 

1 11 1 1           (3.1) 

2 21 1 21 2 2            (3.2) 
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where Equation (3.1) as well as Equation (3.2) are both linear in terms of the variables 

and parameters. Regarding the equations expressed in this chapter, such as Equation (3.1) 

and Equation (3.2), it is worth noting that these at the individual or observational stage. 

Despite the fact this is generally demonstrated by using the subscript 𝑖 for every random 

variable, it is left out under this chapter for purposes of convenience. Therefore, the sizes 

regarding all matrices as well as vectors presented under the chapter here are equally 

representing the 𝑖𝑡ℎ observation or individual. 

 

Meanwhile, none of the constant terms are part since it is supposed (or assumed) that all 

variables have departed from their means indicating that 𝐸(𝜂1) = 0, 𝐸(𝜂2) = 0 and 

𝐸(𝜉3) = 0. This assumption mainly helps in simplifying the algebraic maneuvering and 

does not influence either the general analysis or generalization. The structural parameter

11 represents the expected change in 1  associated with a one unit increase in 1 . The 

structural parameters 21  and 21 have analogous interpretations such that 21  represents 

the expected change in 2 associated with a one unit change in 1 holding 1  constant 

and 21 represents the expected change in 2 associated with a one unit increase in 1  

holding 1  constant. In this example, 21  represents the direct effect of 1  on 2 ; 

similarly, the structural parameter 21 represents the direct effect of 1  on 2 . In this 

model, it is hypothesized that 1 not only has a direct effect on 2  but also an indirect 

effect that is mediated by 1 . 
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This indirect effect is then equal to 11 21   leading to 1 having a total effect on 2  equal 

to the sum of the direct and indirect effects, 21 11 21   . The random errors 1  and 2  

are assumed to have an expected value of zero and homoscedastic variances as well as 

be independent (they are not autocorrelated), and uncorrelated with 1 . 

Equation (3.1) and (3.2) can be rewritten in matrix notation as 

 1 1 11 1

1

212 2 21 2

0 0

0

   


   

        
          

        
 

 

Which can be written more compactly as 

           (3.3) 

 

where   represents an 𝑚× 1 vector of endogenous construct variables,   is 𝑛 × 1 vector  

representing the exogenous latent variables. It is supposes that when every 𝑘 = 1, … ,𝑚: 

then   0kE   ; k  are homoscedastic; k  are independent whiles   and  are 

uncorrelated.  

 

The parameters of the structural part summarizes the associations amidst the construct 

variables are contained in the 𝑚×𝑚 matrix   as well as the 𝑛 × 𝑛 matrix Γ. For B, we 

supposed that:  I   for 𝐼 represents the identity matrix and it is nonsingular; and the 

main diagonal of B comprise zeros. The   matrix contains the structural parameters that 

link the exogenous latent variables to the endogenous latent variables. This matrix 

consists of elements kl  where 𝑘 denotes the row position and 𝑙 denotes the column 

position. The element kl  represents the expected direct change in k  associated with a 

one unit increase in l  where 𝑙 = 1,… , 𝑛; l  may also cause a change in k indirectly 
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via other latent variables in   which are then calculated using elements in   and   

(Bollen, 1989). 

 

For the covariance matrices, we supposed 𝛹 and 𝛷 are symmetric while generally 

assuming that these are invertible. Often there is no particular matrix which is provided 

for covariance of the endogenous construct variables, represented by 𝛴𝜂𝜂, since the 

matrix is defined as a function of 𝐵, 𝛤, 𝛹, and 𝛷. Algebraic simplification will indicate 

that 𝛴𝜂𝜂 = (𝐼 − 𝐵)−1(𝛤𝛷𝛤′ +𝛹)(𝐼 − 𝐵)−𝑇.  

 

3.3.2 Measurement Model 

Despite the fact that the construct variables model reduces the associations theoretically 

amidst the construct variables that a study has hypothesized, these associations are only 

examined when measure of the construct variables are gathered so that the measured 

variables become proxies of the construct variables. Thus the manifest model relates the 

construct variables to the measured variables. 

For instance, Figure 3.1 indicates that every construct variable has three observed 

variables, which is linked to just a factor. The indicators for 
1

 are 1y , 2y and 3y , the 

indicators for 2 are 4y , 5y and 6y , and the indicators for 1 are 1x , 2x  and 3x . 

The manifest model related to Figure 3.1 is given by 

1 1 1 1x      1 1 1 1y     4 4 4 4y    

 2 2 2 2x       2 2 2 2y     5 5 5 5y    

 3 3 3 3x       3 3 3 3y     6 6 6 6y      (3.4) 
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The Equations contained under (3.4) can be written more compactly in matrix notation 

as: 

  

  xx             (3.5) 

 

yy           (3.6) 

 

for 

1

2

3

x

x x

x

 
 


 
  

,  

1

2

3

x







 
 

 
 
  

 , 1  , 

1

2

3



 



 
 


 
  

, 

1

2

3

4

5

6

y

y

y
y

y

y

y

 
 
 
 

  
 
 
 
  

, 

4

5

6

7

8

9

0

0

0

0

0

0

y













 
 
 
 

   
 
 
 
  

, 1

2






 
  
 

 and 

1

2

3

4

5

6

 
 

 
 

  
 
 
 
  

 

 
diagonals of the matrices 𝜃𝛿  as well as 𝜃𝜀 comprise error variances of the manifests 𝑥ℎ 

and 𝑦𝑗, respectively. The off-diagonal items are the covariances of the mamifest errors 

of indicators 𝑥ℎ and 𝑥𝑗 in 𝜃𝛿  and 𝑦ℎ and 𝑦𝑗 in 𝜃𝜀. Usually the off‐diagonal items are set 

to zero, but this should not be the case. Manifest errors related to two indicators could be 

associated for varied reasons such as being collected at the same point in time or by using 

the same question at different points in time such that there is a common source of 

variability for these items (Bollen, 1989).  

The manifest model in this study utilized Bollen (1989) notations as given below. 

𝑥 = 𝛬𝑥𝜉 + 𝛿 

𝑦 = 𝛬𝑦𝜂 + 𝜀 
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Assumptions made regarding the model are as follows. 

1. 𝐸(𝜂) = 0, 𝐸(𝜉) = 0, 𝐸(𝛿) = 0, 𝐸(𝜀) = 0 

2. 𝜀 not associated with 𝜂, 𝜉, and 𝛿 

3. 𝛿 not associated with 𝜂, 𝜉, and 𝜀 

 

3.4 Identification 

After the specification of a model, the next phase is to find out whether or not it is 

identifiable. Thus, if there is the theoretical possibility of computing derivations of 

unique parameter estimates. Identifiability can be demonstrated when every unknown 

parameter under a given SEM are functions of known parameters while theses function 

eventually leads to unique solutions (Bollen, 1989). Whenever this achieved then the 

unknown parameters are identified else they are deemed to be unidentified. For practical 

purposes, there exist known necessary as well as sufficient condition for identifiability 

which is heighted in the subsequent sections (Byrne, 2010). 

 

3.5 Necessary Conditions 

The initial two rules known conditions that are necessary regarding identifiability but not 

sufficient (required for the possibility of identifiability but on their own are enough to 

ensure model identifiability). The two rules must hold in order to determine whether a 

model satisfies the sufficient conditions of model identification. Bollen (1989) and Kline 

(2011) has a lot more explanation regarding these rules. 

 

3.5.1 Scaling the Latent Variable 

The key rule under SEM for necessary condition is referred to as scaling the construct 

variable. The main problem that emanates from construct variables is the fact that there 
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is no establish metric related to the construct variables. Since these kind of variables are 

not observed their metric is equally not observed and thus not known (Kline, 2011). One 

of the ways to solve the problem is to set one of the paths, 𝜆𝑔, regarding every construct 

variable under 𝜂 and 𝜉 to a unique element under 𝑦 as well as 𝑥 to 1. This process is 

referred to as scaling the construct variable and it is necessary for every construct variable 

in a SEM. By this, the scaling of construct variables under 𝜂 and 𝜉 is then the 

measurement scale of the unique items in 𝑦 as well as 𝑥𝑖. For our model in Figure 3.1, 

the metric is set through 𝜆1 = 𝜆4 = 𝜆7 = 1 though it could be achieved through different 

indicators as measurement scale. Metric of the construct variable could also be achieved 

by standardizing the variance of every construct variable under 𝜂 and 𝜉 to be equal to 1. 

By this approach, standardizing the variance for our model in Figure 3.1 is achieved by 

letting 𝜙11 = 𝜓11 = 𝜓22 = 1. 

 

3.5.2 𝒕 Rule 

Under this necessary condition, the quantity of specific items under 𝛴, represented as 𝑡, 

must either be less than or equals the number of unknown parameters contained in 𝜃, 

𝑝(𝑝+1)

2
. For our model in Figure 3.1, 𝑡 = 21 (i.e. the parameters which are not known 

comprise; 1 element under 𝐵, 2 elements in 𝛤, 1 element under 𝛷, 2 elements in 𝛹, 2 

elements under 𝛬𝑥, 4 elements in 𝛬𝑦, 3 elements under 𝜃𝛿 , and 6 elements in 𝜃𝜀) while 

𝑝(𝑝+1)

2
 = 

9(10)

2
 = 45. As 𝑡 = 21 < 

𝑝(𝑝+1)

2
 = 45, the condition is satisfied (Kline, 2011). 

 

3.6 Sufficient Conditions 

Despite the fact that fixing the metric and meeting the 𝑡‐rule are necessary conditions for 

any SEM, they do not ensure identifiability of a model. Thus this brought about more 
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identification rules. For SEM, the sufficient condition is known as two‐step rule. This 

rule comprises numerous varied rules which depends on the subsystem as well as the 

structure of the said model (Byrne, 2010). 

 

3.6.1 Two‐Step Rule 

Under the two-step rule, it is indicated that when the manifest model as well as the 

construct variable model are each identified then the entire model is deemed to be 

identified. The intial step assesses the construct model and handles it as if it were a path 

analysis. That is to assume that the construct variables measured variables. Many rules, 

under this step, need to be utilized to confirm the identifiability as opined by Bollen 

(1989) and Kline (2011). For the second step, the manifest model is assessed as if it were 

a CFA. According to Bollen (1989), Kline (2011), as well as Brown (2006) there are 

many rules, under this step, that can be utilized to confirm whether the model is 

identifiable. 

 

Meanwhile the identification rule regarding the construct variable model identifiability 

arises if very unknown parameter under 𝐵, 𝛤, 𝛷, and 𝛹 is expressed as a function of 

either one or more items in the covariance matrix 𝛴 of the population. Similarly, to 

identify a manifest model then every parameter under 𝛬𝑥, 𝛬𝑦, 𝜃𝛿 , and 𝜃𝜀 should be 

expressed as a function of the items under 𝛴. The determination of this could be tedious 

which therefore give rise to the introduction of many rules, all of which assume that the 

construct variables have measurement scale as well as other constraints (for instance, 

constraining particular items under 𝜃𝛿  and 𝜃𝜀 to be equal to zero) has been formalized 

(Byrne, 2010). Moreover, the CFA models are either standard (where every indicator can 

only load on a factor while 𝜃𝛿  as well as 𝜃𝜀 are diagonal matrices) or non-standard (for 
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every indicator loads on many factors while either 𝜃𝛿  𝑜𝑟 𝜃𝜀 or even both are not diagonal 

matrices). 

 

3.7 Empirical Identification 

The rules mentioned in the preceding sections are key for ascertaining whether a given 

SEM is identifiable on theory basis. However, these rules do not ensure that a SEM is 

identifiable empirically. Many issues which are considered crucial can result in empirical 

under-identification. This situation, at the data stage, may arise whenever two variables 

exhibit strong collinearity which can, to a very large extent, lessen the quantity of 

elements below 𝑝(𝑝 + 1)/2. Again, problems may emanate, at the model stage, if the 

coefficients of the various paths basically zero which effectively removes such paths 

from the model. This situation can cause a factor to have very few indicators to be 

identified. For instance, a CFA which contains 3 indicators with 1 factor where one path 

equals zero then the said model cannot be identified since would have been left basically 

with 2 indicators. Meanwhile, other problems may cause empirical under-identification 

particularly if the assumptions underpinning the model are either violated or the said 

model is misspecified (Kline, 2011).  

 

3.8 Estimation Method and Distributional Assumptions 

After the specification and theoretical identification of a structural equation model, the 

next stage is the estimation of the parameters of the model. The foundation underpinning 

the estimation methods under SEM is introduced under this section which focuses on 

maximum likelihood estimation procedure. The basic assumptions regarding the 

distribution of normality for   maximum likelihood are together with the properties of 

maximum likelihood estimators are looked at here (Kline, 2011). 

www.udsspace.uds.edu.gh 

 

 



38 

Under SEM, every method of estimation are based on the association between the 

implied covariance matrix of the measure variables,(𝜃), as well as the sample covariance 

matrix of the measured  variables 𝑆. The main aim for every method of estimation is 

utilizing the sample covariance matrix, 𝑆, to achieve estimates for the structural 

parameters in 𝜃 for the given model so that 𝛴(𝜃) is close to 𝑆. In order to assess what 

“close” stands for, then a fitting function must be selected which is minimized. Several 

possibilities are available in terms of choosing for this fitting function, which is 

represented as (𝑆, 𝛴(𝜃)) , is a function of the sample covariance matrix as well as the 

implied covariance matrix. For practical purposes, there exist four key properties that a 

fitting function must possess (Bollen, 1989 and Browne, 1984). These are 

1.  𝐹(𝑆, 𝛴(𝜃)) is scalar 

2.  𝐹(𝑆, 𝛴(𝜃)) ≥ 0 

3.  𝐹(𝑆, 𝛴(𝜃)) = 0 whenever 𝑆 = 𝛴(𝜃) 

4.  𝐹(𝑆, 𝛴(𝜃)) is a twice continuously differentiable function in terms of 𝑆 as well 

as 𝛴(𝜃) . 

 

The commonest method of estimation is ML which demand that assumptions should be 

made concerning the construct (latent) variables as well as the error terms. The 

commonest assumption is that of normality which indicates that ∼ 𝒩(0,𝛷), 𝜂 ∼

𝒩(0, 𝛴𝜂𝜂), 𝛿 ∼ 𝒩(0, 𝜃𝛿), 𝜀 ∼ 𝒩(0, 𝜃𝜀), as well as 𝜁 ∼ 𝒩(0,𝛹) . Therefore, this means 

that 𝑥 = 𝛬𝑥𝜂 + 𝛿 as well as 𝑦 = 𝛬𝑦𝜂 + 𝜀 are deemed to be normally distributed so that 

𝑥 ∼ 𝒩(0, 𝛴𝑥𝑥) for 𝛴𝑥𝑥 = 𝛬𝑥𝛷𝛬𝑥
′ + 𝜃𝛿  and 𝑦 ∼ 𝒩(0, 𝛴𝑦𝑦) 

for 𝛴𝑦𝑦 = 𝛬𝑦(𝐼 − 𝐵)
−1(𝛤𝛷𝛤′ +𝛹)(𝐼 − 𝐵)−𝑇𝛬𝑦

′ + 𝜃𝜀. Based on the assumption of 

normality the MLfor the fitting function is given by Bollen, (1989): 
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𝐹𝑀𝐿 =  log |𝛴(𝜃)| + 𝑇𝑟(𝑆𝛴−1(𝜃)) −  log |𝑆| − (𝑝 + 𝑞) ,           (3.7) 

while  log  connotes the natural  log  and Tr is the trace of a matrix. Thus Equation (3.7) 

satisfies the properties for fitting function base on the assumption that 𝛴(𝜃) as well as 𝑆 

are matrices which are positive definite. The fitting function is then minimized by the 

ML in respect of the structural parameters often by an iterative numerical procedure, 

usually the Newton‐Raphson algorithm (Bollen, 1989). 

 

According to Casella and Berger (2002), suppose 𝑋1, 𝑋2, . . ., be iid 𝑓(𝑥|𝜃), when 𝜃 is 

the maximum likelihood estimator of 𝜃 and let 𝜏(𝜃) be the continuous function of 𝜃. 

According to Cox and Hinkley (1974), every member regarding the exponential 

dispersion family (normal distribution included) satisfies the regularity conditions and 

therefore below holds 

                       √𝑛[𝜏(𝜃) − 𝜏(𝜃)]  → 𝒩(0, 𝑣(𝜃))  

for 𝑣(𝜃) is a Cramér‐Rao lower bound. By this theory, the properties of the MLEs, 𝜃, 

are given as (Casella and Berger, 2002 and Greene, 2008). 

1. ML estimators are asymptotically unbiased so that 

                   𝐸[𝜏(𝜃) − 𝜏(𝜃)] = 0 as 𝑛 → ∞. 

2.  ML estimators are said to be consistent. This means that when 𝜀 > 0,  

                   𝑃 (|𝜏(𝜃) − 𝜏(𝜃)|  ≥ 𝜀) = 0 as 𝑛 → ∞. 

3.  MLEs are asymptotically efficient. MLEs are asymptotically normally 

distributed with mean 𝜃 and variance (
2

(𝑁−1)
) (𝐸[

𝜕2𝐹𝑀𝐿

𝜕𝜃𝜕𝜃
])−1. 
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3.9 Model Evaluation 

The next stage after estimating a SEM is the evaluation of the model to ascertain whether 

it fits the data set. A model can be evaluated at two levels. For the first part, the 

coefficients must be assessed whereas the second part deals with the general model fit. 

Here, the section looks at the tools required at every part (Hildreth, 2013). 

 

3.9.1 Coefficient Evaluation 

Irrespective of the statistical method under consideration, every model evaluation 

demands an examination of the estimated coefficients regarding the sign as well as the 

magnitude in comparison to the theoretical underpinning of the model. This particular 

phase, regrettably, is occasionally ignored since researchers may rely on only the general 

fit indices to arrive at decision regarding the fitness of the model while ignoring the 

theoretical interest the model embodies. Meanwhile every SEM is formulated to check a 

particular theory which demands a proper consideration of the values associated with 

estimated coefficients. It is very important to assess the magnitude as well as the sign of 

the coefficient in line with past study and the significance of coefficients both 

substantively and statistically (Bollen, 1989). 

 

3.9.2 Overall Model Fit Measures 

For evaluation of SEM, quite a number of statistical measures have so far been 

formulated. Therefore there are measures to assess the validity of the hypothesis that 𝛴 

= 𝛴(𝜃) through the measurement of the length or distance between 𝛴 and (𝜃). For 

practical purposes, however, 𝛴 and 𝛴(𝜃) are substituted with their sample counterparts 

𝑆 as well as 𝛴(𝜃) where 𝑆 represents the covariance matrix of the sample and 𝛴(𝜃) 

represents the implied covariance matrix which is evaluated at the estimate 𝜃 that reduces 
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the fitting function. Measures regarding fitness thus becomes functions of both 𝑆 and 

𝛴(𝜃) which are formulated ascertain the extent of “closeness” of 𝑆 to (𝜃) . These indices 

have the advantage of examining the whole model and may be able to reveal model 

inadequacies not revealed by coefficient estimates (Bollen, 1989; Kline, 2011).  

 

Residual Matrix:  The direct way of examining the hypothesis that 𝛴 = 𝛴(𝜃) is by 

calculating 𝛴 − 𝛴(𝜃). Whenever the hypothesis holds then 𝛴 − 𝛴(𝜃) represents a null 

matrix so that nonzero items show the model specification error. For practical purposes, 

𝑆 and 𝛴(𝜃) are replaced with both unknown population matrices 𝛴 as well as 𝛴(𝜃) 

respectively in order to establish the sample residual matrix 𝑆 − 𝛴(𝜃). The sample 

residual matrix 𝑆 − 𝛴(𝜃) comprise of individual items, 𝑠ℎ𝑗 − 𝜎ℎ𝑗 , where 𝑠ℎ𝑗 represents 

the sample covariance between the ℎ𝑡ℎ and 𝑗𝑡ℎ variables as well as 𝜎ℎ𝑗 which represents 

the predicted covariance of the model between the ℎ𝑡ℎ and 𝑗𝑡ℎ observations. In order to 

correct for metric variations as well as sampling error, it was opined by Jöreskog and 

Sörbom (1986) that the utilization of a normalized residual matrix for individual items 

equals 

𝑠ℎ𝑗 − �̂�

[(�̂��̂� + �̂�)/𝑁]1/2
 

where 𝑠ℎ𝑗 represents the covariance of the sample between variables ℎ and 𝑗, while �̂� 

represents the predicted covariance of the model between variables ℎ and 𝑗, while �̂� 

represents the model predicted variance of variable ℎ and �̂� being the model predicted 

variance of variable 𝑗. 

 

www.udsspace.uds.edu.gh 

 

 



42 

There have been two more fit statistics which are not either absolute statistics or 

increment statistics comprise the Akaike information criterion (AIC-Akaike, 1974) as 

well as the Bayesian information criterion or Schwartz-Bayes criterion (BIC or SBC-

Schwartz, 1978) that are utilized under SEM just as applied under regression modelling. 

  

3.9.3 Diagnostics in SEM  

As pertains in other statistical methodologies, many studies have developed model 

diagnostic checks for model fitness statistics as well as assessing the departures from 

certain underlying assumptions in SEM context. Some of these assumption have been 

discussed extensively previous under Section (2.3). Thus, this section summarizes the 

works done regarding the influence of and methodologies to detect: outliers as well as 

controlling elements; departures from the normality assumption; departure from the 

assumption of linearity; departures from the assumption of homoskedasticity; and the 

violations of the assumption of independence. Against this backdrop many SEM 

diagnostics were established to assist in terms of identifying outliers and controlling 

elements such as: the distance measures of Bollen’s A (Bollen, 1987, 1989; Mullen, 

Milne, 2007); the measurements that rely on the effect of an item on the likelihood 

(Coffman & Millsap, 2006); the measures that rely on the effect of an item regarding the 

measured  covariance matrix; the case deletion process (Lee & Tang, 2004) as well as 

the forward search algorithm to spot many items would be identified by deletion 

diagnostics (Mavridis & Moustaki, 2008).  

 

3.10 Methods Used in Developing Residual Estimators  

Studies regarding residuals in SEM usually refer to residual matrix which is defined as 

the difference between the observed and the predicted covariance matrices, given by 
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(𝑆 − Σ(𝜃)). Unlike the definition that considers the residuals linked to the individual 

cases that form the matrices. More importantly, the utilization of residuals in SEM, being 

the case for other statistical methodologies, would enable us to identify outliers and 

possible influential observations. The SEM framework normally considers three different 

cases of residuals; the residuals related to the observed error (measurement error) for 

those associated with the exogenous and endogenous factor scores (latent variables) 𝛿 

and 𝜖 respectively as well as the residuals related to the error under the latent variable 

equations, 𝜁. Therefore, many earlier studies have established different methodologies 

for residual estimators. All the methods often utilize factor score estimators at different 

levels based on the methodology adopted. Generalization of the methods have been 

adopted for every case in terms of diagnosis (DiStefano, Zhu & Mindrila, 2009). 

 

3.10.1 Weighted Function of the Observed Variable 

The weighted function of the observed variable is the commonest factor score is often 

used in the derivation process Lawley and Maxwell (1971). The method consist of 

obtaining factor scores by taking the product of the observed variable matrix and the 

weight matrix denoted by 𝑾. This process then leads to the transformation of the 

observed variable into factor scores. The commonest choice of 𝑾 is underpinned by the 

principle least squares which is known as the regression method estimator. This approach 

was utilized by Bollen and Arminger (1991) and Sánchez et al (2009). Bollen and 

Arminger (1991) developed another option for 𝑾, not common though, which was 

subsequently formalized by Raykov and Penev (2001) through the application of 

principle of weighted least squares which is known as the Bartlett’s method estimator. 

However, the third choice of 𝑾, which is known as the Anderson Rubin method 

estimator (Anderson & Rubin, 1956) was an extension of Bartlett’s method based on 
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assumption of orthogonality of the factor model. The derivations of the weight matrices 

are discussed in subsequent sections under this chapter. 

 

3.10.2 Bayesian Expected a Posteriori Scores  

Bartholomew (1980 and 1981) developed the Bayesian expected a posteriori scores 

(EAP) method which is also known as posterior means. This was subsequently adopted 

in obtaining values for residuals Mavridis and Moustaki (2008). Standard Bayesian 

principles in terms of statistics, as the main aim of EAP, is often used to obtain the 

posterior distribution of the factor scores. More importantly, the observed variables under 

the vectors x and y, which is generally known as z, is fixed. The values obtained are 

subsequently utilized as the prior distribution for the latent variables as Baye’s theorem 

is used to calculate the posterior distribution. A measure of location from the distribution, 

in this case the posterior mean 𝐸(𝐿|𝑧), would then be selected and adopted for the factor 

scores. Thurstone (1935) developed the ultimate formula for EAP scores based on the 

assumptions that the measured variables were normally distributed which happens to be 

a unique case for the regression method. However, the derivations of their theoretical 

framework differ significantly though the EAP scores are a unique case of the regression 

method scores. 

 

3.10.3 Empirical Bayes Estimates  

This method is a look alike of the EAP scores which is also known as posterior modes. 

Bartholomew (1984) initially proposed this method and Meredith and Tisak (1990) later 

developed it using latent growth curve technique, a unique case of SEM. Subsequently, 

Coffman and Millsap (2006) further developed separate fit statistics. The difference 

between empirical Bayes estimation and EAP scores comes from the selection of the 
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location measure of the posterior mode as against the posterior mean of the posterior 

distribution which utilizes factor scores. However, whenever there exists symmetry in 

the posterior distribution, that is satisfying the normal assumption, then both empirical 

Bayes estimates as well as EAP scores will be identical since the mean and mode under 

such condition are the same (Mavridis & Moustaki, 2008). 

 

3.10.4 EM Algorithm 

This method, which is the last, provides for the calculation of the residuals by utilizing 

EM-type algorithm under nonlinear SEM which was proposed by Lee and Zhu (2002). 

According to Lee and Zhu (2002) the latent variables are used as missing observation 

and estimation of the latent variables are then obtained by utilizing the EM-type. Lee and 

Lu (2003) utilized the EM method to propose a general form of Cook’s distance measure 

for nonlinear SEM by laying emphasis on checking the normality assumption of residuals 

in SEM. The study here utilizes the uniform horizontal QQ plots which are constructed 

to spot outliers and controlling observations using a simulation setup.   

 

3.11 Residual Estimators and Residuals for Weighted Function of the Observed 

Variables 

Residual estimators detailed further in this chapter were constructed by using the weight 

functions observed previously in section 3.2.1. reasons that informed the selection of this 

particular method include the fact that; it was already the commonest utilized in factor 

analysis to develop factor scores, it is relatively easier to work with in practice, both EAP 

scores and empirical Bayes estimates produces the same factor scores for the measured 

variables and the weight matrix which are obtained through the principle of least squares 

when the error term is assumed to be normal (Hildreth, 2013). 
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This section therefore develops the residual estimators through the varied possible weight 

matrices discussed. It is imperative to provide a bit of information regarding the notation 

utilized here. Variables that has the subscript 𝑖 represents the values for the 𝑖𝑡ℎ individual 

or observation. Those that do not have subscript 𝑖 were either structural parameters (such 

as Γ) or estimators. The study carefully considered a clear distinction between estimators 

and the resulting residuals in this chapter so as to avoid any confusion. 

To construct residuals and define residual estimators in the SEM context, recall the 

equations associated with a SEM for the 𝑖𝑡ℎ individual: 

𝜂𝑖 = Β𝜂𝑖 + Γ𝜉𝑖 + 𝜁𝑖                              (3.8) 

𝑦𝑖 = Λ𝑦𝜂𝑖 + 𝜖𝑖                                       (3.9) 

𝑥𝑖 = Λ𝑥𝜉𝑖 + 𝛿𝑖                                               (3.10) 

Where, 𝑥𝑖 represents a vector of the measured values for the exogenous latent variables 

for the 𝑖𝑡ℎ individual; 𝛿𝑖 represents the vector of the measurement error for items linked 

to the exogenous latent variables for the 𝑖𝑡ℎ observation, 

At this point, it follows from the method of Bollen and Arminger (1991) that for reasons 

of convenience, we apply the definitions   

i

i

i

y
z

x

 
  
 

,   i

i

i

L




 
  
 

,  i

i

i

v




 
  
 

,   
0

0

y

x

 
   

 
   

So that Eqns 4.2 and 4.3 would become 

i i iz L v         (3.11) 
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Where at the 𝑖𝑡ℎ of 𝑁 independent values, iz  is a vector of (𝑝 + 𝑞) × 1 measured 

variables, iL  is a vector of (𝑚 + 𝑛) × 1 measurement errors for iz , and    p q m n  
  

is a matrix of (𝑝 + 𝑞) × (𝑚 + 𝑛) of coefficients associating iz  to iL  so that 0  . 

Also, 
   m n m n

LL

  
   and 

   p q p q

vv

  
    are covariance matrices linked to (3.11)  

0

0
vv









 
   

 
  

 

and    
 

 

1

LL T

I B A

A I B







   
  

    

 

 

      

 

1 1T

y y y x

zz T

x y x x

I B A A I B I B A

A I B









  



            
  

         

 

Thus, vv , LL  and zz  are the covariance matrices which are assumed to be positive 

definite (non-singular) and symmetric (Bollen & Arminger, 1991). 

By rearrangement, Equations (3.8) and (3.11) then the residuals for the individual i  

would be defined by 

i i iv z L        (3.12) 

 i iML         (3.13) 

For 
   

1m m n
M I B A

      
 

. 

In real sense, the observations of iL  in Equations (3.12) and (3.13) are not known and 

therefore are replaced with their corresponding factor scores defined by 

ˆ
i iL Wz       (3.14) 
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Thus, the estimators of the residual in Equation (3.12) and (3.13) are expressed as 

   v̂ I W z        (3.15) 

 ˆ MWz         (3.16) 

Where  v̂   and  ̂   are the notations that are used to represent the residual estimators 

which are functions of the population parameters in the vector 𝜃. This contains the 

peculiar elements in B , A ,  , LL , vv  and   (Bollen & Arminger, 1991). 

Meanwhile, the observations of 𝜃 are replaced with their sample counterpart ̂  so that 

the residual estimators utilized in real sense are as follows 

   ˆ ˆ ˆv̂ I W z  
     (3.17) 

 ˆ ˆ ˆ ˆMWz  
      (3.18) 

Thus the three most frequent selection of W  that can be utilized in Equations (3.17) and 

(3.18) are given by 

1

R LL zzW         (3.19) 

 
1

1 1

B vv vvW


           (3.20) 

1 1

AR vvW F         (3.21) 

where  2 1 1

vv zz vvF        . 

However, in practice, their sample counterparts ˆ
RW , ˆ

BW  and ˆ
ARW  are utilized in equations 

(3.17) and (3.18) (Bollen & Arminger, 1991). Therefore, the three residual estimators 

which are considered for the measurement errors in this study are 

   1ˆ ˆ ˆˆ ˆˆ
R LL zzv I z        (3.22) 

   
1

1 1ˆ ˆ ˆ ˆ ˆˆ ˆˆ
B vv vvv M z


          (3.23) 
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  1ˆ ˆ ˆ ˆ ˆˆ
AR vvv MF z        (3.24) 

where  2 1 1ˆ ˆ ˆˆ ˆ ˆ
vv zz vvF        . 

It is worthy of note that the estimators in Equations (3.19) and (3.21) are known as the 

regression method of measurement error residuals estimator and the regression method 

for latent errors of the residual estimators respectively. Again, the estimators in Equations 

(3.22) and (3.24) are known as the Bartlett’s method of the measurement error residual 

estimator and the Barlett’s method of the latent errors of the residual estimators 

respectively. Also, the estimators contained is Equations (3.21) and (3.24) are called the 

Anderson-Rubin method of measurement error residual estimator and the Anderson-

Rubin method latent errors of the residual estimators respectively. 

𝛴𝑧𝑧 = [
𝛬𝑦(𝐼 − 𝐵)

−1(𝛤𝛷𝛤′ +𝛹)(𝐼 − 𝐵)−𝑇𝛬𝑦
′ + 𝜃𝜀 𝛬𝑦(𝐼 − 𝐵)

−1𝛤𝛷𝛬𝑥
′

𝛬𝑥𝛷𝛤, (𝐼 − 𝐵)
−𝑇𝛬𝑦

′ 𝛬𝑥𝛷𝛬𝑥 + 𝜃𝛿
]  

 

3.12 Finite Sample Properties of �̂�(𝜽) and �̂�(𝜽) 

According to Bollen and Arminger (1991) four main properties are basically desired for 

estimators in SEM concept. The selection process of the right estimators 𝜈(𝜃) and 𝜁(𝜃) 

is often backed by the properties which are as follows 

1. Conditional unbiasedness: This concerns the accuracy of an estimator. The 

property here concerns the conditional expectation of an estimator adopted for 

observations whose true factor scores are 𝐿 and therefore are makes it desirable 

for the conditional bias to be 0. 

2. Mean squared error (MSE): This property assesses the precision of an estimator. 

The MSE under this assesses the average squared errors which are defined to be 

the difference between the residuals attained through a particular estimator and 
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the true observations of the residual. Choosing an estimator that reduces this 

value must always be desired. 

3. Structure preservation: Here, the selection or choice of an estimator must not 

change the associations among the error terms. This means that it is preferred that 

both covariance structures of the estimated residual as well as the true residual 

are the same.  

4. Univocality: This refers to a situation where the residuals estimated associate or 

correlate mainly with their counterpart true residuals (i.e validity) but does not 

correlate with the noncorresponding residuals (i.e. invalidity). Any estimator that 

exhibit this property is considered as univocal. 

The four properties stated above would be properly defined, by mathematical 

expressions, here subsequently. Equation (3.15) and Equation (3.16) are deemed to be 

linear function of factor score estimators of the category in Equation (3.14). Thus it is 

worth highlighting the properties of the factor score estimators since they mirror the 

residual estimators. These properties of the factor score estimators utilize the weighted 

matrices contained in Equations (3.19), (3.20), and (3.21) given that 𝜃 is known for all 

the elements. Based on previous studies by McDonald and Burr (1967), Lawley and 

Maxwell (1971) and Saris et al (1978) the factor score estimator is conditionally not 

biased as well as possessing smaller mean square error, when utilizing the Bartlett’s 

method, for every conditionally not biased estimators. However, for the regression 

method, the factor score estimator only possess smaller mean square error for every 

estimator. Moreover, according Saris et al (1978) the Anderson‐Rubin method estimator 

has structure preservation in that 𝐸(�̂��̂�) = 𝐸(𝐿𝐿′) = 𝛴𝐿𝐿 (the original structure of the 

latent variables are preserved by 𝑊𝑎𝑟). This holds based on the assumption of 
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orthogonality of the model (where 𝐸(𝐿𝐿′) = 𝐼 ). Univocality was ascertained by 

McDonald and Burr (1967) for the Bartlett’s method factor score.  

Last but not least the residual estimators’ distribution are addressed. Thus this property 

together with the four properties mentioned above would provide basis for developing 

the right residual diagnostics. 

Theoretically the derivation of the finite sample properties rely on the assumption that 

there exist a parameter space 𝛩 for the vector parameters 𝜃  (McDonald & Burr, 1967) 

which corresponds to; 

1. All 𝛬 = [
𝛬𝑦 0

0 𝛬𝑥
], 𝛬𝑦 ∈ ℜ

𝑝×𝑚, 𝛬𝑥 ∈ ℜ𝑞×𝑛 where 𝛬 has rank (𝑚 + 𝑛) . 

2. All 𝛤 ∈ ℜ𝑚×𝑛 where 𝛤 has rank 𝑛. 

3. All 𝐵 ∈ ℜ𝑚×𝑚 such that (𝐼 − 𝐵)−1 exists and diag (B) = 0. 

4. All 𝛴𝑣𝑣 = [
𝜃𝜀 0
0 𝜃𝛿

] where 𝜃𝜀 ∈ ℜ𝑝×𝑝 and 𝜃𝛿  ∈ ℜ𝑞×𝑞 are symmetric as well as 

positive definite matrices. 

5. All 𝛷 ∈ ℜ𝑛×𝑛 are symmetric as well as positive definite matrices.. 

6. All 𝛹 ∈ ℜ𝑚×𝑛 are symmetric as well as positive definite matrices. 

7. All associated matrices 𝛴𝜂𝜂 ∈ ℜ𝑚×𝑚, 𝛴𝐿𝐿 ∈ ℜ(𝑚 + 𝑛) × (𝑚 + 𝑛) , and 𝛴𝑧𝑧 ∈

ℜ(𝑝 + 𝑞) × (𝑝 + 𝑞) are symmetric as well as positive definite matrices. 

 

3.12.1 Conditional Unbiasedness 

Under SEM, conditional unbiasedness concerns the accuracy of the residual estimator 

which is conditioned on every element with factor scores 𝐿. It is important for all 

estimators to be accurate in order for the estimated residuals to estimate the true residuals.  
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Therefore the following definitions are provided are utilized to secure results for the 

conditional unbiasedness of the estimators �̂�(𝜃) as well as 𝜁(𝜃). Subsequently, these 

results would be utilized to arrive at heuristic results in terms of the estimators �̂�(𝜃) and 

𝜁(𝜃).   

Definition 3.1 McDonald and Burr, (1967) indicated that the factor score estimator �̂� 

was conditionally unbiased estimator of the true factor scores 𝐿 which holds for all 𝐿 ∈

ℜ(𝑚 + 𝑛) × 𝑁 

𝐸[�̂�|𝐿]  = 𝐿. 

Definition 3.2 The models stipulated in Equations (3.8) and (3.11) as well as the residuals 

stated in Equation (3.12) means the estimator �̂�(𝜃) is conditionally unbiased which holds 

for all 𝜃 ∈ 𝛩 as well as for all 𝐿 ∈ ℜ(𝑚 + 𝑛) × 𝑁 (McDonald & Burr, 1967) 

𝐸[(�̂�(𝜃) − 𝜈(𝜃))|𝐿]  = 0. 

Definition 3.3 The models defined in Equations (3.8) and (3.11) as well as the residuals 

stated in Equation (3.13) indicate the estimator 𝜁(𝜃) is conditionally unbiased, which 

holds for all 𝜃 ∈ 𝛩 together for all 𝐿 ∈ ℜ(𝑚 + 𝑛) × 𝑁 (McDonald & Burr, 1967) 

𝐸[(𝜁(𝜃) − 𝜁(𝜃)) |𝐿]  = 0. 

Definition 3.4 Models defined in Equations (3.8) and (3.11) and the residuals stated in 

Equation (3.12) implies that the estimator �̂�(𝜃) is conditionally unbiased, which holds 

for all 𝜃 ∈ 𝛩 together for all 𝐿 ∈ ℜ(𝑚 + 𝑛) × 𝑁 (McDonald & Burr, 1967) 

𝐸[(�̂�(�̂�) − 𝜈(𝜃)) |𝐿]  = 0. 
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Definition 3.5 The models defined in Equations (3.8) and (3.11) and the residuals stated 

in Equation (3.13) shows that the estimator 𝜁(𝜃) is conditionally unbiased, which holds 

for all 𝜃 ∈ 𝛩 together for all 𝐿 ∈ ℜ(𝑚 + 𝑛) × 𝑁 (McDonald & Burr, 1967) 

𝐸[(𝜁(𝜃) − 𝜁(𝜃)) |𝐿]  = 0. 

Thus Results 1 as well as 2 are formulated based the definitions from 3.8 to 3.10. 

Result 1: For the models defined in Equation (3.8) and Equation (3.11), 

a) The estimator �̂�(𝜃) defined in Equation (3.15) is a conditionally not biased 

estimator of the true residuals stated in Equation (3.12) which holds for only 

factor score estimator �̂� = 𝑊𝑧 is a conditionally not biased estimator of the true 

factor scores 𝐿. 

b) For estimator �̂�(𝜃) defined in Equation (3.15) is said to be conditionally not 

biased estimator of the true residuals 𝜈(𝜃) stated in Equation (3.12) holds for only 

𝑊𝛬 = 𝐼 (or alternatively only when 𝛬𝑊 = 𝐼). 

c) Estimators under consideration in Equations (3.22) − (3.24), the Bartlett’s 

method estimator in Equation (3.23) holds for 𝑊𝛬 = 𝐼 in that the Bartlett’s 

method residual estimator remains the only conditionally unbiased estimator. 

Proof. Recall that 

�̂�(𝜃)  =  (𝐼 − 𝛬𝑊)𝑧 

𝜈(𝜃)  =  𝑧 − 𝛬𝐿 

�̂� = Wz. 

We now demonstrate that 𝛬𝑊 = 𝐼 is equivalent to 𝑊𝛬 = 𝐼 given all 𝜃 ∈ 𝛩. Subsequently 

it would be shown that every part of the three proofs holds. Particularly that this 

equivalence is helpful in proving part (b) as well as part (c) of the Result. Suppose 𝛬𝑊 =

𝐼, then 

www.udsspace.uds.edu.gh 

 

 



54 

𝛬𝑊 =  𝐼 

𝐼 − 𝛬𝑊 =  0 

𝛬′(𝐼 − 𝛬𝑊)𝛬 =  0 

𝛬′𝛬 − 𝛬′𝛬𝑊𝛬 =  0 

𝛬′𝛬 =  𝛬′𝛬𝑊𝛬 

(𝛬′𝛬)−1𝛬′𝛬 =  (𝛬′𝛬)−1𝛬′𝛬𝑊𝛬 

𝐼 =  𝑊𝛬. 

Therefore it is proved that 𝛬𝑊 = 𝐼 equivalent to 𝑊𝛬 = 𝐼 for all 𝜃 ∈ 𝛩. 

Now, we demonstrate or show that part (a) of Result 1 holds. Suppose that �̂�(𝜃) is 

conditionally unbiased estimator for (𝜃). Using Definition 3.2, it holds that for all 𝜃 ∈ 𝛩 

together with all 𝐿 ∈ ℜ(𝑚 + 𝑛) × 𝑁 

𝐸[(�̂�(𝜃) − 𝜈(𝜃))|𝐿] = 0. 

Then,  0 = 𝐸[(�̂�(𝜃) − 𝜈(𝜃))|𝐿]  =  𝐸[((𝐼 − 𝛬𝑊)𝑧 − (𝑧 − 𝛬𝐿))|𝐿] 

=  𝐸[(𝑧 − 𝛬𝑊𝑧 − 𝑧 + 𝛬𝐿)|𝐿] 

=  𝛬[𝐸(𝐿|𝐿) − 𝐸(�̂�|𝐿)] 

=  𝛬𝐿 − 𝛬𝐸(�̂�|𝐿) 

(𝛬′𝛬)−1𝛬′𝛬𝐿 =  (𝛬′𝛬)−1𝛬′𝛬𝐸(�̂�|𝐿) 

𝐿 =  𝐸(�̂�|𝐿) . 

Therefore, given that �̂�(𝜃) is conditionally unbiased estimator of 𝜈(𝜃), then from 

Definition 3.1, �̂� is equally conditionally unbiased estimator for 𝐿 (McDonald & Burr, 

1967). 

Now, suppose that �̂� is conditionally unbiased estimator of 𝐿 so that Definition 3.1 is 

satisfied. By implication when all 𝐿 ∈ ℜ(𝑚 + 𝑛) × 𝑁, 
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𝐸[(�̂�(𝜃) − 𝜈(𝜃))|𝐿]  =  𝐸[((𝐼 − 𝛬𝑊)𝑧 − (𝑧 − 𝛬𝐿))|𝐿] 

                         =  𝐸[(𝑧 − 𝛬𝑊𝑧 − 𝑧 + 𝛬𝐿)|𝐿] 

              =  𝛬[𝐸(𝐿|𝐿) − 𝐸(�̂�|𝐿)] 

                         =  𝛬[𝐿 − 𝐸(�̂�|𝐿)].             (3.25) 

Rearrangement of Definition 3.1 holds given all 𝐿 ∈ ℜ(𝑚 + 𝑛) × 𝑁 so that 

𝐿 − 𝐸(�̂�|𝐿) = 0 

By substituting the above into Equation (3.25), then 

𝐸[(�̂�(𝜃) − 𝜈(𝜃))|𝐿]  =  𝛬0 

= 0 

when all 𝜃 ∈ 𝛩 and all 𝐿 ∈ ℜ(𝑚 + 𝑛) × 𝑁. Therefore as the factor score estimator �̂� is 

conditionally unbiased estimator of 𝐿 then by extension �̂�(𝜃)  equally is conditionally 

unbiased estimator of �̂�(𝜃) using Definition 3.2. Thus �̂�(𝜃) is conditionally unbiased 

estimator of 𝜈(𝜃) whenever �̂� is conditionally unbiased estimator for 𝐿 (McDonald & 

Burr, 1967). Hence the prove of part (a) of Result 1 is confirmed. 

Now part (b) of Result 1 is confirmed so that �̂�(𝜃) is conditionally unbiased estimator of 

�̂�(𝜃) whenever 𝑊𝛬 = 𝐼. To begin with, suppose 𝑊𝛬 = 𝐼. 

We can easily show that generally the conditional bias of �̂�(𝜃) given 𝜃 ∈ 𝛩 and 𝐿 ∈

ℜ(𝑚 + 𝑛) × 𝑁 is given by 

𝐸[�̂�(𝜃) − 𝜈(𝜃)|𝐿]  =  (𝐼 − 𝛬𝑊)𝛬𝐿                         (3.26) 

= 0. 
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Now, suppose �̂�(𝜃) is conditionally unbiased estimator of 𝜈(𝜃) to the extent that 

Definition 3.2 is satisfied. Thus by Equation (3.26), (𝐼 − 𝛬𝑊)𝛬𝐿 = 0 must be satisfied 

for all 𝐿 ∈ ℜ(𝑚 + 𝑛) × 𝑁 given by 

(𝐼 − 𝛬𝑊)𝛬 =  0 

𝛬′(𝐼 − 𝛬𝑊)𝛬 =  0 

𝛬′𝛬 − 𝛬′𝛬𝑊𝛬 =  0 

𝛬′𝛬 =  𝛬′𝛬𝑊𝛬 

𝐼 =  𝑊𝛬 

Therefore part (b) of Result 1 is proved as �̂�(𝜃) is conditionally unbiased estimator of 

the true residuals 𝜈(𝜃) whenever the factor score estimator 𝑊𝛬 = 𝐼. 

For part (c) of Result 1 to be shown that it holds. Then it must be shown that 𝑊𝛬 = 𝐼 for 

𝑊 = 𝑊𝑏 (McDonald & Burr, 1967). Thus, 

𝑊𝑏𝛬 =  (𝛬
′𝛴𝑣𝑣
−1𝛬)−1𝛬′𝛴𝑣𝑣

−1𝛬 

        = 𝐼 

Therefore holds for 𝑊 = 𝑊𝑏 , 𝛬𝑊 = 𝐼. 

Now, as the proofs of parts (a), (b), and (c) are combined then Result 1 is satisfied.  

Result 2: The models defined in Equation (3.8) and Equation (3.11) given that 𝑚 ≥ 𝑛 

a) For estimator 𝜁(𝜃) defined in Equation (3.16) is conditionally not biased 

estimator of the true residuals 𝜈(𝜃) stated in Equation (3.13) whenever the factor 

score estimator �̂� = 𝑊𝑧 is conditionally not biased estimator of the true factor 

scores 𝐿. 

b) For estimator 𝜁(𝜃) defined in Equation (3.16) is conditionally not biased 

estimator of the true residuals 𝜁(𝜃) stated in Equation (3.13) whenever 𝑊𝛬 = 𝐼. 

www.udsspace.uds.edu.gh 

 

 



57 

c) The estimators considered in Equations (3.125) − (3.27), then it means that the 

Bartlett’s method estimator in Equation (3.26) holds for 𝑊𝛬 = 𝐼 in that the 

Bartlett’s method residual estimator is the one and only one conditionally not 

biased estimator for those considered. 

Proof. Remember that 

𝜁(𝜃)  =  𝑀𝑊𝑧 

𝜁(𝜃)  =  𝑀𝐿 

    �̂� = Wz. 

To begin with it shall be demonstrated that part (a) of Result 2 is satisfied whenever 𝑚 ≥

𝑛, the estimator 𝜁(𝜃) is conditionally not biased estimator of 𝜁(𝜃) whenever �̂� is 

conditionally not biased estimator for 𝐿 (McDonald & Burr, 1967). Suppose 𝜁(𝜃) is 

conditionally not biased estimator of 𝜁(𝜃). Using Definition 3.3 satisfies for all 𝜃 ∈ 𝛩 

and 𝐿 ∈ ℜ(𝑚 + 𝑛) × 𝑁 

𝐸[(𝜁(𝜃) − 𝜁(𝜃)) |𝐿] = 0. 

Thus, 

0 = 𝐸[(𝜁(𝜃) − 𝜁(𝜃)) |𝐿]  =  𝐸[(𝑀�̂� − 𝑀𝐿) |𝐿] 

=  𝑀[𝐸(�̂�|𝐿) − 𝐸(𝐿|𝐿)] 

     = ME (�̂�|𝐿) − 𝑀𝐸(𝐿|𝐿) 

satisfies for all 𝑀 ∈ ℜ𝑚×(𝑚+𝑛). Next we prove that ME (�̂�|𝐿) −𝑀𝐸(𝐿|𝐿) = 0 is satisfied 

whenever 𝐸(�̂�|𝐿) = 𝐿. Thus it is given by 

𝐷 =  𝐸(�̂�|𝐿) − 𝐿 

= [𝐷1 𝐷2]
′ 
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as well as 

𝑀 = [𝐶 − 𝛤] 

for 𝐶 = (𝐼 − 𝐵)−1. then, 

0 =  𝑀𝐷 

=  𝐶𝐷1 − 𝛤𝐷2      (3.27) 

is satisfied for all 𝐵 ∈ ℜ𝑚×𝑚 given that 𝐶 is invertible as well as for all 𝛤 ∈ ℜ𝑚×𝑛. It 

must therefore be shown that 𝐷 = 0 has the equivalence by showing that 𝐸[�̂�|𝐿] = 𝐿. 

Given any 𝛤 ∈ ℜ𝑚×𝑛 which implies for 𝛤 ≠ 0, pick any value of 𝜅 where 𝜅 = 
1

𝑘
 → 0 for 

𝑘 → ∞. Then define 𝛤∗ = 𝜅𝛤 so that 𝛤∗ → 0 as 𝑘 → ∞ (Bollen & Aminger, 1991). 

Equation (3.27) then becomes  

𝐶𝐷1 − 𝛤
∗𝐷2. 

Therefore, suppose 𝑘 → ∞, 𝐷1 = 0 for 𝐶 which is invertible so that 𝐶 ≠ 0 for all 𝜃 ∈ 𝛩.  

Subsequently, assume 𝐷1 = 0 which implies 𝛤∗𝐷2 = 0. Further suppose 𝑚 ≥ 𝑛 so that 

𝛤∗ can be picked to contain 𝑛 linear independent columns of length 𝑚. Thus, the matrix 

𝛤′𝛤∗of size 𝑛 × 𝑛 is invertible which means that 

0 =  (𝛤∗′𝛤∗)−1𝛤∗′𝛤∗𝐷2 

= 𝐷2. 

Thus 𝐷 = 0 or = 𝐸(�̂�|𝐿). Hence, if 𝑚 ≥ 𝑛 for 𝜁(𝜃) is conditionally not biased estimator 

of 𝜁(𝜃) it implies that from Definition 3.1 �̂� is equally conditionally not biased estimator 

for 𝐿 (Bollen & Aminger, 1991). 

Now, suppose �̂� is a conditionally not biased estimator of 𝐿 to extent that Definition 3.1 

is satisfied (McDonald & Burr, 1967). Thus 𝜃 ∈ 𝛩 and 𝐿 ∈ ℜ(𝑚 + 𝑛) × 𝑁, 
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𝐸[(𝜁(𝜃) − 𝜁(𝜃)) |𝐿]  =  𝐸[(𝑀�̂� − 𝑀𝐿) |𝐿] 

=  𝑀[𝐸(�̂�|𝐿) − 𝐸(𝐿|𝐿)] 

  =  𝑀[𝐸(�̂�|𝐿) − 𝐿].      (3.28) 

through rearrangement of Definition 3.1 it satisfies for 𝐿 ∈ ℜ(𝑚 + 𝑛) × 𝑁 so that 

𝐿 − 𝐸(�̂�|𝐿) = 0. 

which when substituted into Equation (3.28) yields 

𝐸[(𝜁(𝜃) − 𝜁(𝜃)) |𝐿] = 𝑀 = 0 

given that 𝜃 ∈ 𝛩 and for all 𝐿 ∈ ℜ(𝑚 + 𝑛) × 𝑁. Therefore part (a) of Result 2 is proved 

to the extent that 𝜁(𝜃) is conditionally not biased estimator of 𝜁(𝜃) whenever �̂� is 

conditionally not biased estimator for 𝐿 (McDonald & Burr, 1967). 

Also, part (b) of Result 2 is satisfied if 𝜁(𝜃) is conditionally not biased estimator of 𝜁(𝜃) 

whenever 𝑊𝛬 = 𝐼. In order to prove this, let us suppose 𝑊𝛬 = 𝐼. It therefore becomes 

easier to show generally that the conditional bias of 𝜁(𝜃) is given as 

𝐸[(𝜁(𝜃) − 𝜁(𝜃))]  = 𝑀(𝑊𝛬 − 𝐼)𝐿.         (3.29) 

Thus for every 𝜃 ∈ 𝛩 and 𝐿 ∈ ℜ(𝑚 + 𝑛) × 𝑁, then 

𝑀(𝑊𝛬 − 𝐼)𝐿 =  𝑀(𝐼 − 𝐼)𝐿 

        = 0. 

We suppose next that 𝜁(𝜃) is conditionally not biased estimator of 𝜁(𝜃) in that Definition 

4.3 is satisfied. Thus, utilizing Equation (3.29), 𝑀(𝑊𝛬 − 𝐼)𝐿 = 0 necessarily satisfies 

when 𝐿 ∈ ℜ(𝑚 + 𝑛) × 𝑁 and when 𝑀 ∈ ℜ𝑚×(𝑚+𝑛) which means (considering 𝐿 = [𝐼 

0] given (𝑚 + 𝑛) × (𝑚 + 𝑛) matrix 𝐼) (Bollen & Aminger, 1991) 

𝑀(𝑊𝛬 − 𝐼) = 0 
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satisfies when 𝑀 ∈ ℜ𝑚×(𝑚+𝑛). Consequently, we show that 𝑀(𝑊𝛬 − 𝐼) = 0 exist 

whenever 𝑀(𝑊𝛬 + 𝐼) which can be defined as 

𝐷 =  (𝑊𝛬 − 𝐼) = 0 

= [𝐷1 𝐷2]
′ 

and 

𝑀 = [𝐶 − 𝛤] 

given 𝐶 = (𝐼 − 𝐵)−1, it impies 

0 =  𝑀𝐷 

       =  𝐶𝐷1 − 𝛤𝐷2            (3.30) 

exist when 𝐵 ∈ ℜ𝑚×𝑚 for 𝐶 which is invertible as well as when 𝛤 ∈ ℜ𝑚×𝑛. Therefore it 

can be proved that 𝐷 = 0 is equivalent to proving that 𝑊𝛬 = 𝐼. Given that 𝛤 ∈ ℜ𝑚×𝑛 

for 𝛤 ≠ 0, pick any value of 𝜅 for 𝜅 = 
1

𝑘
 → 0 as 𝑘 → ∞. We define 𝛤∗ = 𝜅𝛤 when 𝛤∗ →

0 as 𝑘 → ∞. Rewrite Equation (3.30) as 

𝐶𝐷1 − 𝛤
∗𝐷2. 

Thus suppose 𝑘 → ∞, 𝐷1 = 0 when 𝐶 is invertible means 𝐶 ≠ 0 when 𝜃 ∈ 𝛩. 

Consequently assume that 𝐷1 = 0 which means that 𝛤∗𝐷2 = 0. Further suppose 𝑚 ≥ 𝑛 

so that 𝛤∗ could be picked to comprise 𝑛 linear independent columns of length 𝑚 

(McDonald & Burr, 1967). Thus, the matrix 𝛤′𝛤∗ with dimension 𝑛 × 𝑛 is deemed 

invertible such that 

0 =  (𝛤∗′𝛤∗)−1𝛤∗′𝛤∗𝐷2 

= 𝐷2. 

Therefore, part (b) of Result 2 is proved to the extent that 𝜁(𝜃) is conditionally not biased 

estimator of the true residuals 𝜁(𝜃) whenever 𝑊𝛬 = 𝐼. 
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Finally, in order to prove part (c) of Result 2 we will show that 𝑊𝛬 = 𝐼 as 𝑊 = 𝑊𝑏. 

Thus, 

𝑊𝑏𝛬 =  (𝛬
′𝛴𝑣𝑣
−1𝛬)−1𝛬′𝛴𝑣𝑣

−1𝛬 

    = 𝐼 

Hence, as 𝑊 = 𝑊𝑏 then 𝑊𝛬 = 𝐼 which proves part (c) of Result 2. 

Now, the combination of proofs of parts (a), (b), and (c) then Result 2 is said to be proved 

accordingly (McDonald & Burr, 1967). Consequently, the following facts are worth 

noting:  

1. The conditional biases of the regression and Anderson-Rubin method estimators 

equal 0 whenever either (a) 𝜃 = 0 or (b) 𝐿 = 0.  However, it is not possible for 

𝜃 = 0 in real sense nor is it possible for 𝐿 = 0. Therefore, the regression as well 

as the Anderson-Rubin method estimators are generally conditionally biased.  

2. Generally, there exist no upper limit regarding the absolute value in terms of of 

the residuals gotten from the estimators contained in Equations (3.17) and (3.18) 

since the only constraint regarding the value of either θ or L are said to be real-

valued.  

3. Both the regression and Anderson-Rubin method estimators derive their values 

from 𝜃 and true factor scores 𝐿 which defines the sign of conditional bias.  

The Heuristic Result 1 demonstrates that both 𝑣𝑏(𝜃𝑀𝐿𝐸) as well as 𝜁𝑏(𝜃𝑀𝐿𝐸) indicate 

close attributes in terms of 𝑣𝑏(𝜃) and 𝜁𝑏(𝜃) so that 𝑣𝑏(𝜃𝑀𝐿𝐸) as well as 𝜁𝑏(𝜃𝑀𝐿𝐸) were 

conditionally not biased estimators of 𝑣(𝜃) and 𝜁(𝜃), respectively. 
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3.12.2 Mean Squared Error 

Though the conditionally unbiased criteria is helpful in choosing from estimators, it 

basically examines accurateness but fails to examine the precision level of an estimator. 

Generally, it is imperative to have a precise estimator such that there is higher degree of 

closeness between the estimates residuals and their true value residual counterparts. The 

commonest criteria which is often used ascertain same is the Mean Squared Error (MSE) 

(Byrne, 2010). The following definition spanning from 3.15 to 3.18 defines the MSE 

under the SEM concept in this study which then establishes Result 3. Consequently, 

Heuristic Result 2 is established based on the earlier stated Results 4 as well as 5.  

 

Definition 3.6 Consider the models defined in Equations (3.8) as well as (3.11) and the 

residuals stated Equation (3.12) (Bollen & Aminger, 1991), then 

Mean square error of the estimator �̂�(𝜃) and (𝜁(𝜃) stated in Equation (3.15) is as follows: 

𝑇𝑟 [𝐸(�̂�(𝜃) − 𝜈(𝜃))(�̂�(𝜃) − 𝜈(𝜃))′] 

𝑇𝑟 [𝐸(𝜁(𝜃) − 𝜁(𝜃)) (𝜁(𝜃) − 𝜁(𝜃))′] 

𝑇𝑟 [𝐸(�̂�(𝜃) − 𝜈(𝜃)) (�̂�(�̂�) − 𝜈(𝜃))′] 

𝑇𝑟 [𝐸(𝜁(𝜃) − 𝜁(𝜃)) (𝜁(𝜃) − 𝜁(𝜃))′] 

Result 3: Consider the models defined under Equations (3.8) as well as (3.11), when 𝜃 ∈

𝛩 then the estimator �̂�(𝜃) as stated under Equation (3.22) realizes the smallest mean 

squared error from all the estimators of the class under Equation (3.15). 

Proof. Recollect that 

�̂�(𝜃)  =  (𝐼 − 𝛬𝑊)𝑧 

𝜈(𝜃)  =  𝑧 − 𝛬𝐿. 
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First, it is imperative to identify the weight matrix 𝑾 that will minimize the MSE of the 

estimator �̂�(𝜃) as stated by Definition 3.6. Therefore, it becomes appropriate to 

determining what weight matrix 𝑾 minimizes 

ℒ = 𝑇𝑟[𝐸(�̂�(𝜃) − 𝜈(𝜃))(�̂�(𝜃) − 𝜈(𝜃))′]. 

Take the first derivative in respect of 𝑾 

𝜕

𝜕𝑊
ℒ = 

𝜕

𝜕𝑊
 Tr [𝐸(((𝐼 − 𝛬𝑊)𝑧 − 𝜈)((𝐼 − 𝛬𝑊)𝑧 − 𝜈 

    = 
𝜕

𝜕𝑊
 Tr [(𝐼 − 𝛬𝑊)𝛴𝑧𝑧(𝐼 − 𝛬𝑊)’ − 2(𝐼 − 𝛬𝑊)𝛴𝑣𝑣 + 𝛴𝑣𝑣] 

    = 
𝜕

𝜕𝑊
 Tr [𝛴𝑧𝑧 − 2𝛬

′𝑊𝛴𝑧𝑧 + 𝛬𝑊𝛴𝑧𝑧𝑊
′𝛬′ − 𝛴𝑣𝑣 + 2𝛬

′𝑊𝛴𝑣𝑣] 

    =  −2𝛬′𝛴𝑧𝑧 + 2𝛬
′𝛬𝑊𝛴𝑧𝑧 + 2𝛬

′𝛴𝑣𝑣,      (3.31) 

by equating Equation (3.31) to 0 and working for 𝑾 then 

  −2𝛬′𝛴𝑧𝑧 + 2𝛬
′𝛬𝑊𝛴𝑧𝑧 + 2𝛬

′𝛴𝑣𝑣 = 0 

−𝛬′𝛴𝑧𝑧 + 𝛬
′𝛬𝑊𝛴𝑧𝑧 + 𝛬

′𝛴𝑣𝑣  =  0 

𝛬′𝛬𝑊𝛴𝑧𝑧  =  𝛬
′𝛴𝑧𝑧 − 𝛬

′𝛴𝑣𝑣 

(𝛬′𝛬)−1𝛬′𝛬𝑊𝛴𝑧𝑧𝛴𝑧𝑧
−1  =  (𝛬′𝛬)−1𝛬′𝛴𝑧𝑧𝛴𝑧𝑧

−1 − (𝛬′𝛬)−1𝛬′𝛴𝑣𝑣𝛴𝑧𝑧
−1 

IWI = (𝛬′𝛬)−1𝛬′𝐼 − (𝛬′𝛬)−1𝛬′𝛴𝑣𝑣𝛴𝑧𝑧
−1 

𝑊 =  (𝛬′𝛬)−1𝛬′ − (𝛬′𝛬)−1𝛬′𝛴𝑣𝑣𝛴𝑧𝑧
−1 

=  (𝛬′𝛬)−1𝛬′ − (𝛬′𝛬)−1𝛬′(𝛴𝑧𝑧 − 𝛬𝛴𝐿𝐿𝛬
′)𝛴𝑧𝑧

−1 

= (𝛬′𝛬)−1𝛬′ − (𝛬′𝛬)−1𝛬′𝛬𝛴𝑧𝑧𝛴𝑧𝑧
−1 + (𝛬′𝛬)−1𝛬′𝛬𝛴𝐿𝐿𝛬

′𝛴𝑧𝑧
−1 

= (𝛬′𝛬)−1𝛬′ − (𝛬′𝛬)−1𝛬′𝐼 + 𝐼𝛴𝐿𝐿𝛬
′𝛴𝑧𝑧
−1 

= (𝛬′𝛬)−1𝛬′ − (𝛬′𝛬)−1𝛬′ + 𝛴𝐿𝐿𝛬
′𝛴𝑧𝑧
−1 

= 𝛴𝐿𝐿𝛬
′𝛴𝑧𝑧
−1 

= 𝑊𝑟 

that is from Equation (3.19).  
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Result 4: Consider the models defined under Equations (3.8) as well as (3.11), when 𝜃 

∈ 𝛩 for 𝑚 ≥ 𝑛 then the estimator 𝜁(𝜃) as stated under Equation (3.27) succeeds a 

minimum mean squared error from all the estimators contained in Equation (3.16). 

Proof. Recollect that 

𝜁(𝜃)  =  𝑀𝑊𝑧 

𝜁(𝜃)  =  𝑀𝐿. 

Now it is imperative to identify the weight matrix 𝑾 that will minimize the MSE of the 

estimator 𝜁(𝜃)  as stated by Definition 3.7. Hence, we find what weight matrix 𝑾 will 

minimize (Bollen & Aminger, 1991) 

ℒ = 𝑇𝑟[𝐸(𝜁(𝜃) − 𝜁(𝜃))(𝜁(𝜃) − 𝜁(𝜃))′]. 

To begin with take its derivative in respect of 𝑾 

    
𝜕

𝜕𝑊
ℒ = 

𝜕

𝜕𝑊
 Tr [𝐸((MWz—ML) ((𝑀𝑊𝑧 −𝑀𝐿 

  = 
𝜕

𝜕𝑊
 Tr [𝑀𝑊𝛴𝑧𝑧𝑊

′𝑀′ − 2𝑀′𝑀𝛴𝐿𝐿𝛬
′𝑊′ −𝑀𝛴𝐿𝐿𝑀

′] 

  =  2𝑀′𝑀𝑊𝛴𝑧𝑧 − 2𝑀
′𝑀𝛴𝐿𝐿𝛬

′.     (3.32) 

while equating Equation (3.32) to 0 as well as working for 𝑾 

2𝑀′𝑀𝑊𝛴𝑧𝑧 − 2𝑀
′𝑀𝛴𝐿𝐿𝛬’ = 0 

  𝑀′𝑀𝑊𝛴𝑧𝑧 −𝑀
′𝑀𝛴𝐿𝐿𝛬’ = 0 

(𝑀𝑀′)−1𝑀𝑀′𝑀𝑊𝛴𝑧𝑧 − (𝑀𝑀
′)−1𝑀𝑀′𝑀𝛴𝐿𝐿𝛬

′  =  0 

𝑀𝑊𝛴𝑧𝑧 −𝑀𝛴𝐿𝐿𝛬
′  =  0 

𝑀𝑊𝛴𝑧𝑧𝛴𝑧𝑧
−1 −𝑀𝛴𝐿𝐿𝛬

′𝛴𝑧𝑧
−1  =  0 

𝑀𝑊 −𝑀𝛴𝐿𝐿𝛬
′𝛴𝑧𝑧
−1  =  0 

𝑀[𝑊 − 𝛴𝐿𝐿𝛬
′𝛴𝑧𝑧
−1]  =  0 
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satisfied when 𝑀 ∈ ℜ𝑚×(𝑚+𝑛). Now, it would be demonstrated that 𝑀[𝑊 − 𝛴𝐿𝐿𝛬
′𝛴𝑧𝑧
−1] 

= 0 is satisfied whenever 𝑊 = 𝛴𝐿𝐿𝛬
′𝛴𝑧𝑧
−1 (Bollen & Aminger, 1991). Thus it is defined 

as follows 

𝐷 =  𝑊 − 𝛴𝐿𝐿𝛬
′𝛴𝑧𝑧
−1 

= [𝐷1 𝐷2]
′ 

and 

𝑀 = [𝐶 − 𝛤] 

when 𝐶 = (𝐼 − 𝐵)−1, Thus 

0 =  𝑀𝐷 

   =  𝐶𝐷1 − 𝛤𝐷2     

 (3.33) 

is established hen 𝐵 ∈ ℜ𝑚×𝑚 for 𝐶 is deemed invertible as well as when 𝛤 ∈ ℜ𝑚×𝑛. Thus 

it is imperative to prove that 𝐷 = 0 which is the same as proving that 𝑊 = 𝛴𝐿𝐿𝛬
′𝛴𝑧𝑧
−1. 

Consider any 𝛤 ∈ ℜ𝑚×𝑛 so that 𝛤 ≠ 0, pick any value of 𝜅 for 𝜅 = 
1

𝑘
 → 0 as 𝑘 → ∞. The 

define 𝛤∗ = 𝜅𝛤 so that 𝛤∗ → 0 as 𝑘 → ∞. Thus we rewrite Equation (3.33) as 

𝐶𝐷1 − 𝛤
∗𝐷2. 

0 =  (𝛤∗′𝛤∗)−1𝛤∗′𝛤∗𝐷2 

= 𝐷2 

Heuristic Result 2: Consider the models defined under Equations (3.15) as well as 

(3.19), then both estimators, �̂�(𝜃) and 𝜁(𝜃), attains a smaller MSE for all the estimators 

contained in Equation (3.24) and Equation (3.25) respectively. 

Proof. Recollect that 

�̂�(𝜃)  =  (𝐼 − 𝛬𝑊)𝑧 

𝜈(𝜃)  =  𝑧 − 𝛬𝐿. 
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Thus, the Lagrange function of concern is expressed as 

   ℒ = Tr [𝐸(�̂�(𝜃) − 𝜈(𝜃))(�̂�(𝜃) − 𝜈(𝜃))′ + 2𝐶(𝛬𝑊 − 𝐼)] 

= Tr [𝛴𝑧𝑧 − 2𝛬𝑊𝛴𝑧𝑧 + 𝛬𝑊𝛴𝑧𝑧𝑊
′𝛬′ − 𝛴𝑣𝑣 + 2𝛬𝑊𝛴𝑣𝑣 + 2𝐶(𝛬𝑊 − 𝐼)] (3.35) 

for 𝐶 is 𝑎 (𝑝 + 𝑞) × (𝑝 + 𝑞) matrix of indeterminate multipliers (Lagrangian 

multipliers). Thus the partial derivatives of Equation (3.35) regarding 𝑊 are considered 

so that 

    
𝜕

𝜕𝑊
ℒ = −2𝛬′𝛴𝑧𝑧 + 2𝛬

′𝛬𝑊𝛴𝑧𝑧 + 2𝛬
′𝛴𝑣𝑣 + 2𝛬

′𝐶′.         (3.36) 

Now, equate Equation (3.30) to 0 while computing for 𝑊 

2𝛬′𝛬𝑊𝛴𝑧𝑧  =  2𝛬′𝛴𝑧𝑧 − 2𝛬
′𝛴𝑣𝑣 − 2𝛬

′𝐶′ 

𝛬′𝛬𝑊𝛴𝑧𝑧  =  𝛬
′𝛴𝑧𝑧 − 𝛬

′𝛴𝑣𝑣 − 2𝛬
′𝐶′ 

𝛬′𝛬𝑊𝛴𝑧𝑧  =  𝛬
′(𝛴𝑧𝑧 − 𝛴𝑇𝐽𝑇𝐽 − 𝐶

′) 

        (𝛬′𝛬)−1𝛬′𝛬𝑊𝛴𝑧𝑧𝛴𝑧𝑧
−1 = (𝛬′𝛬)−1𝛬′(𝛴𝑧𝑧 − 𝛴𝑇𝐽𝑇𝐽 − 𝐶

′)𝛴𝑧𝑧
−1 

              IWI = (𝛬′𝛬)−1𝛬′(𝛴𝑧𝑧 − 𝛴𝑣𝑣 − 𝐶
′)𝛴𝑧𝑧

−1 

𝑊 =  (𝛬′𝛬)−1𝛬′(𝛴𝑧𝑧 − 𝛴𝑣𝑣 − 𝐶
′)𝛴𝑧𝑧

−1 

=  𝑄𝛴𝑧𝑧
−1 

=  𝑄(𝛬𝛴𝐿𝐿𝛬
′ + 𝛴𝑣𝑣)

−1 

=  𝑄(𝛬𝛴𝐿𝐿𝛬
′𝛴𝑣𝑣
−1𝛴𝑣𝑣 + 𝛴𝑣𝑣𝛴𝑣𝑣

−1𝛴𝑣𝑣)
−1 

=  𝑄(𝛬𝛴𝐿𝐿𝛬
′𝛴𝑣𝑣
−1 + 𝐼)−1𝛴𝑣𝑣

−1 

=  𝑄(𝛬𝛴𝐿𝐿𝛬
′𝛴𝑣𝑣
−1𝛬𝛴𝐿𝐿𝛬

′(𝛬𝛴𝐿𝐿𝛬
′)−1 + 𝛬𝛴𝐿𝐿𝛬

′(𝛬𝛴𝐿𝐿𝛬
′)−1)−1𝛴𝑣𝑣

−1 

=  𝑄(𝛬𝛴𝐿𝐿𝛬
′𝛴𝑣𝑣
−1𝛬𝛴𝐿𝐿𝛬

′ + 𝛬𝛴𝐿𝐿𝛬
′)−1𝛬𝛴𝐿𝐿𝛬

′𝛴𝑣𝑣
−1 

= 𝑄∗𝛬′𝛴𝑣𝑣
−1. 
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Now, it becomes imperative to find 𝑄∗ by assumption that 𝑊𝛬 = 𝐼 while solving for 𝑄∗ 

𝑊𝛬 =  𝐼 

= 𝑄∗𝛬′𝛴𝑣𝑣
−1𝛬 

𝑄∗  =  (𝛬′𝛴𝑣𝑣
−1𝛬)−1 

thus, 

𝑊 =  𝑄∗𝛬′𝛴𝑣𝑣 

                  =  
1

vv vv


       

= 𝑊𝑏 

using (3.20). 

Hence �̂�(𝜃) attains the smallest MSE from all the conditional unbiased estimators. 

Result 4: Consider the model defined under Equation (3.8) as well as (3.11), when 𝜃 ∈ 

𝛩 for 𝑚 ≥ 𝑛 then the estimator, 𝜁(𝜃), stated under Equation (3.26) attains the smallest 

MSE from all the conditional unbiased estimators contained in Equation (3.16). 

Proof. Recollect that 

𝜁(𝜃)  =  𝑀𝑊𝑧 

𝜁(𝜃)  =  𝑀𝐿 

Thus the Lagrangian function of concern will become 

ℒ = Tr [𝐸(𝜁(𝜃) − 𝜁(𝜃)) (𝜁(𝜃) − 𝜁(𝜃))’ + 2𝐶(𝑊𝛬 − 𝐼)] 

= Tr [𝑀𝑊𝛴𝑧𝑧𝑊
′𝑀′ − 2𝑀′𝑀𝛴𝐿𝐿𝛬

′𝑊′ −𝑀𝛴𝐿𝐿𝑀’ + 2𝐶(𝑊𝛬 − 𝐼)]   (3.37) 

for matrix 𝐶 of size 𝑎(𝑚 + 𝑛) × (𝑚 + 𝑛) which is indeterminate (Lagrangian) 

multipliers (Bollen & Aminger, 1991). Thus the partial derivative for Equation (3.37) 

regarding 𝑾 are taken in order that 
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𝜕

𝜕𝑊
ℒ = 2𝑀′𝑀𝑊𝛴𝑧𝑧 − 2𝑀

′𝑀𝛴𝐿𝐿𝛬
′ + 2𝐶′𝛬′           (3.38) 

Therefore it becomes imperative to equate Equation (3.38) to 0 while solving for 𝑾 

2𝑀′𝑀𝑊𝛴𝑧𝑧 − 2𝑀
′𝑀𝛴𝐿𝐿𝛬’ + 2𝐶

′𝛬′  =  0 

𝑀′𝑀𝑊𝛴𝑧𝑧 −𝑀
′𝑀𝛴𝐿𝐿𝛬’ + 𝐶

′𝛬′  =  0 

(𝑀𝑀′)−1𝑀𝑀′𝑀𝑊𝛴𝑧𝑧 − (𝑀𝑀
′)−1𝑀𝑀′𝑀𝛴𝐿𝐿𝛬’ + (𝑀𝑀

′)−1𝑀𝐶′𝛬′ = 0 

𝑀𝑊𝛴𝑧𝑧 −𝑀𝛴𝐿𝐿𝛬’ + (𝑀𝑀
′)−1𝑀𝐶′𝛬′  =  0 

𝑀𝑊𝛴𝑧𝑧 −𝑀𝛴𝐿𝐿𝛬’ + 𝑀𝑀
′(𝑀𝑀′)−1(𝑀𝑀′)−1𝑀𝐶′𝛬′  =  0 

𝑀𝑊𝛴𝑧𝑧𝛴𝑧𝑧
−1 −𝑀𝛴𝐿𝐿𝛬

′𝛴𝑧𝑧
−1 +𝑀𝑀′(𝑀𝑀′)−1(𝑀𝑀′)−1𝑀𝐶′𝛬′𝛴𝑧𝑧

−1  =  0 

𝑀[𝑊 − 𝛴𝐿𝐿𝛬
′𝛴𝑧𝑧
−1 +𝑀′(𝑀𝑀′)−1(𝑀𝑀′)−1𝑀𝐶′𝛬′𝛴𝑧𝑧

−1]  =  0 

𝑀[𝑊 − (𝛴𝐿𝐿𝛬’ + 𝑀
′(𝑀𝑀′)−1(𝑀𝑀′)−1𝑀𝐶′𝛬′)𝛴𝑧𝑧

−1]  =  0 

𝑀[𝑊 − 𝑄𝛴𝑧𝑧
−1]  =  0 

𝑀[𝑊 − 𝑄∗𝛬′𝛴𝑣𝑣
−1]  =  0 

that holds 𝑀 ∈ ℜ𝑚×(𝑚+𝑛) (see the proof of Result 6 for details on 𝑄𝛴𝑧𝑧
−1 = 𝑄∗𝛬′𝛴𝑣𝑣

−1). 

Now, it can be demonstrated that 𝑀[𝑊 − 𝑄∗𝛬′𝛴𝑧𝑧
−1] = 0 holds whenever 𝑊 = 𝑄∗𝛬′𝛴𝑣𝑣

−1 

(Bollen & Aminger, 1991). Thus  

𝐷 =  𝑊 − 𝑄𝛬′𝛴𝑣𝑣
−1 

= [𝐷1 𝐷2]
′ 

and 

𝑀 = [𝐶 − 𝛤] 

where 𝐶 = (𝐼 − 𝐵)−1, Thus 

0 =  𝑀𝐷 

  =  𝐶𝐷1 − 𝛤𝐷2     (3.39) 
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when 𝐵 ∈ ℜ𝑚×𝑚 for 𝐶 which is invertible when 𝛤 ∈ ℜ𝑚×𝑛. It can then be shown that 

𝐷 = 0 which is the same as proving that 𝑊 = 𝑄∗𝛬′𝛴𝑣𝑣
−1. When 𝛤 ∈ ℜ𝑚×𝑛 so that 𝛤 ≠ 0, 

select any value about 𝜅 for 𝜅 = 
1

𝑘
 → 0 as 𝑘 → ∞. Then define 𝛤∗ = 𝜅𝛤 which implies 

𝛤∗ → 0 as 𝑘 → ∞. Then rewrite Equation (3.39) as 

𝐶𝐷1 − 𝛤
∗𝐷2. 

Suppose 𝑘 → ∞, 𝐷1 = 0 as 𝐶 is invertible meaning that 𝐶 ≠ 0 when 𝜃 ∈ 𝛩. 

Now, assume 𝐷1 = 0 meaning 𝛤∗𝐷2 = 0. Further suppose 𝑚 ≥ 𝑛 so 𝛤∗ can be selected 

to comprise 𝑛 linear independently columns of magnitude 𝑚 (Bollen & Aminger, 1991). 

Thus, the matrix 𝛤′𝛤∗ of size 𝑛 × 𝑛 is deemed invertible which means that 

0 =  (𝛤∗′𝛤∗)−1𝛤∗′𝛤∗𝐷2 

= 𝐷2. 

then 𝐷 = 0 or 𝑊 = 𝑄∗𝛬′𝛴𝑣𝑣
−1. 

It is required, finally, to find 𝑄∗ through the assumption 𝑊𝛬 = 𝐼 while working for 𝑄∗ 

𝑊𝛬 =  𝐼 

𝑄∗𝛬′𝛴𝑣𝑣
−1𝛬 =  𝐼 

𝑄∗  =  (𝛬′𝛴𝑣𝑣𝛬)
−1 

thus, 

𝑊 =  𝑄∗𝛬′𝛴𝑣𝑣 

=  
1

vv vv


       

= 𝑊𝑏 . 
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3.12.3 Structure Preservation 

The structure preservation basically concerns the effect of the selected estimator would 

have on the structure of the covariance of the residual. It is often very crucial that the 

associations amidst the unobserved errors are not changed because of the selection of the 

residual estimator regarding some applications. Whenever, for instance, the residuals 

estimated are hugely associated or related then the residuals estimated together with other 

residual analysis noting departures from certain conditions and/or possible outliers 

regarding specific equation of the model under Equation (3.8) and Equation (3.11) can 

be attributed to departure from certain conditions and/or possible outliers in different 

equation of the same model. As a result, it is preferable that a residual estimator to be 

structure preserving. It is worth noting that Definitions 3.17 and 3.18 defined the 

structure preservation under this study which are therefore utilized to affirm Result 8 

(Saris et al, 1978). 

    

Definition 3.7 Given the model defined under Equations (3.8) as well as (3.11) and the 

residuals stated in Equation (3.12), then the residual estimators, �̂�(𝜃) and 𝜁(𝜃), defined 

by Equation (3.15) as well as Equation (3.16) are structure preserving whenever 𝜃 ∈ 𝛩 

then the ensuing hold (Saris et al, 1978): 

𝐸[�̂�(𝜃)�̂�(𝜃)′]  =  𝛴𝑇𝐽𝑇𝐽       (3.40) 

𝐸[𝜁(𝜃)𝜁(𝜃)′]  =  𝛹       (3.41) 

𝐸[�̂�(𝜃)𝜁(𝜃)′]  =  0.       (3.42) 

Definition 3.8 Given the models defined under Equations (3.8) as well as (3.11) together 

with the residuals stated under Equation (3.12), then the residual estimators, �̂�(𝜃) and 

𝜁(𝜃), are structure preserving whenever 𝜃 ∈ 𝛩 for the ensuing three conditions hold 

(Saris et al, 1978): 
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𝐸[�̂�(𝜃)�̂�(�̂�)′]  =  𝛴𝑣𝑣       (3.43) 

𝐸[𝜁(𝜃)𝜁(�̂�)′]  =  𝛹       (3.44) 

𝐸[�̂�(𝜃)𝜁(𝜃)′]  =  0.       (3.45) 

Result 5: Given the model defined under Equations (3.8) as well as (3.11) together with 

the stated residuals under Equations (3.12) and (3.13) when every 𝜃 ∈ 𝛩 then no residual 

estimators contained under Equations (3.15) and (3.17) holds under the conditions from 

Equations (3.37) to (3.39) regarding structure preservation but for the estimators 

considered under Equations (3.15) to (3.20) then the condition contained in Equation 

(3.34) holds if �̂�(𝜃) = �̂�(𝜃) as well as 𝜁(𝜃) = 𝜁(𝜃) (Saris et al, 1978). 

Proof. The proof here comprises three phases. The initial two phases shows that no 

estimator under the class of Equations (3.12) and (3.13) holds for Equation (3.37) as well 

as Equation (3.39) respectively. Last but not least, is to demonstrate that the estimators 

considered under the condition in Equation (3.39) holds for �̂�(𝜃) = �̂�(𝜃) as well as 

𝜁(𝜃) = 𝜁(𝜃) . 

Recollect that 

�̂�(𝜃)  =  (𝐼 − 𝛬𝑊)𝑧 

𝜈(𝜃)  =  𝑧 − 𝛬𝐿 

𝜁(𝜃)  =  𝑀𝑊𝑧 

𝜁(𝜃)  =  𝑀𝐿. 

Thus, generally, the covariance matrices [�̂�(𝜃)�̂�(𝜃)′], 𝐸[𝜁(𝜃)𝜁(𝜃)′] as well as 

𝐸[�̂�(𝜃)𝜁(𝜃)′] would be written as: 

𝐸[�̂�(𝜃)�̂�(𝜃)′]  =  (𝐼 − 𝛬𝑊)𝛴𝑧𝑧(𝐼 − 𝛬𝑊)′           (3.46) 

𝐸[𝜁(𝜃)𝜁(𝜃)′]  =  𝑀𝑊𝛴𝑧𝑧𝑊
′𝑀′           (3.47) 
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𝐸[�̂�(𝜃)𝜁(𝜃)′]  =  (𝐼 − 𝛬𝑊)𝛴𝑧𝑧𝑊
′𝑀′.           (3.48) 

To begin with, it is demonstrated below that no estimator under the class of Equation 

(3.8) holds for Equation (3.45). Thus, from Equation (3.46), 

𝐸[�̂�(𝜃)�̂�(𝜃)′]  =  (𝐼 − 𝛬𝑊)𝛴𝑧𝑧(𝐼 − 𝛬𝑊)′  

           =  (𝐼 − 𝛬𝑊)(𝛬𝛴𝐿𝐿𝛬
′ + 𝛴𝑣𝑣)(𝐼 − 𝛬𝑊)′  

     = (𝐼 − 𝛬𝑊)𝛬𝛴𝐿𝐿𝛬
′(𝐼 − 𝛬𝑊)′ + (𝐼 − 𝛬𝑊)𝛴𝑣𝑣(𝐼 − 𝛬𝑊)′  

when �̂�(𝜃) is structure preserving then it must satisfy every 𝜃 ∈ 𝛩 so that 

𝛴𝑣𝑣 = (𝐼 − 𝛬𝑊)𝛬𝛴𝐿𝐿𝛬
′(𝐼 − 𝛬𝑊)′ + (𝐼 − 𝛬𝑊)𝛴𝑣𝑣(𝐼 − 𝛬𝑊)′     (3.49) 

Equation (3.49) is deemed satisfied only whenever 𝛬𝑊 = 𝐼 and 𝛬𝑊 = 0. Based on the 

presumptions of the parameter space 𝛩 then both 𝛬𝑊 = 𝐼 and 𝛬𝑊 = 0 does not satisfy. 

Therefore, when every 𝜃 ∈ 𝛩 then there are no estimators �̂�(𝜃) under the class of 

Equation (3.15) holds for Equation (3.45) (Saris et al, 1978). 

Secondly, it is demonstrated below that there are no estimators under the group in 

Equation (3.23) holds for Equation (3.46). From Equation (3.49), 

𝐸[𝜁(𝜃)𝜁(𝜃)′]  =  𝑀𝑊𝛴𝑧𝑧𝑊
′𝑀′ 

=  𝑀𝑊𝛴𝑧𝑧𝑊
′𝑀′ 

=  𝑀𝑊𝛬𝛴𝐿𝐿𝛬𝑊
′𝑀′ +𝑀𝑊𝛴𝑣𝑣𝑀

′𝑊′.. 

When 𝜁(𝜃) shows structure preservation, then it has to satisfy whenever 𝜃 ∈ 𝛩 that 

𝛴𝜁𝜁 = 𝑀𝑊𝛬𝛴𝐿𝐿𝛬𝑊
′𝑀′ +𝑀𝑊𝛴𝑣𝑣𝑊

′𝑀′.   (3.50) 

Equation (3.50) satisfies only whenever 𝑊𝛬 = 𝐼 while 𝑊 = 0. Based on the conditions 

of the parameter space 𝛩 then 𝛬𝑊 = 𝐼 and 𝑊 = 0 does not satisfy. Therefore, whenever 
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𝜃 ∈ 𝛩 no residual estimators 𝜁(𝜃) within the group in Equation (3.16) holds for Equation 

(3.46). 

Last but not least, we now show that regarding the estimators being considered when 

every 𝜃 ∈ 𝛩, Equation (3.47) holds if �̂�(𝜃) = �̂�(𝜃) as well as 𝜁(𝜃) = 𝜁(𝜃). Suppose 

�̂�(𝜃) = �̂�(𝜃) and 𝜁(𝜃) = 𝜁(𝜃) (Saris et al, 1978). Then base on Result 1 it is shown that 

𝛬𝑊 = 𝐼. From Equation (3.50), 

𝐸[�̂�(𝜃)𝜁(𝜃)′] = 𝐸[(𝐼 − 𝛬𝑊)𝑧([(𝐼 − 𝐵)−1 − 𝛤] 𝑊𝑧 

=  𝐸[(𝐼 − 𝐼)𝑧𝑧′𝑊′[(𝐼 − 𝐵)−1 − 𝛤 

     = 0. 

Therefore, �̂�(𝜃) and 𝜁(𝜃) are structure preserving of the actual covariance structure 

between the observed errors and construct errors. 

 

3.12.4 Univocality 

Univocality criterion basically concerns the property of validity (i.e. how best residuals 

constructed associate with their counterpart true residuals they intend to measure) as well 

as invalidity (Heise & Bohrnstedt, 1970; McDonald & Burr, 1967). Generally it is 

preferable that both estimators, �̂�(𝜃) and 𝜁(𝜃), are univocal in order that they exhibit 

huge validity as well as smaller invalidity. Meanwhile, univocality is defined by 

Definition 3.12 as well as Definition 3.13 which are consequently utilized to arrive at 

Result 9 which is subsequently utilized to institute Heuristic Result 5. 
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Definition 3.9 Given the defined model under Equations (3.8) as well as (3.11) together 

with the stated residuals under Equation (3.12), then the estimators, �̂�(𝜃) and 𝜁(𝜃), are 

deemed univocal whenever every 𝜃 ∈ 𝛩 the conditions in Equations (3.51) – (3.54) are 

true: 

𝐸[𝜈(𝜃)�̂�(𝜃)′]  = △𝑣�̂�      (3.51) 

𝐸[𝜁(𝜃)𝜁(𝜃)′]  = △𝜁�̂�      (3.52) 

𝐸[𝜈(𝜃)𝜁(𝜃)′]  =  0       (3.53) 

𝐸[𝜁(𝜃)�̂�(𝜃)′]  =  0       (3.54) 

for △𝑣�̂� as well as △𝜁�̂� are diagonal matrices (Heise & Bohrnstedt, 1970). 

Definition 3.10 According to Heise and Bohrnstedt (1970) given the defined model 

under Equations (3.8) as well as (3.11) together with the stated residuals in Equation 

(3.12), then the estimators, �̂�(𝜃) as well as 𝜁(𝜃), are deemed univocal whenever 𝜃 ∈ 𝛩 

the conditions in Equations (3.55) – (3.58) are true: 

𝐸[𝜈(𝜃)�̂�(�̂�)′]  = △𝑣�̂�
∗       (3.55) 

𝐸[𝜁(𝜃)𝜁(𝜃)′]  = △𝜁�̂�
∗       (3.56) 

𝐸[𝜈(𝜃)𝜁(𝜃)′]  =  0      (3.57) 

𝐸[𝜁(𝜃)�̂�(𝜃)′]  =  0      (3.58) 

for △𝑣�̂�
∗  and △𝜁�̂�

∗  are diagonal matrices. As observed earlier, challenges arise during the 

derivation of the expected value regarding 𝜃 as, generally, it does not have a close form 

solution (Schott, 2005). Therefore, as seen previously, derivation about �̂�(𝜃) and 𝜁(𝜃) 

would be utilized regarding their properties in order to specify Heuristic Result for �̂�(𝜃) 

and 𝜁(𝜃) (Heise & Bohrnstedt, 1970). 
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Result 6: Given the defined model under Equations (3.8) as well as (3.11) together with 

the stated residuals under Equations (3.12) and (3.13) whenever 𝜃 ∈ 𝛩 there exist no 

residual estimator within the group under Equations (3.15) and (3.16) satisfies the 

conditions from Equation (3.49) to Equation (3.52) to be univocal even when the 

estimators being considered in Equations (3.22) – (3.24) then the condition under 

Equation (3.58) hold whenever �̂�(𝜃) = �̂�𝑏(𝜃) as well as 𝜁(𝜃) = 𝜁𝑏(𝜃) (Heise & 

Bohrnstedt, 1970). 

Proof. Here, the proof comprises of four phases. The initial three phases shows that 

whenever 𝜃 ∈ 𝛩 that there are no estimators from the group in Equations (3.22) – (3.27) 

holds for Equations (3.56) – (3.58). Last but not least, it would be proved that whenever 

𝜃 ∈ 𝛩 then the estimators considered in Equations (3.22) – (3.24), the condition under 

Equation (3.59) holds for �̂�(𝜃) = �̂�(𝜃) . 

Recollect 

�̂�(𝜃)  =  (𝐼 − 𝛬𝑊)𝑧 

𝜈(𝜃)  =  𝑧 − 𝛬𝐿 

𝜁(𝜃)  =  𝑀𝑊𝑧 

𝜁(𝜃)  =  𝑀𝐿 

Thus, the covariance matrices 𝐸[𝜈(𝜃)�̂�(𝜃)′], 𝐸[𝜁(𝜃)𝜁(𝜃)′], 𝐸[𝜈(𝜃)𝜁(𝜃)′], as well as 

𝐸[𝜁(𝜃)�̂�(𝜃)′] generally are given by: 

𝐸[𝜈(𝜃)�̂�(𝜃)′]  =  𝛴𝑣𝑣(𝐼 − 𝛬𝑊)
′      (3.59) 

𝐸[𝜁(𝜃)𝜁(𝜃)′]  =  𝑀𝛴𝐿𝐿𝛬
′𝑊′𝑀′       (3.60) 

𝐸[𝜈(𝜃)𝜁(𝜃)′]  =  𝛴𝑣𝑣𝑊
′𝑀′        (3.61) 

𝐸[𝜁(𝜃)�̂�(𝜃)′]  =  𝑀𝛴𝐿𝐿𝛬
′(𝐼 − 𝛬𝑊)′     (3.62) 
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Heuristic Result 5: Given the defined model under equations (3.8) as well as (3.11) 

together with the stated residuals under Equations (3.12) and (3.13), neither of these 

residual estimators in Equations (3.22) − (3.27) hold for the conditions under Equations 

(3.64) to (3.66) regarding univocality but for the condition in Equation (3.66) which 

holds if �̂�(𝜃) = �̂�(𝜃) (Heise & Bohrnstedt, 1970). 

Proof. As a result of MLE being consistent, both estimators, �̂�(𝜃) and 𝜁(𝜃), have same 

behavior as �̂�(𝜃) and 𝜁(𝜃) respectively as was noted regarding the proof in heuristic 

results earlier. From Result 9, it means that neither of these estimators are univocal but 

the condition under Equation (3.66) holds when utilizing the estimator �̂�(𝜃). On the 

contrary, it was indicated that the Bartlett’s residual estimator is optimal under the 

univocal criteria based on the fact that the assumption underpinning orthogonal factor 

model was proved by McDonald and Burr (1967).  

 

3.12.5 Distribution 

There have not been any distribution assumptions, so far, made about either the construct 

variables or the error terms as well as the derivation of Results 1‐9 or Heuristic Results 

1‐5 despite the fact that in real sense assumptions regarding distributions are imperative 

to calculate ML estimates. In making inference, however, about the true error through 

the estimates residual it becomes desirable to find the sampling or distribution of the 

residual. Due to the fact that both estimators, �̂�(𝜃) and 𝜁(𝜃), are function of 𝑧 which 

makes it desirable to find the distribution of 𝑧. Recollect that 𝑧 = 𝛬𝐿 + 𝜈 so that the 

distribution of 𝑧 relies on the distribution of , 𝑣, as well as 𝜁. In theory, despite the fact 

that there is the possibility of choosing any distribution for, 𝜁, and 𝜈 in practice the 

commonest way is by assuming that 𝐿 ∼ 𝒩(0, 𝛴𝐿𝐿) , 𝜈 ∼ 𝒩(0, 𝛴𝑣𝑣) , as well as 𝜁 ∼
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𝒩(0,𝛹) so that 𝑧 ∼ 𝒩(0, 𝛴𝑧𝑧) . Based on normal assumption of Result 10 (Green, 

2008). 

Result 7: According to Green (2008), given the defined model under Equations (3.8) as 

well as (3.11) together with the stated residuals in Equations (3.12) and (3.13), when 𝑧 

∼ 𝒩(0, 𝛴𝑧𝑧) then whenever 𝜃 ∈ 𝛩 �̂�(𝜃) ∼ 𝒩(0, (𝐼 −  𝛬𝑊)𝛴𝑧𝑧(𝐼 − 𝛬𝑊 and 𝜁(𝜃) ∼

𝒩(0,𝑀𝑊𝛴𝑧𝑧𝑊
′𝑀′) . 

Proof. Greene (2008) established by a theory that when 𝑥 ∼ 𝒩(𝜇, 𝛴) then 𝐴𝑥 + 𝑏 ∼ 

𝒩(𝐴𝜇 + 𝑏, 𝐴𝛴𝐴′). For this application suppose 𝜇 = 0 and 𝛴 = 𝛴𝑧𝑧. Then for �̂�(𝜃) 

suppose 𝐴 = (𝐼 − 𝛬𝑊) as well as 𝑏 = 0. Consequently by Greene (2008) theory it 

implies that �̂�(𝜃) ∼ 𝒩(0, (𝐼 − 𝛬𝑊)𝛴𝑧𝑧(𝐼 − 𝛬𝑊)). Now, for 𝜁(𝜃) suppose 𝐴 = 𝑀𝑊 

and 𝑏 = 0. Then by Greene (2008) theory 𝜁(𝜃) ∼ 𝒩(0,𝑀𝑊𝛴𝑧𝑧𝑊
′𝑀′) .  

Heuristic Result 4: Consider the defined model under Equations (3.8) as well as (3.11) 

together with the stated residuals in Equations (3.12) and (3.13), when 𝑧 ∼ 𝒩(0, 𝛴𝑧𝑧) 

then �̂�(𝜃) ∼ 𝒩(0, (𝐼 − 𝛬𝑊)𝛴𝑧𝑧(𝐼 − 𝛬𝑊)) as well as 𝜁(𝜃) ∼ 𝒩(0,𝑀𝑊𝛴𝑧𝑧𝑊
′𝑀′) 

(Green, 2008). 

Proof. Owing to the fact that MLE is applied to obtain items 𝜃 it’s anticipated that �̂�(𝜃) 

and 𝜁(𝜃) exhibit same behavior as �̂�(𝜃) and 𝜁(𝜃). By Result 10, it is established that 

�̂�(𝜃) ∼ 𝒩(0, (𝐼 − 𝛬𝑊)𝛴𝑧𝑧(𝐼 − 𝛬𝑊)) as well as 𝜁(𝜃) ∼ 𝒩(0,𝑀𝑊𝛴𝑧𝑧𝑊
′𝑀′). Thus, 

�̂�(𝜃) ∼ 𝒩(0, (𝐼 − 𝛬𝑊)𝛴𝑧𝑧(𝐼 − 𝛬𝑊 and 𝜁(𝜃) ∼ 𝒩(0,𝑀𝑊𝛴𝑧𝑧𝑊
′𝑀′) for the notation 

∼ connotes the approximate distribution. 

The outcomes shows that based on the criteria used the optimal estimator can either be 

the regression estimator or the Bartlett’s estimator. However, for no criteria was the 

Anderson‐Rubin estimator optimal. This shows, at least, it is unreasonable option for 
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SEM. Thus, it is very possible to attribute it to the derivation of 𝑾𝒂𝒓 takes orthogonal 

factor model which cannot occur under the framework of SEM. 

 

3.13 Asymptotic Properties of �̂�(�̂�) and �̂�(�̂�)  

So far the derivations of the properties of �̂�(𝜃) and 𝜁(𝜃) are deemed to have finite sample 

properties. Also, since SEM generally considers huge samples, it is worth deriving the 

asymptotic properties. The following properties are worth considering when derivation 

are to be made about the asymptotic properties regarding these estimators (Grice, 2001; 

Wackwitz & Horn, 1971). 

1. Consistency: This concerns whether an estimator converges to what it is 

estimating when the size of the sample becomes infinite. On the other hand, it 

concerns the asymptotic precision of the estimator.  It is preferable when an 

estimator is consistent.  

2. Efficiency:  This concerns the asymptotic accuracy of the estimator.  Whenever 

an estimator achieves Cramér-Rao lower bound then it is deemed efficient.  

3. Asymptotic distribution:  This concerns the examination of the distribution of the 

estimator regarding its convergence to when the sample size approaches infinite. 

It is relevant to derive given that it is the foundation for testing hypothesis 

regarding residuals as well as diagnostics.  

4. Asymptotic structure preservation: This concept concerns the examination of the 

impact the selection of an estimator has regarding the associations among the 

error terms when the size of sample approaches infinite. Generally, the 

asymptotic covariance structure preferably should be the same as their 

counterparts of true residuals.   

www.udsspace.uds.edu.gh 

 

 



79 

5. Asymptotic univocality: This refers to the degree of association between 

estimated residuals and their counterpart true residuals (i.e. asymptotic validity) 

as well as their noncorresponding residuals when the size of the sample becomes 

infinite. An estimator, preferable, should lead to estimates that associate only with 

their counterpart true residuals as well as not associate with noncorresponding 

residuals asymptotically.  

The asymptotic properties stated above would be defined much broader in the rest of the 

section. Contrary to the finite sample properties of �̂�(𝜃) and ζ̂(𝜃), the possibility of 

deriving the asymptotic properties of �̂�(𝜃) and ζ̂(𝜃) without haven to make heuristic 

arguments by relying on �̂�(𝜃) and 𝜁(𝜃) properties (Grice, 2001; Wackwitz & Horn, 

1971).  

Despite the fact that finite sample properties about factor scores estimator were derived 

in earlier studies (Lawley and Maxwell, 1971; McDonald and Burr, 1967; Saris et al., 

1978; Tucker, 1971) as well as examined via simulation setups (Grice, 2001; Wackwitz 

& Horn, 1971) and practical applications (Horn, 1965; Horn & Miller, 1966; Moseley & 

Klett, 1964), a more thorough literature survey shows that no similar work has been 

conducted concerning factor score estimators in terms of their asymptotic properties. 

Therefore, the optimal residual estimator would not be compared to the optimal factor 

score estimator whenever an assessment of the estimators been done through the same 

property.  

 

3.13.1 Consistency 

As done in regression analysis, residuals by themselves can be employed as an avenue 

of assessing assumptions underlying models. In such a case, it then becomes imperative 
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to consider the consistency of the estimators, �̂�(𝜃) and 𝜁(𝜃). Consistency, informally, of 

these istimators means that when the sample size increases and gets closer to infinity, 

�̂�(𝜃) and 𝜁(𝜃) get arbitrary closer to or converges to 𝜈(𝜃) and 𝜁(𝜃) their true residuals. 

The following provide the underpinning definitions that establishes consistency (Lehman 

& Casella, 1998; Casella & Berger, 2003).   

Definition 3.11 Given a defined model under Equations (3.8) as well as (3.11) together 

with the stated residuals contained in Equation (3.12), then �̂�(𝜃) is deemed to be 

consistent estimator of 𝜈(𝜃) whenever 𝜀 > 0 while for all 𝜃 ∈ 𝛩, (Lehman & Casella, 

1998; Casella & Berger, 2003) 

lim
𝑛→∞

𝑃𝜃  (|�̂�(𝜃) − 𝜈(𝜃)|  ≥ 𝜀) = 0. 

Definition 3.12 Given the defined model under Equations (3.8) as well as (3.11) together 

with the stated residuals contained in Equation (3.13), then 𝜁(𝜃) is said to be consistent 

estimator of 𝜁(𝜃) whenever 𝜀 > 0 and for all 𝜃 ∈ 𝛩, (Lehman & Casella, 1998; Casella 

& Berger, 2003) 

lim
𝑛→∞

𝑃𝜃  (|𝜁(𝜃) − 𝜁(𝜃)|  ≥ 𝜀) = 0. 

Theorem 3.1 Suppose 𝑋1, 𝑋2, . . . , 𝑋𝑛 be iid 𝑓(𝑥|𝜃) , and suppose 𝐿(𝜃|𝑥) = 𝛱𝑖=1
𝑛 𝑓(𝑥𝑖|𝜃) 

represent the likelihood function. Suppose 𝜃 connotes the MLE of 𝜃. Further suppose 

𝜏(𝜃) be a continuous function of 𝜃. Base on the regularity conditions in Miscellanea 

10.6.2 on 𝑓(𝑥|𝜃) and, thus, (𝜃|𝑥) , whenever 𝜃 ∈ 𝛩, (Casella & Berger, 2002). 

lim
𝑛→∞

𝑃𝜃  (|𝜏(𝜃) − 𝜏(𝜃)|  ≥ 0) = 0. 

for 𝜏(𝜃) is consistent estimator of (𝜃) . 
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Theorem 3.2 When 𝑊𝑛 is a sequence of estimators for a parameter 𝜃 which holds for 

i. lim
𝑛→∞

𝑉 𝑎𝑟𝜃𝑊𝑛 = 0, 

ii. lim
𝑛→∞

𝐵 𝑖𝑎𝑠𝜃𝑊𝑛 = 0 

whenever 𝜃 ∈ 𝛩, thus 𝑊𝑛 is a consistent sequence of estimators of 𝜃. 

By Definitions 3.14 and 3.15 as well as Theorem 3.1 and Theorem 3.2, then it establishes 

the consistency of these estimators �̂�(�̂�) and 𝜁(𝜃). 

Result 8: Given a defined model under the Equations (3.8) as well as (3.11) together 

with the stated residuals in Equation (3.12), whenever ∈ 𝛩, of the estimators being 

considered under Equations (3.22) − (3.24), then the Bartlett’s method residual 

estimator, �̂�(𝜃), defined under Equation (3.23) is said to be consistent estimator of the 

true observed errors 𝜈(𝜃) (Casella and Berger, 2002). 

Proof. The proof is made up of two phases. For the first phase; 

Recollect 

�̂�(𝜃)  =  (𝐼 − �̂��̂�)𝑧 

�̂�(𝜃)  =  (𝐼 − 𝛬𝑊)𝑧 

𝜈(𝜃)  =  𝑧 − 𝛬𝐿. 

Firstly, it would be proved that the estimator �̂�(𝜃) converges to the estimator �̂�(𝜃) 

irrespective of the selection of 𝑾. As 𝜃 = 𝜃, �̂�(𝜃) is a function of 𝜃 and from important 

regularity conditions is satisfied, from Theorem 4.1 it can be expressed as 

lim
𝑛→∞

𝑃𝜃  (|�̂�(�̂�) − �̂�(𝜃)|  ≥ 𝜀) = 0 

where whenever 𝜃 ∈ 𝛩. Therefore the estimator �̂�(𝜃) converges to the estimator �̂�(𝜃) . 
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Secondly, it would be proved that �̂�(𝜃) is a consistent estimator of 𝜈(𝜃) if 𝑾 = 𝑾𝒃. 

Hence becomes relevant to prove that 

lim
𝑛→∞

𝑃𝜃  (|�̂�(𝜃) − 𝜈(𝜃)|  ≥ 𝜀) = 0               (3.61) 

is satisfies  if 𝑾 = 𝑾𝒃. From the Chebyshev’s Inequality, 

lim
𝑛→∞

𝑃𝜃  (|�̂�(𝜃) − 𝜈(𝜃)|  ≥ 𝜀)  ≤ lim
𝑛→∞

𝐸(�̂�(𝜃) − 𝜈(𝜃))2

𝜀2
 

indicating that whenever 𝜃 ∈ 𝛩 

lim
𝑛→∞

𝐸𝜃 [(�̂�(𝜃) − 𝜈(𝜃))
2]  = 0 

thus �̂�(𝜃) is a consistent estimator of 𝜈(𝜃). Therefore an examination of the behavior of 

lim
𝑛→∞

𝐸 [(�̂�(𝜃) − 𝜈(𝜃))2], the MSE of �̂�(𝜃) , to find out the what conditions �̂�(𝜃) is a 

consistent estimator of 𝜈(𝜃). Moreover, by breaking down the MSE of an estimator and 

Theorem 3.2 (Casella and Berger, 2002), 

lim
𝑛→∞

𝐸 (�̂�(𝜃) − 𝜈(𝜃))2 = lim
𝑛→∞

Var (�̂�(𝜃)) + lim
𝑛→∞

 [Bias (�̂�(𝜃))]2           (3.67) 

so that �̂�(𝜃) is a consistent estimator of 𝜈(𝜃) whenever 𝜃 ∈ 𝛩 

1. lim
𝑛→∞

𝑉 𝑎𝑟(�̂�(𝜃)) = 0 

2. lim
𝑛→∞

Bias (�̂�(𝜃)) = 0. 

To begin with, the limiting variance is considered: 

lim
𝑛→∞

Var (�̂�(𝜃)) = lim
𝑛→∞

 Var ((𝐼 − 𝛬𝑊)𝑧) 

= lim
𝑛→∞

( 𝐼 − 𝛬𝑊)𝛴𝑧𝑧(𝐼 − 𝛬𝑊)
′ 

= (𝐼 − 𝛬𝑊)𝛴𝑧𝑧(𝐼 − 𝛬𝑊)
′   (3.68) 
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Therefore, based on the parameter space 𝛩 assumptions, lim
𝑛→∞

𝑉 𝑎𝑟(�̂�(𝜃)) = 0 if 𝛬𝑊 = 

𝐼 or 𝑊 = (𝛬′𝛬)−1𝛬 (Lehman & Casella, 1998; Casella & Berger, 2003). Neither of the 

weight matrices under Equations (3.19) − (3.21) holds for the condition 𝑊 = 

(𝛬′𝛬)−1𝛬. On the contrary, by Result 1 it is established that 𝛬𝑊 = 𝐼 if 𝑾 = 𝑾𝒃. 

Therefore, lim
𝑛→∞

𝑉 𝑎𝑟(�̂�(𝜃)) = 0 regarding the Bartlett’s method estimator (Casella and 

Berger, 2002). 

Now the limiting bias is considered: 

lim
𝑛→∞

𝐵 𝑖𝑎𝑠(�̂�(𝜃))  =  lim
𝑛→∞

𝐸 [�̂�(𝜃) − 𝜈(𝜃)] 

                = lim
𝑛→∞

𝐸 [(𝐼 − 𝛬𝑊)𝑧 − (𝑧 − 𝛬𝐿)] 

               = lim
𝑛→∞

( 𝐸[(𝑧 − 𝛬𝑊𝑧 − 𝑧 + 𝛬𝐿)] 

= lim
𝑛→∞

( 𝛬𝑊𝐸(𝑧) + 𝛬𝐸(𝐿)] 

                                       = lim
𝑛→∞

( 0) 

       = 0 

Which satisfies every 𝜃 ∈ 𝛩 since it is supposed that 𝐸(𝜈) = 𝐸(𝐿) = 𝐸(𝑧) = 𝑧. 

Therefore lim
𝑛→∞

𝐵 𝑖𝑎𝑠(�̂�(𝜃)) = 0 for every estimator considered. The outcome together 

with that of the limiting variance indicates that �̂�(𝜃) is a consistent estimator of (𝜃). 

Merging the two phases of  the proof clearly shows that �̂�(𝜃) is a consistent estimator of 

𝜈(𝜃) when only the Bartlett’s method residual estimator is used (Casella and Berger, 

2002). 

 

3.13.2 Efficiency, Asymptotic and Limiting Variance, and Asymptotic Distribution 

Despite the fact that consistency is key since it examines the asymptotic accuracy of 

estimators, it disregards the asymptotic precision of estimators. Therefore, this section 
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concerns the asymptotic precision as assessed by the asymptotic variance of the 

estimators. As previous assumed that 𝜃 is attained via MLE, it becomes possible to adopt 

its properties to narrate that of the properties of efficiency as well as asymptotic 

distribution at the same time as asymptotic variance (Lehman & Casella, 1998; Casella 

& Berger, 2003). 

Theorem 3.3 Suppose 𝑋1, 𝑋2, . . . , is iid 𝑓(𝑥|𝜃), given that 𝜃 connotes the MLE of 𝜃, 

while 𝜏(𝜃) is a continuous function of 𝜃 (Casella and Berger, 2002; Lehman and Casella, 

1998). Base on the regularity conditions stated earlier assumptions 𝐹1 − 𝐹8, 

√𝑛[𝜏(𝜃) − 𝜏(𝜃)] → 𝒩(0, 𝜅(𝜃)) 

for 𝜅(𝜃) is a Cramér‐Rao lower bound which yields  

𝜅(𝜃) =
𝜕𝜏(𝜃)

𝜕𝜃
[𝐼(𝜃)]−1

𝜕𝜏(𝜃)

𝜕𝜃
𝑇 

for 

𝐼𝑗,𝑘 = 𝐸[
𝑑

𝑑𝜃𝑗
 log 𝑓(𝑥; 𝜃)

𝑑

𝑑𝜃𝑘
 log 𝑓(𝑥; 𝜃)] 

while 𝜕𝜏(𝜃) is the Jacobian matrix. Where 𝜏(𝜃) is consistent and asymptotically efficient 

estimator of 𝜏(𝜃) (Casella and Berger, 2002; Lehman and Casella, 1998). 

Result 8 can easily established by Theorem 3.3  

Result 9: Given defined model under Equations (3.8) as well as (3.11) together with the 

stated residuals in Equation (3.12), when 𝜃 ∈ 𝛩, the estimator �̂�(�̂�) converges to the 

estimator �̂�(𝜃) so that the estimator �̂�(𝜃) is asymptotically distributed normally (Lehman 

& Casella, 1998; Casella & Berger, 2003). 
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Proof. Recollect that 

�̂�(𝜃)  =  (𝐼 − �̂��̂�)𝑧 

�̂�(𝜃)  =  (𝐼 − 𝛬𝑊)𝑧 

Directly following from Theorem 3.3 since 𝜃 = 𝜃, �̂�(𝜃) is a continuous function of 𝜃, 

while the key regularity conditions are satisfied. Thus, from Theorem 3.3 it is established 

that 

√𝑛[�̂�(𝜃) − �̂�(𝜃)] → 𝒩(0, 𝜅𝜈(𝜃)) 

for 𝜅𝜈(𝜃) is the Cramér‐Rao lower bound. Based on these (i.e. the theorems) it implies 

that �̂�(𝜃) converges to the estimator �̂�(𝜃) , and it is efficient, while asymptotically 

normally distributed (Casella and Berger, 2002; Lehman and Casella, 1998). 

Definition 3.13 According to Casella and Berger, (2002), given two estimators 𝑊𝑛 and 

𝑉𝑛 will hold for  

   √𝑛[𝑊𝑛 − 𝜏(𝜃)] → 𝒩(0, 𝜎𝑊
2 ) √𝑛[𝑉𝑛 − 𝜏(𝜃)] → 𝒩(0, 𝜎𝑉

2) 

the distribution, then the asymptotic relative efficiency (ARE) of 𝑉𝑛 for 𝑊𝑛 is expressed 

as 

    𝐴𝑅𝐸(𝑉𝑛, 𝑊𝑛) =
𝜎𝑊
2

𝜎𝑉
2   

For purposes of applications, 𝑊𝑛 and 𝑉𝑛 implies a unique item in the vector of estimators 

under �̂�(𝜃) or  𝜁(𝜃) whereas 𝜏(𝜃) under Definition 3.13 implies the analogous unique 

item is either in �̂�(𝜃) or 𝜁(𝜃).  
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3.13.3 Asymptotic Structure Preservation 

This concept concerns the effect of a given estimator on the asymptotic covariance 

structure regarding the residuals. As seen under structure preservations for a finite 

property, for some applications it is important that asymptotic relationships amidst error 

terms need not be changed as a result of the selection of an estimator. 

Definition 3.14 Given a model under Equations (3.8) and (3.11), these residual 

estimators, �̂�(𝜃) and �̂�(𝜃), as stated under Equation (3.17) as well as Equation (3.18) are 

both asymptotically structure preserving when every 𝜃 ∈ 𝛩 then the conditions below are 

true (Casella and Berger, 2002): 

lim
𝑛→∞

𝐸 [�̂�(𝜃)�̂�(𝜃)′]  =  𝛴𝑣𝑣        (3.69) 

lim
𝑛→∞

𝐸 [𝜁(𝜃)𝜁(𝜃)′]  =  𝛹        (3.70) 

lim
𝑛→∞

𝐸 [�̂�(𝜃)𝜁(�̂�)′]  =  0.        (3.71) 

Thus none of these estimators is optimal regarding structure preservation for finite 

sample property.  

 

3.13.4 Asymptotic Univocality 

This concept concerns the properties the properties of asymptotic validity as well as 

asymptotic invalidity. This property determines how the estimated residuals associates 

with their analogous true residual counterparts (asymptotic validity) as well as their non‐

analogous true residuals (invalidity) while the sample size approaches infinity. 
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Definition 3.15 Given a model under Equation (3.8) as well as Equation (3.11) these 

residual estimators �̂�(𝜃) and 𝜁(𝜃) as stated in Equations (3.17) and (3.18) are both 

asymptotically univocal when every 𝜃 ∈ 𝛩 then the four conditions below are true 

(Casella and Berger, 2002): 

lim
𝑛→∞

𝐸[𝜈(𝜃)�̂�(�̂�)′]  = △𝑣�̂�     (3.72) 

lim
𝑛→∞

𝐸[𝜁(𝜃)𝜁(𝜃)′]  = △𝜁�̂�     (3.73) 

lim
𝑛→∞

𝐸[𝜈(𝜃)𝜁(𝜃)′]  =  0     (3.74) 

lim
𝑛→∞

𝐸[𝜁(𝜃)�̂�(𝜃)′]  =  0     (3.75) 

for △𝑣�̂� as well as △𝜁�̂� are matrices in diagonal form. 
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CHAPTER FOUR 

ESTIMATION MAXIMIZATION 

4.1 Introduction 

This chapter looks into the concept of estimation maximization and its application to 

structural equation modelling. The split estimation procedure, the E-step and the M-step, 

are examined here alongside relevant derivations and demonstrations.  

 

4.2 A Simplified Model 

But in order to avoid heavy formulas in the development of the algorithm, we shall use 

in the sequel with no loss of generality, a simplified model involving 𝑝 = 2 explanatory 

blocks 𝑋1 and 𝑋2. The corresponding equation set for a given unit 𝑖, reads: 

{
 
 

 
 
𝑦𝑖
′ = 𝑡𝑖

′𝐷 + 𝑔𝑖𝑏
′ + 𝜀𝑖𝑦′

𝑥𝑖
1′ =  𝑡𝑖

1′𝐷1 + 𝑓𝑖
1𝑎1

′
+ 𝜀

𝑖1
′

𝑥𝑖
2′ =  𝑡𝑖

2′𝐷2 + 𝑓𝑖
2𝑎2

′
+ 𝜀

𝑖2
′

𝑔𝑖 =  𝑓𝑖
1𝑐1 + 𝑓𝑖

2𝑐2 + 𝜀𝑖𝑔

    (4.1) 

Such as 𝜃 = {𝐷, 𝐷1, 𝐷2, 𝑏, 𝑎1, 𝑎2, 𝑐1, 𝑐2, 𝜎𝑌
2, 𝜎1

2, 𝜎2
2}. Thus, in this case (cf. (2)), the 

dimension of 𝜃 is: 

𝐾 = 5 + 𝑞𝑌(𝑟𝑇 + 1) + ∑ 𝑞𝑚

2

𝑚=1

(𝑟𝑚 + 1) 

 

4.3 Estimation Using the EM Algorithm 

In this work, likelihood maximization is carried out via an iterative EM algorithm 

(Dempster et al, 1977). Each iteration of the algorithm involves an Expectation (E) - step 

followed by a Maximization (M) - step. Dempster et al (1977) prove that the EM 

algorithm yields maximum likelihood estimates. Moreover, they proved that even if the 
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starting point is one where the likelihood is not convex, if an instance of the algorithm 

converges, it will converge to a (local) maximum of the likelihood. Another major 

advantage of the EM algorithm is that it can be used to “estimate” missing data. Thus if 

we consider LV 𝑠 as missing data the EM algorithm will prove a general technique to 

maximize the likelihood of statistical models with LV’s but also to estimate these LV’s. 

In our SEM framework LV 𝑠 correspond to factors. Thus, we will be able to estimate the 

factors at unit‐level. We shall present the algorithm on the simplified model with no loss 

of generality (Dempster et al, 1977). 

 

4.4 The 𝐄𝐌 algorithm 

Let 𝑧 = (𝑦, 𝑥1, 𝑥2) be the OV’s and ℎ = (𝑔, 𝑓1, 𝑓2) the LV’s. The EM algorithm is based 

on the log‐likelihood associated with the complete data (𝑧, ℎ). 

 

4.4.1 The complete log‐likelihood function 

Let 𝑝(𝑧, ℎ; 𝜃) denote the probability density of the complete data. The corresponding 

log‐likelihood function is: 

ℒ(𝜃; 𝑧, ℎ) = −
1

2
∑{

𝑛

𝑖=1

𝑙𝑛|𝜓𝑌| + 𝑙𝑛|𝜓1| + 𝑙𝑛|𝜓2| 

+(𝑦𝑖 − 𝐷
′𝑡𝑖 − 𝑔𝑖𝑏)

′𝜓𝑌
−1(𝑦𝑖 − 𝐷

′𝑡𝑖 − 𝑔𝑖𝑏) 

+(𝑥𝑖
1 − 𝐷1

′
𝑡𝑖
1 − 𝑓𝑖

1𝑎1)′𝜓1
−1(𝑥𝑖

1 − 𝐷1
′
𝑡𝑖
1 − 𝑓𝑖

1𝑎1) 

+(𝑥𝑖
2 − 𝐷2

′
𝑡𝑖
2 − 𝑓𝑖

2𝑎2)′𝜓2
−1(𝑥𝑖

2 − 𝐷2
′
𝑡𝑖
2 − 𝑓𝑖

2𝑎2) 

+(𝑔𝑖 − 𝑐
1𝑓𝑖

1 − 𝑐2𝑓𝑖
2)2 + (𝑓𝑖

1)2 + (𝑓𝑖
2)2} + 𝜆 
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Where 𝜃 is the K‐dimensional set of model parameters and 𝜆, a constant. However, 

because of the simplification made in the section 2.4, in our case = 

{𝐷, 𝐷1, 𝐷2, 𝑏, 𝑎1, 𝑎2, 𝑐1, 𝑐2, 𝜎𝑌
2, 𝜎1

2, 𝜎2
2}. Indeed, 𝜓𝑌 = 𝜎𝑌

2𝐼𝑑𝑞𝑌7𝜓1 = 𝜎1
2𝐼𝑑𝑞1 and 𝜓2 =

𝜎2
2𝐼𝑑𝑞2 (Foulley, 2002). 

 

4.4.2 Estimation in SEM 

To maximize this function, in the framework of EM algorithm, we have to solve (Foulley, 

2002): 

𝐸𝑧
ℎ[

𝜕

𝜕𝜃
ℒ(𝜃; 𝑧, ℎ)] = 0       (4.2) 

This demands that we know the derivatives of the log‐likelihood function and the 

distribution 𝑝𝑧𝑖
ℎ𝑖 of ℎ𝑖 conditional on 𝑧𝑖 for each observation 𝑖 ∈ [1, 𝑛] ⋅ Let us introduce 

the following notation (Foulley, 2002): 

𝑝𝑧𝑖
ℎ𝑖 = 𝒩(𝑀𝑖 = (

𝑚1𝑖

𝑚2𝑖

𝑚3𝑖

) , 𝛴 = (

𝜎11 𝜎12 𝜎13
𝜎21 𝜎22 𝜎23
𝜎31 𝜎32 𝜎33

)) 

𝑔𝑖 = 𝐸𝑧𝑖
ℎ𝑖[𝑔𝑖] = 𝑚1𝑖; 𝛾𝑖 = 𝐸𝑧𝑖

ℎ𝑖[𝑔𝑖
2] = (𝐸𝑧𝑖

ℎ𝑖[𝑔𝑖])
2 + 𝑉𝑧𝑖

ℎ𝑖[𝑔𝑖] = 𝑚1𝑖
2 + 𝜎11 

𝑓𝑖
1 = 𝐸𝑧𝑖

ℎ𝑖[𝑓𝑖
1] = 𝑚2𝑖) 𝜑𝑖

1 = 𝐸𝑧𝑖
ℎ𝑖[(𝑓𝑖

1)2] = (𝐸𝑧𝑖
ℎ𝑖[𝑓𝑖

1])2 + 𝑉𝑧𝑖
ℎ𝑖[𝑓𝑖

1] = 𝑚2𝑖
2 + 𝜎22 

𝑓𝑖
2 = 𝐸𝑧𝑖

ℎ𝑖[𝑓𝑖
2] = 𝑚3𝑖) 𝜑𝑖

2 = 𝐸
𝑧𝑖
𝑖
ℎ [(𝑓𝑖

2)2] = (𝐸𝑧𝑖
ℎ𝑖[𝑓𝑖

2])2 + 𝑉𝑧𝑖
ℎ𝑖[𝑓𝑖

2] = 𝑚3𝑖
2 + 𝜎33 

For all 𝜉 ∈ {𝑔, 𝑓1, 𝑓2, 𝛾, 𝜑1, 𝜑2}7 we denote 𝜉 = (𝜉𝑖)𝑖=1,…,𝑛 ∈ ℝ
𝑛. 

The parameters of the Gaussian distribution 𝑝𝑧𝑖
ℎ𝑖 are explicit and have the following form 

(Foulley, 2002): 

𝑀𝑖 = 𝛴2
∗𝛴3

∗−1𝜇∗ and 𝛴 = 𝛴1
∗ − 𝛴2

∗𝛴3
∗−1𝛴2

∗' where: 

𝛴1
∗ = (

(𝑐1)2 + (𝑐2)2 + 1 𝑐1 𝑐2

𝑐1 1 0
𝑐2 0 1

) 
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𝛴2
∗ = (

((𝑐1)2 + (𝑐2)2 + 1)𝑏′ 𝑐1𝑎1
′

𝑐2𝑎2
′

𝑐1𝑏′ 𝑎1
′

𝑜(1,𝑞2)

𝑐2𝑏′ 𝑜(1,𝑞1) 𝑎2′

) 

𝛴3
∗ = (

((𝑐1)2 + (𝑐2)2 + 1)𝑏𝑏′ +𝛹𝑌 𝑐1𝑏𝑎1
′

𝑐2𝑏𝑎2
′

𝑐1𝑎1𝑏′ 𝑎1𝑎1
′
+𝛹1 0(𝑞1,𝑞2)

𝑐2𝑎2𝑏′ 𝑜(𝑞2,𝑞1) 𝑎2𝑎2′ + 𝛹2

) 

𝜇𝑖
∗ = (

𝐷′𝑦𝑖 − 𝑡𝑖
−𝑥𝑖

1𝐷1′𝑡𝑖
1

−𝑥𝑖
2𝐷2

′
𝑡𝑖
2

) 

These results are demonstrated in section 4.6.3. Expressions of the first‐order derivatives 

of ℒ with respect to 𝜃 are also established in section 4.6.4 and written in the following 

forms with 𝑚 ∈ {1,2} (Foulley, 2002): 

{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 𝜕

𝜕𝐷
ℒ(𝑧, ℎ) =  ∑𝜓𝑌

−1

𝑛

𝑖=1

(𝑦𝑖 − 𝐷
′𝑡𝑖 − 𝑔𝑖𝑏)𝑡𝑖

′

𝜕

𝜕𝐷𝑚
′ ℒ(𝑧, ℎ) =  ∑𝜓𝑚

−1

𝑛

𝑖=1

(𝑥𝑖
𝑚 − 𝐷𝑚′𝑡𝑖

𝑚 − 𝑓𝑖
𝑚𝑎𝑚)𝑡𝑖

𝑚′

𝜕

𝜕𝑏
ℒ(𝑧, ℎ) =  ∑𝑔𝑖

𝑛

𝑖=1

𝜓𝑌
−1(𝑦𝑖 − 𝐷

′𝑡𝑖 − 𝑔𝑖𝑏)

𝜕

𝜕𝑎𝑚
ℒ(𝑧, ℎ) =  ∑𝑓𝑖

𝑚

𝑛

𝑖=1

𝜓𝑚
−1(𝑥𝑖

𝑚 − 𝐷𝑚′𝑡𝑖
𝑚 − 𝑓𝑖

𝑚𝑎𝑚)

𝜕

𝜕𝑐𝑚
ℒ(𝑧, ℎ) =  ∑𝑓𝑖

𝑚

𝑛

𝑖=1

(𝑔𝑖 − 𝑐
2𝑓𝑖

2 − 𝑐1𝑓𝑖
1)

𝜕

𝜕𝜎𝑌
2 ℒ(𝑧, ℎ) =  𝑛𝑞𝑌𝜎𝑌

−2 − 𝜎𝑌
−4∑|

𝑛

𝑖=1

|𝑦𝑖 − 𝐷
′𝑡𝑖 − 𝑔𝑖𝑏||

2

𝜕

𝜕𝜎𝑚
2
ℒ(𝑧, ℎ) =  𝑛𝑞𝑚𝜎𝑚

−2 − 𝜎𝑚
−4∑|

𝑛

𝑖=1

|𝑥𝑖
𝑚 − 𝐷𝑚′𝑡𝑖

𝑚 − 𝑓𝑖
𝑚𝑎𝑚||2

 

(4.3) 
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So, here formula (4.3) develops into: 

{
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 ∑(

𝑛

𝑖=1

𝑦𝑖 − 𝐷
′𝑡𝑖 − 𝑔𝑖𝑏)𝑡𝑖

′ =  0

∑(

𝑛

𝑖=1

𝑥𝑖
𝑚 − 𝐷𝑚

′
𝑡𝑖
𝑚 − 𝑓𝑖

𝑚𝑎𝑚)𝑡𝑖
𝑚′ =  0

∑𝑔𝑖

𝑛

𝑖=1

𝑦𝑖 − 𝑔𝑖𝐷
′𝑡𝑖 − 𝛾𝑖𝑏 =  0

∑𝑓𝑖
𝑚

𝑛

𝑖=1

𝑥𝑖
𝑚 − 𝑓𝑖

𝑚𝐷𝑚
′
𝑡𝑖
𝑚 − 𝜑𝑖

𝑚𝑎𝑚 =  0

∑𝜎12

𝑛

𝑖=1

+ 𝑓𝑖
1𝑔𝑖 − 𝑐

2𝜎23 − 𝑐
2𝑓𝑖

1𝑓𝑖
2 − 𝜑𝑖

1𝑐1 =  0

∑𝜎31

𝑛

𝑖=1

+ 𝑓𝑖
2𝑔𝑖 − 𝑐

2𝜑𝑖
2 − 𝑐1𝜎32 − 𝑐

1𝑓𝑖
1𝑓𝑖

2 =  0

𝑛𝑞𝑌𝜎𝑌
−2 − 𝜎𝑌

−4∑|

𝑛

𝑖=1

|𝑦𝑖 − 𝐷
′𝑡𝑖||

2 + ||𝑏||2𝛾𝑖 − 2(𝑦𝑖 − 𝐷
′𝑡𝑖)

′𝑔𝑖𝑏 =  0

𝑛𝑞𝑚𝜎𝑚
−2 − 𝜎𝑚

−4∑|

𝑛

𝑖=1

|𝑥𝑖
𝑚 − 𝐷𝑚

′
𝑡𝑖
𝑚||2 + ||𝑎𝑚||2𝜑𝑖

𝑚 − 2(𝑥𝑖
𝑚 − 𝐷𝑚

′
𝑡𝑖
𝑚)′𝑓𝑖

𝑚𝑎𝑚 =  0

 

(4.4) 

System of equations (4.4) is easy to solve and the obtained solutions will be given in the 

next section (Foulley, 2002). 

 

4.4.3 Results 

The explicit solution of the system (4.3) and also of (4.4) is the following (Myriam, 

2015): 

�̂� =
(𝑔𝑦 − 𝑦𝑡′)(𝑡𝑡′)−1𝑔𝑡

=, 𝛾 − 𝑔𝑡′(𝑡𝑡′)−1𝑔𝑡
 

𝑎�̂� =
𝑓𝑚𝑥𝑚 − 𝑥𝑚𝑡𝑚′(𝑡𝑚𝑡𝑚′)−1𝑓𝑚𝑡𝑚

𝜑𝑚 − 𝑓𝑚𝑡𝑚/(𝑡𝑚𝑡𝑚/)−1𝑓𝑚𝑡𝑚
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𝑐1̂ = (𝜎12 + 𝑓1𝑔 −− − − 

𝜑1𝜑2 − (𝜎23 + 𝑓
1𝑓2)2 

𝑐2̂ = −−− − 

𝜑1𝜑2 − (𝜎23 + 𝑓
1𝑓2)2 

𝐷′̂ = (𝑦𝑡′ − �̂�𝑔𝑡′)(𝑡𝑡′)−1 

𝐷𝑚
′
= (𝑥𝑚𝑡𝑚′ − 𝑎�̂�𝑓𝑚𝑡𝑚′)(𝑡𝑚𝑡𝑚′)−1 

𝜎𝑌
2̂ =

1

𝑛𝑞𝑌
∑{

𝑛

𝑖=1

||𝑦𝑖 − 𝐷
′̂𝑡𝑖||

2 + ||�̂�||2𝛾𝑖 − 2(𝑦𝑖 − 𝐷
′̂𝑡𝑖)

′�̂�𝑔𝑖} 

𝜎𝑚2̂ =
1

𝑛𝑞𝑚
∑{

𝑛

𝑖=1

||𝑥𝑖
𝑚 − 𝐷𝑚

′
𝑡𝑖
𝑚||2 + ||𝑎�̂�||2𝜑𝑖

𝑚 − 2(𝑥𝑖
𝑚 − 𝐷𝑚

′
𝑡𝑖
𝑚)′𝑎�̂�𝑓𝑖

𝑚} 

 

4.4.4 The Algorithm 

To estimate parameters in 𝜃, we propose the following EM‐algorithm. We denote [𝑡] the 

𝑡𝑖𝑒𝑡ℎ‐iteration of the algorithm. 

1. Initialization = choice of the initial parameter values 𝜃[0]. 

In the initialization step, ∀𝑚 ∈ {1, 𝑝} we propose to obtain 𝐷𝑚[0] by multiple linear 

regression between 𝑋𝑚 and 𝑇𝑚. Then, to initialize the others, we compute each approxi‐ 

mated factor 𝑓𝑚[0] and 𝑔 as first principal component of a PCA of 𝑋𝑚 − 𝑇𝑚𝐷𝑚[0] and 

𝑌 − 𝑇𝐷[0]. Thus, we initialize 𝑎𝑚, 𝜎𝑚
2  (resp. , 𝜎𝑦

2) by multiple linear regression between 

𝑋𝑚 − 𝑇𝑚𝐷𝑚[0] and 𝑓𝑚[0] (resp. between 𝑌 − 𝑇𝐷[0] and 𝑔). Finally, each 𝑐𝑚[0] can be 

obtained by multiple linear regression between 𝑔 and ∑ 𝑓𝑚𝑝
𝑚=1 [0]. In practice we use 

the functions 𝑙𝑚() and 𝑃𝐶𝐴 () derived from the package FactoMineR Husson et al, 

(2008). 
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2. Current iteration 𝑡 ≥ 17 until stopping condition is met: 

(a) E‐step: with 𝜃[𝑡−1], 

𝑖. Calculate explicitly distribution 𝑝𝑧𝑖
ℎ𝑖 for each 𝑖 ∈ [1, 𝑛𝐼 ⋅ 

𝑖𝑖. Estimate the factor‐values 𝑔, 𝑓𝑚[𝑡], 𝑚 ∈ {1,2}. 

iii. Calculate 𝛾 and 𝜑𝑚, 𝑚[𝑡] ∈ {1,2}. 

(b) M‐step: 

𝑖. Update 𝜃 to 𝜃[𝑡] by injecting 𝑔, 𝛾 and 𝑓𝑚[𝑡], 𝜑𝑚[𝑡], 𝑚 ∈ 

{1,2} into the formulas in (7). 

3. We used the following stopping condition with the smallest 𝜀 possible: 

∑
|𝜃∗[𝑡+1][𝑘]−𝜃∗[𝑡][𝑘]|

𝜃∗[𝑡+1][𝑘]

𝐾
𝑘=1 < 𝜀         (4.5) 

where 𝜃∗ is the K‐dimensional vector containing the scalar values in all parameters in 𝜃. 

 

4.5 Numerical Results on Simulated Data 

4.5.1 Data Generation 

We consider 𝑛 = 400 units and 𝑞𝑌 = 𝑞1 = 𝑞2 = 40. Therefore7 the 120 OV 𝑠𝑌, 𝑋1, 𝑋2 

are simulated so as to be structured respectively around three factors 𝑔, 𝑓1, 𝑓2. ‡

𝑓𝑎𝑐𝑡𝑜𝑟𝑠 𝑓1 and 𝑓2 are explanatory of 𝑔. Besides, we consider 𝑟𝑇 = 𝑟1 = 𝑟2 = 2 i.e 2 

covariates are simulated for each covariate matrix 𝑇, 𝑇1 and 𝑇2. The data is simulated as 

follows (Myriam, 2015). 

1. Choice of 𝜃: 

(a) 𝐷 = 𝐷1 = 𝐷2𝑎) matrices filled in row‐wise with the ordered 

integer sequence ranging from 1 to 80 (indeed: 𝑟𝑇 ∗ 𝑞𝑌 = 𝑟1 ∗ 𝑞1 = 

𝑟2 ∗ 𝑞2 = 2 ∗ 40). 
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(b) 𝑏 = 𝑎1 = 𝑎2 = ordered integer sequence ranging from 1 to 40. 

(c) 𝑐1 = 𝑐2 = 1 

(d) 𝜎𝑌
2 = 𝜎1

2 = 𝜎2
2 = 1 

2. Simulation of factors 𝑔, 𝑓1, 𝑓2 

(a) Simulate vectors 𝑓1 and 𝑓2 of 𝑛 = 400 normally distributed random 

numbers with mean 0 and variance 1 (abbreviated ∀𝑚, ∈ 

{1,2}𝑓𝑚 ∼ 𝒩(0, 𝐼𝑑400). 

(b) We simulate 𝜀𝑔 according to distribution 𝜀𝑔 ∼ 𝒩(0, 𝐼𝑑400). 

(c) We then calculate 𝑔 as 𝑔 = 𝑓1𝑐1 + 𝑓2𝑐2 + 𝜀𝑔 

3. Simulation of noises 𝜀𝑌, 𝜀1, 𝜀2 Each element of matrix 𝜀𝑌, (respectively 𝜀1, 𝜀2) is 

simulated independently from distribution 𝒩(0, 𝜎𝑌
2 = 1) (respectively, 𝜎1

2 = 1, 𝜎2
2 =

1). 

4. Simulation of covariate matrices 𝑇, 𝑇1, 𝑇2 

Each element of matrices 𝑇, 𝑇1, 𝑇2 is simulated according to the standard normal 

distribution. 

5. Construction of 𝑌, 𝑋1, 𝑋2𝑌, 𝑋1, 𝑋2 are eventually calculated through formulas in the 

model (1). 

This simulation scheme was performed 100 times, each time yielding a set of simulated 

data matrices (𝑌, 𝑋1, 𝑋2). Then for each simulated data7 we ran an estimation routine 

with a threshold value 𝜀 = 10−2, yielding the average results presented in section 4.2. 

Thus from 400 ∗ 120 = 48000 scalar elements of data, we will estimate 3 ∗ 𝑛 = 1200 

scalar elements of factors plus 𝐾 = 5 + 3 ∗ 40(2 + 1) = 365 scalar parameters, i.e 1565 

scalars (Myriam, 2015). 
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4.5.2 Results 

Convergence was observed in almost all cases in less than five iterations. We assess the 

quality of the estimations as follows (Myriam, 2015). 

 On the one hand, we calculate the absolute relative deviation between each 

simulated scalar parameter in 𝜃∗ and its estimation, and then average these 

deviations over the 100 simulations. We then produce a box‐plot of the average 

absolute relative deviations (cf. fig. 4.1). This makes the interpretation easier 

since we only need to look at the box‐ plot’s values and check that they are 

positive (because of the absolute value) and close to 0. 

 On the other hand, to assess the quality of the factor estimations, we compute the 

300 values of square correlations between the simulated concatenated 

factors (𝑔, 𝑓1, 𝑓2) (respectively) and the corresponding estimations 

((𝑔, 𝑓1, 𝑓2)).   

 

The median of square correlations is 0.998 the first quartile is 0.997 and the third quartile 

is 0.999. So, factor 𝑔 (respectively 𝑓1 and 𝑓2) turn out to be drawn towards the principal 

direction underlying the bundles made up by observed variables 𝑌 (respectively 𝑋1 and 

𝑋2). Now we may legitimately wonder how the quality of estimations could be affected 

by the number of observations and the number of OV 𝑠 in each block. In the following 

section we give a sensitivity analysis performed to investigate this (Myriam, 2015). 

Subsequently, a performance of sensibility analysis on the simulated data presented in 

section 4.5.1 can be done. The purpose was to study the influence of the block‐sizes (𝑛, 

𝑞𝑌, 𝑞1, 𝑞2). On the quality of estimation, both of the parameters and the factors. To 

simplify the analysis, we imposed 𝑞𝑌 = 𝑞1 = 𝑞2 and varied 𝑛 and 𝑞 separately, i.e. 
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studied the cases n = 50; 100; 200; 400 with 𝑞 = 40 and 𝑞 = 5; 10; 20; 40 with n = 400. 

Each case was simulated 100 times. Therefore, we simulated 800 data-sets (Myriam, 

2015). 

To sum things up, the sample size 𝑛 proved to have more impact on the quality of 

parameter estimation and factor reconstruction than the number of OV 𝑠. Now, the 

quality of factor reconstruction remains high for rather small values of 𝑛 or 𝑞. We advise 

to use a minimal sample size of 𝑛 = 100 to obtain really stable structural coefficients. 

Above this threshold 𝑛 has but little impact on the biases and standard deviations of 

estimations. 

 

4.5.3 An application to Environmental Data 

4.5.3.1 Data Presentation 

Mortier et al, (2014) applied their model to the data‐set genus provided in the R‐package 

SCGLR. Data‐set genus was built from the CoForChange database. It gives the 

abundances of 27 common tree genera present in the tropical moist forest of the Congo‐

Basin, and the measurements of 40 geo‐referenced environmental variables, for 𝑛 =

1000 inventory plots (observations). Some of the geo‐referenced environmental 

variables describe 16 physical factors pertaining to topography geology and rainfall 

description. The remaining variables characterize vegetation through the enhanced 

vegetation index (EVI) measured on 16 dates. 

In this section, Mortier et al, (2014) modeled the tree abundances from the other variables 

while reducing the dimension of data. The dependent block of variables 𝑌 therefore 

consists of the 𝑞𝑌 = 27 tree species counts divided by the plot‐surface. A PCA of the 

geo‐referenced environmental variables and the photosynthetic activity variables 
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confirms that EVI measures are clearly separated from the other variables. Indeed, it 

shows two variable‐bundles with almost orthogonal central directions. This justifies 

using our model (section 4.2) with 𝑝 = 2 explanatory groups one of them (𝑋1) gathering 

𝑞1 = 16 rainfall measures and location variables (longitude, latitude and altitude), and 

the second one (𝑋2), the 𝑞2 = 23 EVI measures. Besides, in view of the importance of 

the geological substrate on the spatial distribution of tree species in the Congo Basin 

showed by Fayolle et al, (2012). They chose to put nominal variable geology in a block 

𝑇. This block therefore contains constant 1 plus all the indicator variables of geology but 

one, which will be the reference value. Geology having 5 levels 𝑇 has thus 5 columns. 

 

4.6 Model with Geologic Covariates 

4.6.1 Model Specification 

Here is the model used with the variable‐blocks designed in section 4.2: 

{
 
 

 
 𝑌 = 𝑇𝐷 + 𝑔𝑏′ + 𝜀𝑌

𝑋1 = 𝐿𝑛𝑑
1′ + 𝑓1𝑎1

′
+ 𝜀1

𝑋2 = 𝐿𝑛𝑑
2′ + 𝑓2𝑎2

′
+ 𝜀2

𝑔 =  𝑓1𝑐1 + 𝑓2𝑐2 + 𝜀𝑔

 

Where 𝑛 = 1000, 𝑞𝑌 = 27, 𝑞1 = 16, 𝑞2 = 23 and 𝑟𝑇 = 5. The first row of 𝐷 is a 

parameter vector that contains the means of the 𝑌's noted 𝐷[1, ] in Table 4.1, and the 

other rows, the overall effects of the geological substrates with respect to the reference 

one. Indeed, the next section presents the model’s parameter‐estimations where in Table 

4.1 each row 𝑟 of 𝐷 is noted 𝐷[𝑟, ] (Fayolle et al, 2012). 
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4.6.2 Results 

With a threshold value 𝜀 = 10−3, convergence was reached after 58 iterations. Some 

parameter‐estimations are presented in Tables 4.1 and 4.2.  

 

Table 4.1: Application to the genus data with geologic covariate: estimations of 

parameters 𝑫′ and 𝒃′ 

 Parameter estimates 

Variables  D[1,] D[2,] D[3,] D[4,] D[5,] 𝒃′ 

gen1 0.76 0.16 0.06 0.68 -0.12 -0.13 

gen2 0.54 -0.28 -0.03 -0.03 -0.28 0.47 

gen3 0.41 -0.23 -0.02 0.25 -0.37 0.29 

gen4 0.12 -0.14 0.03 0.52 0.30 0.09 

gen5 0.31 -0.15 0.19 -020 0.84 0.09 

gen6 0.55 -0.12 -0.26 0.06 -0.02 0.14 

gen7 0.46 0.06 -0.04 -0.37 0.43 0.14 

gen8 0.55 0.04 -0.09 -0.16 0.04 0.42 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

gen27 0.27 0.41 0.69 -0.24 0.56 0.08 

 

Table 4.2: Application to the genus data with geologic covariate: estimations of 

parameters 𝒅𝟏
′
 and 𝒂𝟏

′
 

 Parameter estimates 

Variables  𝒅𝟏
′
 𝒂𝟏

′
 

altitude 4.43 0.62 

pluvio_1 44.45 0.16 

pluvio_2 2.48 -0.91 

pluvio_3 4.32 -0.88 

pluvio_4 9.65 -0.47 

pluvio_5 8.56 -0.28 

pluvio_6 6.68 0.26 

pluvio_7 5.98 0.83 

pluvio_8 4.78 0.81 

⋮ ⋮ ⋮ 

lat 2.49 0.92 
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It can be seen in Tables 4.1 and 4.2 that for certain species, the geologic substrate seems 

to be of great importance (e.g. for genl, gen5, gen7, gen9, gen12, gen16, gen21, gen25, 

gen26, gen27), whereas for others, it only has a small impact on the abundances (e.g. for 

𝑔𝑒𝑛2,𝑔𝑒𝑛6, 𝑔𝑒𝑛8, genl 10, genl 8, 𝑔𝑒𝑛20, gen23). Moreover, Table 4.1 shows that only 

these are well accounted for by our model. Although we have carried out the analysis 

with variables gen2, gen3, gen8, genlO, genll, genl5, genl 7, gen23, gen24 and gen25, 

the results are practically the same when we take all variables.  

 

4.6.3 Calculation of the complete data log‐likelihood function 𝓛 

Proof 

Consider the case 𝑝 = 2, 𝜓𝑌 = 𝜎𝑌
2𝐼𝑑𝑞𝑌  , 𝜓1 = 𝜎1

2𝐼𝑑𝑞1 and 𝜓2 = 𝜎2
2𝐼𝑑𝑞27 and for 

observation 𝑖, the model is formulated as follows (Tami et al, 2015): 

{
 
 

 
 
𝑦𝑖
′ = 𝑡𝑖

′𝐷 + 𝑔𝑖𝑏
′ + 𝜀𝑖𝑦′

𝑥𝑖
1′ = 𝑡𝑖

1′𝐷1 + 𝑓𝑖
1𝑎1

′
+ 𝜀

𝑖1
′

𝑥𝑖
2′ = 𝑡𝑖

2′𝐷2 + 𝑓𝑖
2𝑎2

′
+ 𝜀

𝑖2
′

𝑔𝑖 = 𝑓𝑖
1𝑐1 + 𝑓𝑖

2𝑐2 + 𝜀𝑖𝑔

 

We have, 

𝑝(𝑧𝑖, ℎ𝑖; 𝜃) = 𝑝(𝑦𝑖, 𝑥𝑖
1, 𝑥𝑖

2, 𝑔𝑖 , 𝑓𝑖
1, 𝑓𝑖

2; 𝜃) 

= 𝑝(𝑦𝑖, 𝑥𝑖
1, 𝑥𝑖

2|𝑔𝑖, 𝑓𝑖
1, 𝑓𝑖

2; 𝜃)𝑝(𝑔𝑖, 𝑓𝑖
1, 𝑓𝑖

2; 𝜃) 

= 𝑝(𝑦𝑖, 𝑥𝑖
1, 𝑥𝑖

2|𝑔𝑖, 𝑓𝑖
1, 𝑓𝑖

2; 𝜃)𝑝(𝑔𝑖|𝑓𝑖
1, 𝑓𝑖

2; 𝜃)𝑝(𝑓𝑖
1, 𝑓𝑖

2; 𝜃) 

= 𝑝(𝑦𝑖 , 𝑥𝑖
1, 𝑥𝑖

2|𝑔𝑖, 𝑓𝑖
1, 𝑓𝑖

2; 𝜃)𝑝(𝑔𝑖|𝑓𝑖
1, 𝑓𝑖

2; 𝜃)𝑝(𝑓𝑖
1; 𝜃)𝑝(𝑓𝑖

2; 𝜃) 

= 𝑝(𝑦𝑖, 𝑥𝑖
1, 𝑥𝑖

2|𝑔𝑖, 𝑓𝑖
1, 𝑓𝑖

2; 𝜃)𝑝(𝑔𝑖|𝑓𝑖
1, 𝑓𝑖

2; 𝜃)𝑝(𝑓𝑖
1)𝑝(𝑓𝑖

2) 

= 𝑝(𝑥𝑖
1, 𝑥𝑖

2|𝑦𝑖, 𝑔𝑖, 𝑓𝑖
1, 𝑓𝑖

2; 𝜃)𝑝(𝑦𝑖|𝑔𝑖, 𝑓𝑖
1, 𝑓𝑖

2; 𝜃)𝑝(𝑔𝑖|𝑓𝑖
1, 𝑓𝑖

2; 𝜃)𝑝(𝑓𝑖
1)𝑝(𝑓𝑖

2) 

= 𝑝(𝑥𝑖
1, 𝑥𝑖

2|𝑓𝑖
1, 𝑓𝑖

2; 𝜃)𝑝(𝑦𝑖|𝑔𝑖; 𝜃)𝑝(𝑔𝑖|𝑓𝑖
1, 𝑓𝑖

2; 𝜃)𝑝(𝑓𝑖
1)𝑝(𝑓𝑖

2) 

= 𝑝(𝑥𝑖
1|𝑥𝑖

2, 𝑓𝑖
1, 𝑓𝑖

2; 𝜃)𝑝(𝑥𝑖
2|𝑓𝑖

1, 𝑓𝑖
2; 𝜃)𝑝(𝑦𝑖|𝑔𝑖; 𝜃)𝑝(𝑔𝑖|𝑓𝑖

1, 𝑓𝑖
2; 𝜃)𝑝(𝑓𝑖

1)𝑝(𝑓𝑖
2) 
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= 𝑝(𝑥𝑖
1|𝑓𝑖

1; 𝜃)𝑝(𝑥𝑖
2|𝑓𝑖

2; 𝜃)𝑝(𝑦𝑖|𝑔𝑖; 𝜃)𝑝(𝑔𝑖|𝑓𝑖
1, 𝑓𝑖

2; 𝜃)𝑝(𝑓𝑖
1)𝑝(𝑓𝑖

2) 

 

Where 𝜃 = {𝐷, 𝐷1, 𝐷2, 𝑏, 𝑎1, 𝑎2, 𝑐1, 𝑐2, 𝜓𝑌 , 𝜓1, 𝜓2} is the set of model parameters 

(Myriam, 2015). Therefore, 

ℒ(𝜃; 𝑧𝑖, ℎ𝑖) = ℒ(𝜃; 𝑥𝑖
1|𝑓𝑖

1) + ℒ(𝜃; 𝑥𝑖
2|𝑓𝑖

2) + ℒ(𝜃; 𝑦𝑖|𝑔𝑖) + ℒ(𝜃; 𝑔𝑖|𝑓𝑖
1, 𝑓𝑖

2) + ℒ(𝑓𝑖
1)

+ ℒ(𝑓𝑖
2) 

Because of the model and the normal distribution properties we obtain: 𝑥𝑖
𝑚|𝑓𝑖

𝑚 ∼

𝒩(𝑡𝑖
𝑚′𝐷𝑚 + 𝑓𝑖

𝑚𝑎𝑚′, 𝜓𝑋𝑚) 

𝑦𝑖|𝑔𝑖 ∼ 𝒩(𝑡𝑖
′𝐷 + 𝑔𝑖𝑏

′, 𝜓𝑌) 

𝑔𝑖|𝑓𝑖
1, 𝑓𝑖

2 ∼ 𝒩(𝑓𝑖
1𝑐1 + 𝑓𝑖

2𝑐2, 1) 

𝑓𝑖
𝑚 ∼ 𝒩(0,1) 

Then, we obtain the complete data log‐likelihood function (Tami et al, 2015): 

ℒ(𝜃; 𝑧, ℎ) = −
1

2
∑{

𝑛

𝑖=1

𝑙𝑛|𝜓𝑌| + 𝑙𝑛|𝜓1| + 𝑙𝑛|𝜓2| 

+(𝑦𝑖 − 𝐷
′𝑡𝑖 − 𝑔𝑖𝑏)

′𝜓𝑌
−1(𝑦𝑖 − 𝐷

′𝑡𝑖 − 𝑔𝑖𝑏) 

+(𝑥𝑖
1 − 𝐷1

′
𝑡𝑖
1 − 𝑓𝑖

1𝑎1)′𝜓1
−1(𝑥𝑖

1 − 𝐷1
′
𝑡𝑖
1 − 𝑓𝑖

1𝑎1) 

+(𝑥𝑖
2 − 𝐷2

′
𝑡𝑖
2 − 𝑓𝑖

2𝑎2)′𝜓2
−1(𝑥𝑖

2 − 𝐷2
′
𝑡𝑖
2 − 𝑓𝑖

2𝑎2) 

+(𝑔𝑖 − 𝑐
1𝑓𝑖

1 − 𝑐2𝑓𝑖
2)2 + (𝑓𝑖

1)2 + (𝑓𝑖
2)2} + 𝜆 

Where 𝜆 a constant. Also, the set of model parameters 

𝜃 = {𝐷, 𝐷1, 𝐷2, 𝑏, 𝑎1, 𝑎2, 𝑐1, 𝑐2, 𝜓𝑌, 𝜓1, 𝜓2} in this case corresponds to 

𝜃 = {𝐷, 𝐷1, 𝐷2, 𝑏, 𝑎1, 𝑎2, 𝑐1, 𝑐2, 𝜎𝑌
2, 𝜎1

2, 𝜎2
2} because of the simplification made earlier. 

Indeed, 𝜓𝑌 = 𝜎𝑌
2𝐼𝑑𝑞𝑌,𝜓1 = 𝜎1

2𝐼𝑑𝑞1 and 𝜓2 = 𝜎2
2𝐼𝑑𝑞2. 
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Therefore, we can also write the complete data log‐likelihood function (Tami et al, 2015): 

ℒ(𝜃; 𝑧, ℎ) = −
1

2
∑{

𝑛

𝑖=1

𝑞𝑌𝑙𝑛(𝜎𝑌
2) + 𝑞1𝑙𝑛(𝜎1

2) + 𝑞2𝑙𝑛(𝜎2
2) 

+𝜎−2𝑌(𝑦𝑖 −𝐷
′𝑡𝑖 − 𝑔𝑖𝑏)

′(𝑦𝑖 − 𝐷
′𝑡𝑖 − 𝑔𝑖𝑏) 

+𝜎−21(𝑥𝑖
1 −𝐷1

′
𝑡𝑖
1 − 𝑓𝑖

1𝑎1)′(𝑥𝑖
1 − 𝐷1

′
𝑡𝑖
1 − 𝑓𝑖

1𝑎1) 

+𝜎−22(𝑥𝑖
2 − 𝐷2

′
𝑡𝑖
2 − 𝑓𝑖

2𝑎2)′(𝑥𝑖
2 − 𝐷2

′
𝑡𝑖
2 − 𝑓𝑖

2𝑎2) 

+(𝑔𝑖 − 𝑐
1𝑓𝑖

1 − 𝑐2𝑓𝑖
2)2 + (𝑓𝑖

1)2 + (𝑓𝑖
2)2} + 𝜆 

 

4.6.4 Demonstration of the normality of the distribution of 𝒉𝒊|𝒛𝒊 

Proof 

Consider the case 𝑝 = 2, 𝜓𝑌 = 𝜎𝑌
2𝐼𝑑𝑞𝑌, 𝜓1 = 𝜎1

2𝐼𝑑𝑞1 and 𝜓2 = 𝜎2
2𝐼𝑑𝑞27 and for 

observation 𝑖7 the model is formulated as follows: 

{
 
 

 
 
𝑦𝑖
′ = 𝑡𝑖

′𝐷 + 𝑔𝑖𝑏
′ + 𝜀

𝑖𝑦
′

𝑥𝑖
1′ = 𝑡𝑖

1′𝐷1 + 𝑓𝑖
1𝑎1

′
+ 𝜀

𝑖1
′

𝑥𝑖
2′ = 𝑡𝑖

2′𝐷2 + 𝑓𝑖
2𝑎2

′
+ 𝜀

𝑖2
′

𝑔𝑖 = 𝑓𝑖
1𝑐1 + 𝑓𝑖

2𝑐2 + 𝜀𝑖𝑔

 

To prove the normality of the distribution of ℎ𝑖|𝑧𝑖, we use the classical result about the 

conditioning of normally distributed variables (Tami et al, 2015). Before using this result, 

we calculate the joint distribution of (𝑔𝑖, 𝑓𝑖
1, 𝑓𝑖

2, 𝑦𝑖 , 𝑥𝑖
1, 𝑥𝑖

2). 

We know that for observation 𝑖, 

𝑦𝑖 ∼ 𝒩(𝐷
′𝑡𝑖 , 𝑏((𝑐

1)2 + (𝑐2)2 + 1)𝑏′ +𝛹𝑌) 

𝑥𝑖
𝑚 ∼ 𝒩(𝐷𝑚′𝑡𝑖

𝑚, 𝑎𝑚𝑎𝑚′ +𝛹𝑚) 

𝑔𝑖 ∼ 𝒩(0, (𝑐
1)2 + (𝑐2)2 + 1) 

𝑓𝑖
𝑚 ∼ 𝒩(0,1) 
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Then, after computing the required covariances, the following was obtain, 

(𝑔𝑖, 𝑓𝑖
1, 𝑓𝑖

2) ∼ 𝒩((
0
0
0
) , (

(𝑐1)2 + (𝑐2)2 + 1 𝑐1 𝑐2

𝑐1 1 0
𝑐2 0 1

)) 

And, 

(𝑦𝑖, 𝑥𝑖
1, 𝑥𝑖

2)

∼ 𝒩

(

 
 
(

𝐷′𝑡𝑖

𝐷1
′
𝑡𝑖
1

𝐷2
′
𝑡𝑖
2

) ,(

((𝑐1)2 + (𝑐2)2 + 1)𝑏𝑏′ +𝛹𝑌 𝑐1𝑏𝑎1
′

𝑐2𝑏𝑎2
′

𝑐1𝑎1𝑏′ 𝑎1𝑎1
′
+𝛹1 𝑜(𝑞1,𝑞2)

𝑐2𝑎2𝑏′ 0(𝑞2,𝑞1) 𝑎2𝑎2′ + 𝛹2

)

)

 
 

 

 

If two variables 𝑋1 and 𝑋2 are normally distributed such that (Myriam, 2015), 

(
𝑋1
𝑋2
) ∼ 𝒩(𝜇 = (

𝜇1
𝜇2
) , 𝛴 = (

Σ11 Σ12
Σ21 Σ22

)) 

where, 𝜇1(𝑟 × 1), 𝜇2(𝑠 × 1), 𝛴11(𝑟 × 𝑟), 𝛴12(𝑟 × 𝑠), 𝛴21(𝑠 × 𝑟) and 𝛴22(𝑠 × 𝑠); then, 

(𝑋1|𝑋2 = 𝑥2) ∼ 𝒩(𝑀 = 𝜇1 + 𝛴12𝛴22−1(𝑥2 − 𝜇2), 𝜑 = 𝛴11 − 𝛴12𝛴22−1𝛴21) (9) 

Then, after compute the required covariances we obtain the joint distribution (Tami et al, 

2015),  

(𝑔𝑖, 𝑓𝑖
1, 𝑓𝑖

2, 𝑦𝑖, 𝑥𝑖
1, 𝑥𝑖

2) ∼ 𝒩(𝑀𝑖
∗, 𝛴∗) such as, 

𝑀𝑖
∗ =

(

 
 

0(3,1)
𝐷′𝑡𝑖

𝐷1
′
𝑡𝑖
1

𝐷2
/
𝑡𝑖
2
)

 
 

 and 𝛴∗ = (𝛴𝛴2
∗1 ∗, 𝛴3

∗)
. Where, 

𝛴1
∗ = (

(𝑐1)2 + (𝑐2)2 + 1 𝑐1 𝑐2

𝑐1 1 0
𝑐2 0 1

) 

𝛴2
∗ = (

((𝑐1)2 + (𝑐2)2 + 1)𝑏′ 𝑐1𝑎1
′

𝑐2𝑎2
′

𝑐1𝑏′ 𝑎1
′

𝑜(1,𝑞2)

𝑐2𝑏′ 𝑜(1,𝑞1) 𝑎2′

) 
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𝛴3
∗ = (

((𝑐1)2 + (𝑐2)2 + 1)𝑏𝑏′ +𝛹𝑌 𝑐1𝑏𝑎1
′

𝑐2𝑏𝑎2
′

𝑐1𝑎1𝑏′ 𝑎1𝑎1
′
+𝛹1 0(𝑞1,𝑞2)

𝑐2𝑎2𝑏′ 𝑜(𝑞2,𝑞1) 𝑎2𝑎2′ + 𝛹2

) 

Finally, we obtain the distribution, ℎ𝑖|𝑧𝑖 ∼ 𝒩(𝑀𝑖 , 𝛴) where, 𝑀𝑖 = 𝛴2
∗𝛴3

∗−1𝜇𝑖
∗  

and 𝛴 = 𝛴1
∗ − 𝛴2

∗𝛴3
∗−1𝛴27

∗ ' such that 𝜇𝑖
∗ = (

𝐷′𝑦𝑖 − 𝑡𝑖

−𝑥𝑖
1𝐷1

′
𝑡𝑖
1

−𝑥𝑖
2𝐷2

/
𝑡𝑖
2

) 

 

4.6.5 Calculation of the first‐order derivatives of 𝓛 

Proof.  

We search the first‐order derivatives of the complete data log‐likelihood function (Tami 

et al, 2015):  ℒ(𝜃; 𝑧, ℎ) = −
1

2
∑ {𝑛
𝑖=1 𝑙𝑛|𝜓𝑌| + 𝑙𝑛|𝜓1| + 𝑙𝑛|𝜓2| 

+(𝑦𝑖 − 𝐷
′𝑡𝑖 − 𝑔𝑖𝑏)

′𝜓𝑌
−1(𝑦𝑖 − 𝐷

′𝑡𝑖 − 𝑔𝑖𝑏) 

+(𝑥𝑖
1 − 𝐷1

′
𝑡𝑖
1 − 𝑓𝑖

1𝑎1)′𝜓1
−1(𝑥𝑖

1 − 𝐷1
′
𝑡𝑖
1 − 𝑓𝑖

1𝑎1) 

+(𝑥𝑖
2 − 𝐷2

′
𝑡𝑖
2 − 𝑓𝑖

2𝑎2)′𝜓2
−1(𝑥𝑖

2 − 𝐷2
′
𝑡𝑖
2 − 𝑓𝑖

2𝑎2) 

+(𝑔𝑖 − 𝑐
1𝑓𝑖

1 − 𝑐2𝑓𝑖
2)2 + (𝑓𝑖

1)2 + (𝑓𝑖
2)2} + 𝜆 

Where 𝜆 constant7 𝜃 = {𝐷, 𝐷1, 𝐷2, 𝑏, 𝑎1, 𝑎2, 𝑐1, 𝑐2, 𝜓𝑌, 𝜓1, 𝜓2}7𝜓𝑌 = 𝜎𝑌
2𝐼𝑑𝑞𝑌7 𝜓1 =

𝜎1
2𝐼𝑑𝑞1 and 𝜓2 = 𝜎2

2𝐼𝑑𝑞2. 

Therefore, there are matrix‐parameters (𝐷, 𝐷1, 𝐷2) vector‐parameters (𝑏, 𝑎1, 𝑎2) and 

scalar parameters (𝑐1, 𝑐2, 𝜎𝑌
2, 𝜎1

2, 𝜎2
2). Then, ℒ is a sum of three types of functions: the 

logarithm, the square function and a quadratic form function (𝑤 − 𝑋𝛽)′𝛤(𝑤 − 𝑋𝛽)7 

where 𝛤 is symmetric and 𝑤(𝑞 × 1), 𝑋(𝑞 × 𝑚), 𝛽 (𝑚 × 1) and 𝛤(𝑞 × 𝑞). The first‐

order derivatives of the logarithm function and the square function are in our case trivial. 

The first‐order derivative of (𝑤 − 𝑋𝛽)′𝛤(𝑤 − 𝑋𝛽) by 𝑋 is less trivial but necessary. Let 

www.udsspace.uds.edu.gh 

 

 



105 

us start by making explicit the first‐order derivative of (𝑤 − 𝑋𝛽)′𝛤(𝑤 − 𝑋𝛽) with 

respect to 𝑋 (Tami et al, 2015). 

𝑑𝑋[(𝑤 − 𝑋𝛽)
′𝛤(𝑤 − 𝑋𝛽)] = (𝑤 − 𝑋𝛽)′𝛤(−𝑑𝑋𝛽) + (−𝑑𝑋𝛽)′𝛤(𝑤 − 𝑋𝛽) 

= −2(𝑤 − 𝑋𝛽)′𝛤(𝑑𝑋𝛽) 

= 𝑡𝑟[−2(𝑤 − 𝑋𝛽)′𝛤(𝑑𝑋𝛽)] 

= 𝑡𝑟[−2𝛽(𝑤 − 𝑋𝛽)′𝛤𝑑𝑋] 

=< −2𝛽(𝑤 − 𝑋𝛽)′𝛤|𝑑𝑋 > 

Therefore, 

𝑑

𝑑𝑋
[(𝑤 − 𝑋𝛽)′𝛤(𝑤 − 𝑋𝛽)] = (−2𝛽(𝑤 − 𝑋𝛽)′𝛤)′ 

= −2(𝛽(𝑤 − 𝑋𝛽)′𝛤)′ 

= −2𝛤(𝑤 − 𝑋𝛽)𝛽′ 

Likewise, we establish that: 

𝜕

𝜕𝐷′
ℒ(𝑧, ℎ) =∑𝜓𝑌

−1

𝑛

𝑖=1

(𝑦𝑖 − 𝐷
′𝑡𝑖 − 𝑔𝑖𝑏)𝑡𝑖

′ 

Similar reasoning can be applied to 𝐷𝑚 and allows to obtain the second row of (5). 

Concerning the third and the fourth row of (5), we use the classical result: 

𝜕

𝜕𝛽
[(𝑤 − 𝑋𝛽)′𝛤(𝑤 − 𝑋𝛽)] = −2𝑋′𝛤(𝑤 − 𝑋𝛽) 

Eventually, the fifth, the sixth and the eighth rows of (5) are obtained in a trivial way 

(Tami et al, 2015).  

Suppose we have a model for the complete data Y, with associated density  /f Y  , 

where  1,..., d   is the unknown parameter. We write  ,obs misY Y Y , where obsY

represents the observed part of Y and misY  denotes the missing values. The EM algorithm 
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finds the value of  ,    that maximizes  /obsf Y  , that is, the MLE for   based on the 

observed data obsY . 

The EM algorithm starts with an initial value  0
 . Letting  t  be the estimate   at the 

𝑖𝑡ℎ iteration, iteration (t +1) of EM is as follows 

E step: Find the expected complete-data log-likelihood if   were  t : 

       / / / ,
t t

mis obs misQ L Y f Y Y dY           (4.6) 

Where    / log /L Y f Y   

 

M step: Determine  1t   by maximizing this expected log-likelihood: 

       1
/ /

t t t
Q Q   


  for all       (4.7) 

The M step of EM algorithm is easy to implement in broad classes of problems, such as 

in exponential families, since it uses the identical computational method as ML 

estimation from  /L Y . The E step of EM algorithm is also very easy to implement in 

many problems, including many exponential family models, since it follows from 

standard complete-data theory for means of conditional distributions. 

 

4.7 Simulation Setup 

In order to demonstrate the earlier derivations regarding some of the finite sample 

properties (theoretical), a simulation setup was utilized to examine these properties 

empirically. The setup, in this study, examined two main properties comprising 

univocality as well as conditional bias. For starters, the model utilized under the 

simulation setup was described and consequently an outline of how the study was 
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conducted. Subsequently, the outcome the simulation setup was explained and 

interrogated under chapter five. 

 

4.7.1 Model 

The construct (latent) variable model comprised two variables, 𝜉1 as well as 𝜂1, which 

yields 

𝜂1 = 0.6𝜉1 + 𝜁1.      (4.8) 

Related to this model were the covariance matrices 𝛷 as well as 𝛹. Suppose 𝛷 = [1] as 

well as 𝛹 = [1]. 

Now, the manifest model indicates that every construct (latent) variable contains three 

indicators while every indicator associated with just a factor. Based on the manifest 

model, the equations are expressed as 

𝑥1 = 1.0𝜉1 + 𝛿1, 𝑦1 = 1.0𝜂1 + 𝜀1 

𝑥2 = 0.8𝜉1 + 𝛿2, 𝑦2 = 0.8𝜂1 + 𝜀2 

                                                   𝑥3 = 0.8𝜉1 + 𝛿3, 𝑦3 = 0.8𝜂1 + 𝜀3     (4.9) 

Related to the manifest model is the covariance matrix of manifest errors, 𝛴𝑣𝑣. Suppose 

the manifest errors were not associated with every other so that 𝛴𝑣𝑣 = 𝐼. 

Thus these models in Equation (4.8) as well as Equation (4.9) mirrors a basic model that 

can be utilized applied research.  
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4.7.2 Design of the Study 

Simulation of this study was performed through SAS 9.2/JMP 13 by the steps outlined 

below. 

1. By PROC IML, 

i. 𝑁  values are simulated regarding the random variable 𝑣𝑖(𝜃) so that 𝑣𝑖 (which 

is iid) is 𝒩(0,1).  

ii. 𝑁  values are simulated regarding the random variable 𝜁𝑖(𝜃) so that 𝜁𝑖 (which 

is iid) is 𝒩(0,1).  

iii. 𝑁  values are simulated regarding the random variable 𝜉𝑖(𝜃) so that 𝜉𝑖 (which 

is iid) is 𝒩(0,1). 

iv. 𝑁 values are subsequently generated regarding 𝜂1𝑖 base on Equation (4.8). 

v. 𝑁 values are subsequently generated regarding the random variables 𝑦𝑖 as 

well as 𝑁 values for the random variables 𝑥𝑖 by utilizing the Equations under 

(4.9). 

2. Relying on the data set generated in the first step (i.e. step 1), the model is 

estimated via PROC CALIS to obtain 𝜃. When the model estimated in step 2 

converges (i.e. the sample from step 1 results in a solution that converges in 100 

or fewer iterations) but does not result in any Heywood cases, then calculate �̂�(𝜃)  

using PROC IML through Equation (4.8), 𝜁(𝜃) through Equation (3.16) (the 

estimated residuals assuming the elements of 𝜃 are known), �̂�(𝜃) through 

Equation (3.17), as well as 𝜁(𝜃) by Equation (3.19) (the estimated residuals 

assuming the elements of 𝜃 are unknown). However, when the model estimated 

under step 2 does not converge or yield Heywood case, then the data set would 

be disregarded while a fresh data set is simulated through step 1. Again, the 

following statistics are computed through the calculated residuals in step 2; 
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i. The average conditional bias if 𝜃 is established (known): Given observation 

𝑖, the conditional bias is computed through Equation (3.29) as well as 

Equation (3.32) for each weighted matrix being considered by utilizing the 

known values of 𝜃. Given every residual the average of the conditional bias 

is then computed. 

ii. The average conditional bias if 𝜃 is not established (unknown): Given 

observation 𝑖, the conditional bias is computed by substituting 𝜃 with 𝜃 under 

Equation (3.29) as well as Equation (3.32). The conditional bias is then 

computed for every weighted matrix being considered. Given every residual, 

the average of the conditional bias is computed. 

iii. The correlation between the true residuals, the estimated residuals if 𝜃 is 

established (known), as well as the residuals estimated if 𝜃 is not known: 

Given every residual and residual estimator then the correlations between: (1) 

the true residuals obtained in Step 1 as well as the estimated residuals under 

Equation (3.15) as well as Equation (3.16) are computed; (2) the true residuals 

obtained under step 1 as well as the estimated residuals under Equation (3.17) 

and Equation (3.18) are computed; and (3) the estimated residuals through 

Equation (3.15) and Equation (3.16) as well as the estimated residuals by 

Equation (3.17) and Equation (3.18) are computed. 

It worth noting that the process above utilized three dissimilar sample sizes, consisting 

of 250, 500, as well as 1000. The samples utilized were meant to mirror samples that 

are often encountered in real sense. A sample 250 mirrors a usual sample encountered in 

many empirical studies and again what is considered a reasonable sample size by utilizing 

the 𝑞 rule propounded by Jackson (2003). Using this rule, it implies that the ratio of 

sample size 𝑁 to the quantity of parameters 𝑞 must preferably be at least 10 with at least 

www.udsspace.uds.edu.gh 

 

 



110 

20 being optimal. For this study, there were 𝑞 = 13 parameters showing that the smallest 

sample must be at least 130. Thus a sample size of 𝑁 = 200 is considerably above the 

smallest figure while being close to the preferable sample value of 260. Moreover a 

sample of 𝑁 = 500 is deemed to be reasonable for purposes of practical sense regarding 

average sample type of researches that utilize SEM whereas a sample of 𝑁 = 1000 

mirrors a typical threshold often considered for huge sized researches. 

It is worth noting that for every sample considered a total of 500 data points were 

generated which resulted in convergence without Heywood scenarios. Again, in order to  
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CHAPTER FIVE 

RESULTS AND DISCUSSIONS 

5.1 Introduction 

This section looks at the results obtained from the simulations and analysis of data for 

this study. The results obtained are based on the objectives of the study and this includes 

a tabulation of correlations bothering on univocal asymptotic property, the graphical 

display of detection of outliers and influential observations and finally the comparative 

analysis between the EM concept of residual estimation and other known methods of 

residual estimators. Subsequently, the findings arrived based on the results were 

juxtapose against the findings made in the literature under the discussion here.     

 

5.2 Preliminary Analysis  

Before the results from the simulation is presented, it is worth noting that data set created 

in order to comprehend the descriptive statistics of the data. Estimated error terms were 

obtained from Eqn 3.8 and Eqn 3.9 through known values of 𝜃. Similarly, the estimated 

error terms from Eqn 3.10 and Eqn 3.11 were obtained through 𝜃. The descriptive 

statistics (the mean, standard deviation, middle value, minimum and maximum values) 

of the actual residuals computed for both the unknown and known parameters 

respectively.  
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Table 5.1: Descriptive Statistics 

Parameter  Mean  Standard deviation Minimum  Median  Maximum  

1  -0.0577 0.9981 -4.0559 -0.0632 3.5487 

2  0.0580 0.9551 -2.7719 0.0219 3.2744 

3  0.0588 0.9587 -3.6771 0.0362 3.0963 

 1
ˆ

R
  -0.0464 0.8732 -2.7285 -0.0289 2.2709 

 2
ˆ

R
  0.0667 0.9377 -2.5370 0.0777 2.8124 

 3
ˆ

R
  0.0674 0.9596 -2.8723 0.0608 2.9448 

 1
ˆ

B
  -0.0678 0.7453 -2.6444 -0.0495 1.6537 

 2
ˆ

B
  0.0664 0.9357 -2.5360 0.0731 2.8014 

 3
ˆ

B
  0.0515 0.8537 -2.3207 -0.0259 2.9458 

 1
ˆ

AR
  -0.0255 0.7145 -2.0476 0.0212 1.7308 

 2
ˆ

AR
  0.0825 0.9919 -2.8877 0.0375 2.7625 

 3
ˆ

AR
  0.0833 0.9746 -2.8833 0.0524 2.9632 

1  0.0556 1.0066 -2.7458 0.0520 2.8788 

2  0.0280 1.0326 -2.7819 0.0519 3.2644 

3  0.0487 0.9387 -3.5871 0.0252 3.0853 

 1̂ R
  0.0245 0.6973 -2.1678 0.0281 2.7914 

 2
ˆ

R
  0.0056 0.8367 -2.4270 0.0357 3.7114 

 3
ˆ

R
  0.0016 0.8696 -2.7922 0.0201 3.8348 

 1̂ B
  0.0120 0.6652 -2.0943 0.0194 2.1947 

 2
ˆ

B
  -0.0076 0.9164 -2.280 0.0511 3.1140 

 3
ˆ

B
  -0.0116 0.8287 -2.6807 -0.0149 3.6357 

 1̂ AR
  0.0397 0.6755 -2.5382 0.1114 2.4505 

 2
ˆ

AR
  0.0168 0.9573 -2.5397 0.05764 3.4815 

 3
ˆ

AR
  0.0136 0.8824 -2.7455 0.0406 3.2994 

  0.0174 1.0171 -2.8458 -0.0158 3.1320 

 R
  0.0540 0.9498 -2.6644 0.0199 2.7844 

 B
  0.0687 1.4324 -4.2364 0.0522 4.8513 
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 AR
  0.0454 1.1663 -3.5385 0.0239 4.1907 

 
ˆ

R
  0.0665 0.9367 -2.8276 0.0477 2.9110 

 
ˆ

B
  0.0832 1.4237 -4.3107 0.0190 4.6052 

 
ˆ

AR
  0.0568 1.0996 -3.3556 0.0485 3.9430 

 

It can be seen from Table 5.1 above that the mean of the actual error, say for 𝛿1, was -

0.0577. This was not significantly dissimilar to mean of the estimated errors obtained 

from the Regression, Bartllet’s and Anderson-Rubin methods which were -0.0464, -

0.0678 and -0.0255 respectively. It, thus, can be noted that the measurement error (𝛿1) 

associated with 𝑥 yields negative means which were generally very close. Again, the 

mean (0.0580) of the actual error (𝛿2) did not vary remarkably from the estimated error 

obtained from the Regression, Bartllet’s and Andrson-Rubin which were 0.0667, 0.0664 

and 0.0825 respectively. Thus, the measurement error (𝛿2) for 𝑥 provided positive means 

which were generally close. The same observation could be made for the actual error 𝛿3.  

It was revealing to note that the standard deviation for the actual error (𝛿1) was 0.9981 

which was higher than its counterparts 𝛿2 and 𝛿3 which recorded 0.9551 and 0.9587 

respectively. However, the standard deviation for the estimated error 𝛿1 obtained from 

the Regression estimator was lower than its counterparts obtained from both Bartllet’s 

and Anderson-Rubin methods. Generally, it can be noted the actual error 𝛿3 and its 

equivalent estimated errors obtained from the Regression, Bartllet’s and Anderson-Rubin 

produced higher values across all the descriptive statistics.  

Now, the mean of the actual error (𝜀1) did not differ overwhelmingly from the estimated 

errors obtained from the Regression, Bartllet’s and Anderson-Rubin methods which 

yielded 0.0245, 0.0120 and 0.0397 respectively. It thus can be observed that both the 

actual and estimated errors (associated with 𝑦) yielded positive mean values, except for 
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two of the Bartllet’s estimated errors. Also, the mean of the actual error (𝜀2) did not vary 

so much from the estimated errors obtained from the Regression and Anderson-Rubin 

methods which were 0.0056 and 0.0168 respectively, but differ from the Bartllet’s 

method which was -0.0076. It is worth noting, however, that the three methods yielded 

mean values which were not dissimilar to zero.   

Meanwhile, the standard deviations for the actual error (𝜀2) and its equivalent estimated 

errors recorded higher values whilst the others recorded lower values. Generally, it can 

be observed that both the actual and the estimated errors (𝜀2) yielded higher values for 

all the descriptive statistics as compared to its counterparts obtained from all the three 

estimators. 

Moreover, the means for both the actual and estimated errors of the latent observation 

were all positive, unlike what was observed under the measurement errors. It can be seen 

that the estimated errors yielded means which did not differ so much from one another 

for the Regression and Anderson-Rubin methods, but produced slightly higher means 

under the Bartllet’s estimator. Again, the Bartllet’s estimator recorded higher values in 

all the descriptive statistics than its counterpart estimators. Comparatively, the 

descriptive statistics obtained under the latent component for all the three methods of 

estimators were higher, particularly the standard deviations, than the measurement errors. 
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5.3 Assessing the finite sample properties of a class of residual estimators  

Table 5.2: Average Conditional Bias 

Method of 

Estimation 

Residuals 

𝛅𝟏 𝛅𝟐 𝛅𝟑 𝛆𝟏 𝛆𝟐 𝛆𝟑 𝛇 

Regression 0.000588 

(0.000568) 

0.000411 

(0.000371) 

0.000411 

(0.000448) 

0.000124 

(0.000132) 

0.000868 

(0.000961) 

0.000868 

(0.000101) 

-0.00094 

(-0.0009) 

Bartlett’s 0.000002 

(0.000000) 

0.000010 

(0.000000) 

0.000101 

(0.000010) 

0.000011 

(0.000001) 

0.000001 

(0.000000) 

0.000002 

(0.000001) 

0.00000 

(0.0000) 

Anderson-

Rubin 

0.001083 

(0.000101) 

0.000701 

(0.000699) 

0.000712 

(0.000679) 

0.000144 

(0.000138) 

0.000111 

(0.000101) 

0.000010 

(0.000001) 

-0.00072 

(-0.0007) 

 

From Table 5.2 above, it can be observed that the mean conditional biases of the 

measurement estimated errors were all positive while their counterpart, the latent 

estimated error, yielded negative values, except for the Bartllet’s estimator. It is worth 

noting that both the Regression and Anderson-Rubin estimators yielded mean values 

which did not differ remarkably from the parameter, whether known or unknown. It can 

therefore be reasoned that both estimators reflects a conditional bias for this study but 

that the strength of biasness was so little. Moreover, it was revealing, as observed in the 

methodology (Chapter Four), that the mean values of conditional bias, obtained under 

the Bartllet’s estimator were almost zero when the estimating parameter was both known 

and unknown. Thus, it can be indicated that conditional bias was achieved, to a great 

extent, for this study under the Bartlett’s estimator. 
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Table 5.3: Correlation Structure of the True Residuals and the Estimated 

Residuals when   is known  

Regression method-based estimator 

 
1( )R  2( )R  3( )R  1( )R  2( )R  3( )R  ( )R  

1  0.8274 

(0.0143) 

-0.2460 

(0.0421) 

-0.2405 

(0.0421) 

-0.0664 

(0.0418) 

-0.0410 

(0.0475) 

-0.0411 

(0.0469) 

-0.1334 

(0.0440) 

2  -0.2707 

(0.0419) 

0.9188 

(0.0073) 

-0.1679 

0.0424 

-0.0447 

(0.0437) 

-0.0281 

(0.0450) 

-0.0266 

(0.0451) 

-0.0895 

(0.0474) 

3  -0.2668 

(0.0400) 

-0.1693 

(0.0421) 

0.9189 

(0.0071) 

-0.0480 

(0.0458) 

-0.0263 

(0.0437) 

-0.0305 

(0.0452) 

-0.0945 

(0.0459) 

1  -0.0641 

(0.0417) 

-0.0379 

(0.0430) 

-0.0420 

(0.0450) 

0.8087 

(0.0152) 

-0.2656 

(0.0410) 

-0.2591 

(0.0401) 

0.3995 

(0.0374) 

2  -0.0474 

(0.0453) 

-0.0284 

(0.0455) 

-0.0277 

(0.0467) 

-0.2977 

(0.0406) 

0.9112 

(0.0081) 

-0.1818 

(0.0463) 

0.2785 

(0.0637) 

3  -0.0463 

(0.0460) 

-0.0263 

(0.0462) 

-0.0312 

(0.0441) 

-0.2941 

(0.0391) 

-0.1841 

(0.0454) 

0.9120 

(0.0076) 

0.2844 

(0.0676) 

  -0.1269 

(0.0472) 

-0.0790 

(0.0448) 

-0.0808 

(0.0444) 

0.3892 

(0.0390) 

0.2467 

(0.0437) 

0.2466 

(0.0437) 

0.7925 

(0.0172) 

Bartlett’s method-based estimator 

 
1( )B  2( )B  3( )B  1( )B  2( )B  3( )B  ( )B  

1  0.7052 -0.4118 -0.4065 -0.0001 0.0001 0.0000 -0.1982 

(0.0231) (0.0373) (0.0375) (0.0438) (0.0471) (0.0462) (0.0430) 

2  -0.5037 0.8671 -0.2834 -0.0002 -0.0006 0.0010 -0.1349 

(0.0335) (0.0113) (0.0407) (0.0424) (0.0449) (0.0450) (0.0467) 

3  -0.4999 -0.2851 0.8671 -0.0012 0.0030 -0.0016 -0.1398 

(0.0329) (0.0392) (0.0112) (0.0452) (0.0443) (0.0448) (0.0457) 

1  -0.0004 0.0025 -0.0019 0.7007 -0.4086 -0.4023 0.3942 

(0.0437) (0.0431) (0.0440) (0.0227) (0.0368) (0.0353) (0.0374) 
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2  -0.0016 0.0006 0.0014 -0.5033 0.8662 -0.2829 0.2752 

(0.0458) (0.0463) (0.0472) (0.0341) (0.0117) (0.0436) (0.0644) 

3  -0.0004 0.0028 -0.0023 -0.5016 -0.2864 0.8674 0.2814 

(0.0466) (0.0468) (0.0436) (0.0317) (0.0426) (0.0110) (0.0659) 

  -0.0002 0.0010 -0.0008 -0.0052 0.0028 0.0032 0.7820 

(0.0466) (0.0456) (0.0454) (0.0469) (0.0463) (0.0462) (0.0182) 

Anderson Rubin method-based estimator 

 
1( )AR  2( )AR  3AR  1( )AR  2( )AR  3( )AR  ( )AR  

1  0.7540 -0.3400 -0.3350 0.0820 0.0504 0.0502 -0.2499 

(0.0195) (0.0404) (0.0396) (0.0427) (0.0473) (0.0463) (0.0420) 

2  -0.3938 0.8871 -0.2323 0.0585 0.0355 0.0368 -0.1711 

(0.0394) (0.0098) (0.0410) (0.0442) (0.0448) (0.0446) (0.0459) 

3  -0.3915 -0.2351 0.8871 0.0558 0.0377 0.0334 -0.1758 

(0.0369) (0.0404) (0.0095) (0.0450) (0.0436) (0.0452) (0.0453) 

1  0.0848 0.0533 0.0492 0.7599 -0.3067 -0.3003 0.3813 

(0.0418) (0.0436) (0.0446) (0.0185) (0.0399) (0.0393) (0.0376) 

2  0.0581 0.0362 0.0371 -0.3489 0.8902 -0.2112 0.2663 

(0.0459) (0.0456) (0.0472) (0.0398) (0.0095) (0.0456) (0.0630) 

3  0.0605 0.0391 0.0343 -0.3455 -0.2137 0.8911 0.2724 

(0.0463) (0.0473) (0.0434) (0.0385) (0.0449) (0.0091) (0.0637) 

  0.1683 0.1018 0.1003 0.2697 0.1707 0.1710 0.7565 

(0.0455) (0.0449) (0.0445) (0.0421) (0.0449) (0.0445) (0.0201) 
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Table 5.4: Correlation Structure of the True Residuals and the Estimated 

Residuals when   is Unknown 

Regression method-based estimator 

 
1( )
ˆ

R  2( )
ˆ

R  3( )
ˆ

R  1( )
ˆ

R  2( )
ˆ

R  3( )
ˆ

R  ( )
ˆ

R  

1  0.8243 

(0.0148) 

-0.2442 

(0.0301) 

-0.2388 

(0.0307) 

-0.0664 

(0.0547) 

-0.0408 

(0.0524) 

-0.0414 

(0.0506) 

-0.1319 

(0.0255) 

2  -0.2695 

(0.0264) 

0.9165 

(0.0076) 

-0.1692 

(0.0297) 

-0.0421 

(0.0662) 

-0.0262 

(0.0538) 

-0.0249 

(0.0551) 

-0.0927 

(0.0182) 

3  -0.2666 

(0.0263) 

-0.1712 

(0.0316) 

0.9167 

(0.0074) 

-0.0504 

(0.0667) 

-0.0277 

(0.0534) 

-0.0324 

(0.0550) 

-0.0927 

(0.0181) 

1  -0.0630 

(0.0543) 

-0.0375 

(0.0463) 

-0.0415 

(0.0490) 

0.8055 

(0.0156) 

-0.2658 

(0.291) 

-0.2621 

(0.0302) 

0.3995 

(0.0636) 

2  -0.0476 

(0.0631) 

-0.0287 

(0.0511) 

-0.0279 

(0.0537) 

-0.2961 

(0.0246) 

0.9087 

(0.0084) 

-0.1825 

(0.0281) 

0.2785 

(0.0637) 

3  -0.0474 

(0.0625) 

-0.0243 

(0.0528) 

-0.0325 

(0.0525) 

-0.2945 

(0.0249) 

-0.1842 

(0.0290) 

0.9095 

(0.0079) 

0.2844 

(0.0676) 

  -0.1268 

(0.0395) 

-0.0797 

(0.0409) 

-0.0815 

(0.0410) 

0.3880 

(0.0324) 

0.2458 

(0.0312) 

0.2422 

(0.0310) 

0.7872 

(0.0176) 

Bartlett’s method-based estimator 

 
1( )
ˆ

B  2( )
ˆ

B  3( )
ˆ

B  1( )
ˆ

B  2( )
ˆ

B  3( )
ˆ

B  ( )
ˆ

B  

1  0.7023 -0.4058 -0.4008 -0.0005 0.0005 0.0004 -0.1956 

(0.0456) (0.0339) (0.0342) (0.0438) (0.0473) (0.0457) (0.0379) 

2  -0.4980 0.8629 -0.2856 -0.0007 -0.0010 0.0006 -0.1350 

(0.0407) (0.0274) (0.0434) (0.0426) (0.0450) (0.0449) (0.0427) 

3  -0.4961 -0.2879 0.8630 -0.0014 0.0028 -0.0019 -0.1404 

(0.0429) (0.0441) (0.0284) (0.0455) (0.0442) (0.0448) (0.0423) 

1  -0.0010 0.0016 -0.0024 0.6980 -0.4042 -0.4021 0.3935 

(0.0442) (0.0436) (0.0443) (0.0409) (0.0210) (0.0293) (0.0638) 

2  -0.0020 0.0002 0.0010 -0.4980 0.8638 -0.2824 0.2752 

(0.0463) (0.0461) (0.0471) (0.0354) (0.0230) (0.0347) (0.0644) 

3  -0.0010 0.0025 -0.0026 -0.4994 -0.2847 0.8624 0.2814 

(0.0464) (0.0469) (0.0434) (0.0345) (0.0369) (0.0251) (0.0659) 

-0.0014 0.0010 -0.0016 -0.0022 0.0076 0.0007 0.7771 
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  
(0.0468) (0.0457) (0.0453) (0.0624) (0.0480) (0.0540) (0.0214) 

Anderson Rubin method-based estimator 

 
1( )
ˆ

AR  2( )
ˆ

AR  
3

ˆ
AR  1( )

ˆ
AR  2( )

ˆ
AR  3( )

ˆ
AR  ( )

ˆ
AR  

1  0.7520 -0.3362 -0.3314 0.0814 0.0504 0.0502 -0.2499 

(0.0218) (0.0441) (0.0431) (0.0490) (0.0473) (0.0463) (0.0420) 

2  -0.3877 0.8799 -0.2392 0.0590 0.0355 0.0368 -0.1711 

(0.0460) (0.0235) (0.0454) (0.0503) (0.0448) (0.0446) (0.0459) 

3  -0.3870 -0.2421 0.8796 0.0564 0.0377 0.0334 -0.1758 

(0.0466) (0.0469) (0.0284) (0.0508) (0.0436) (0.0452) (0.0453) 

1  0.0850 0.0546 0.0506 0.7578 -0.3067 -0.3003 0.3813 

(0.0488) (0.0486) (0.0492) (0.0200) (0.0399) (0.0393) (0.0376) 

2  0.0578 0.0368 0.0378 -0.3421 0.8902 -0.2112 0.2663 

(0.0506) (0.0483) (0.0494) (0.0472 (0.0095) (0.0456) (0.0630) 

3  0.0609 0.0404 0.0357 -0.3417 -0.2137 0.8911 0.2724 

(0.0527) (0.0498) (0.0461) (0.0484) (0.0449) (0.0091) (0.0637) 

  0.1684 0.1042 0.1032 0.2752 0.1707 0.1710 0.7565 

(0.0638) (0.0569) (0.0568) (0.0603) (0.0449) (0.0445) (0.0201) 

 

It can be noted from Tables 5.3 and 5.4 above, that generally there were mean association 

among the actual estimated errors and the estimated errors off the main diagonal. 

Univocality, and for that matter validity, ideally would be achieved whenever the mean 

correlations computed for known parameter was as much close to its unknown parameter. 

The outcome, as contained in both tables 5.3 and 5.4, mirror the results obtained in the 

methodology (Chapter four), which indicated that none of the estimators, for all the three 

applied in this study, was univocally sound or satisfied. More so, all the actual estimated 

errors associated with so many non-equivalent estimated errors. 
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Also, the measurement error components which loaded the same factors for estimated 

errors associated negatively for all the estimators.  Meanwhile, the Bartlett’s estimator 

yielded an average of a better degree of association of values of about -0.49 compared to 

the Regression estimator which recorded a rather low mean association values of about -

0.25. Again, for all the actual and estimated residuals, there were no associations among 

the components loaded on ono-equivalent factors for the measurement errors as they were 

not dissimilar to zero. Thus it can be indicated that the matter of non-validity was 

attributable to components on equivalent factors other than the non-equivalent factors. 

Moreover, the Bartlett’s estimator produced mean associations where the estimated errors 

linked to the measurement errors were not correlated with actual construct error. It was 

however revealing to observe that the actual construct errors were associated with the 

estimated parameters of the measurement errors for both Anderson-Rubin and the 

Regression methods, which affirmed the case observed in the methodology, but deemed to 

have recorded rather very low associations for the measurement errors that loaded on the 

exogenous manifest component and the construct errors. Thus, there exist somewhat 

moderate association between the actual manifest errors and the estimated errors linked to 

the measurement error components which loaded on the endogenous construct 

observations. 

Again, very low negative associations were observed between the measurement errors 

which were linked to the components connecting to the exogenous construct observations 

and its estimated residuals of the construct errors. Moreover, there were somewhat 

moderate association between the estimated errors (residuals) for the construct errors and 

the measurement errors of components connecting to endogenous construct observations. 

Hence, the outcome on the univocality concept reflects what was obtained in the 
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theoretical computation or methodology. This indicates that there were, to a very little 

extent, issues of non-validity.           

 

5.4 Using Residual Estimators to Detect Outliers and Influential Observations 

Generally, the observations plotted lie within a uniform horizontal scale in each quartile. 

Slight deviations from the quantile horizontal scale shows evidence of an outlier. 

However, observations that depart farther away from the uniform horizontal scale 

indicates evidence of potential influential observation. The QQ plots proposed in this 

study differs from other methods based on the estimated residuals of the measurement 

errors in detecting potential outliers and influential observations at the overall model 

level. 

 

Figure 5.1: QQ plot for Anderson-Rubin based method 

It can be noticed from Figure 5.1 above, based on the Anderson-Rubin method, that there 

was evidence of an influential observation within the first quartile (25th). Again, in the 

second quartile (50th) there were evidence of outliers which are observations deemed to 

lie close, about 0.5cm, to the horizontal plane whereas the observation which lie farther 

100.0% maximum 10 

99.5%  10 

97.5%  10 

90.0%  8.9 

75.0% quartile 7.5 

50.0% median 5.4 

25.0% quartile 2.9 

10.0%  1.25 

2.5%  1.25 

0.5%  1.25 

0.0% minimum 1.25 
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away from the horizontal plane were identified as influential observation within the 

median. Also, there were evidence of both outliers and influential observations in the 

third quartile (75th). In the last quartile, observations can be seen lying almost on the 

horizontal plane and others lying within the 0.5cm distance which were all deemed to be 

outliers with some few observations found to lie outside the reference distance or father 

away from the horizontal plane and a such were deemed to be influential observations.  

 

Figure 5.2: QQ plot for data in Anderson-Rubin based method 

From the Anderson-Rubin method, as can be seen in Figure 5.2 above when real data 

was utilized, that there was evidence of an influential observation within the first quartile 

(25th). However, no outlier observation was seen in the 25th quartile. Moreover, in the 

50th quartile (median), there were evidence of one outlier which was observation deemed 

to lie close, the horizontal quantile plane whereas the many observations were observed 

as influential observation within the median. Also, there were no evidence of outliers but 

there were some influential observations in the 75th quartile. In the last quartile, 
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observations can be seen lying almost on the horizontal quantile plane and others lying 

outside the 1.5cm distance which were all deemed to be influential observations of the 

real data applied. 

 

Figure 5.3: QQ plot for Bartlett’s based method 

From Figure 5.3 above, based on the Bartlett’s method, that there was no evidence of 

both outliers and influential observations within the first quartile (25th). Meanwhile, the 

second quartile (50th) showed evidence of outliers which are observations deemed to lie 

close, about 0.5cm, to the quantile horizontal plane whereas the observation which lie 

farther away from the quantile horizontal plane were represents the influential 

observations within the median. Also, there were evidence of both outliers and influential 

observations in the third quartile (75th). In the last quartile, observations can be seen lying 

almost on the horizontal plane and others lying within the 0.5cm distance which were all 

deemed to be outliers with some few observations found to lie outside the reference 

100.0% maximum 10 

99.5%  10 

97.5%  9.9999982 

90.0%  9.999998 

75.0% quartile 9.999998 

50.0% median 6.666666 

25.0% quartile 3.333333 

10.0%  0 

2.5%  0 

0.5%  0 

0.0% minimum 0 
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distance or father away from the horizontal plane and a such were deemed to be 

influential observations. 

 

Figure 5.4: QQ plot for data in Bartlett’s based method 

From the Bartlett’s based method, as can be seen in Figure 5.4 above with real data, that 

there was evidence of few outliers and three influential observations within the 25th 

quartile. Again, the 50th quartile showed few outliers and about two influential 

observations. Moreover, in the 75th quartile there were evidence of two outliers which 

were observation deemed to lie close, the quantile horizontal quantile plane with no 

evidence of influential observations within the third quartile.  
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Figure 5.5: QQ plot for Regression based method 

It can be noticed from Figure 5.5 above, based on the regression method, that there was 

evidence of about three outliers and two influential observations within the first quartile 

(25th). Also, the second quartile (50th) showed evidence of two outliers which are 

observations deemed to lie close, about 0.5cm, to the quantile horizontal plane whereas 

the two observations which lie farther away from the quantile horizontal plane were 

identified as influential observations within the median. Also, there were evidence of 

about four outliers and two influential observations in the third quartile (75th).  
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Figure 5.6: QQ plot for data in Regression based method 

From the figure 5.6 above, using real data for the regression based method, it can be seen 

that at the 25th quartile, there were about five observations identified as outliers and two 

observations deemed to be influential variables. In the 50th quartile, only a single 

observation was seen as an outlier and about two observations identified as influential 

within the median. However, it was revealing to note that in the 75th quartile there were 

evidence of five outliers which lie within the close distance to the quantile horizontal 

plane with zero or no influential observation recorded. Again, the fourth quartile showed 

evidence of three observation deemed to be identified as outliers without any influential 

observation. 
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Figure 5.7: Information criteria for QQ plots  

The fitting indices, as indicated in Figure 5.7, for the QQ plot of the various estimation 

methods clearly support the earlier view, based on the QQ plots, that Anderson-Rubin 

based method provides a better visual display for the detection of outliers and influential 

observations. As seen from Figure 5.6, the first plot from left, which represents the 

Anderson-Rubin based method plot shows a smaller AIC, BIC and SABIC as compared 

to Bartlett’s and the Regression based methods which are second and third from left. 

  

5.5 Comparing the EM Method against Other Methods of Residual Estimators 

Determined factor scores were obtained at the preliminary stage in order comprehend the 

impact of the number of components for each manifest observation, type of manifest 

observation indicator association and the estimation technique for the parameters in a 

recursive SEM, mean absolute deviation of the standard error and the overall fitness of 

the equation. 
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The measurement observations of curious errors, manifest component and estimation 

methods for reasons of breaking down and arranging the outcome of the parameters 

considered here was laid out and explained under the circumstances for all four categories 

of estimators being compared.   

 

Table 5.5: Parameter Estimates and Standard Errors of Residual Estimators 

Parameter Regression method Bartlett’s 

method 

Anderson 

Rubin method 

EM method 

𝜹𝟏 0.598 (0.12) 0.599 (0.10) 0.600 (0.10) 0.600 (0.09) 

𝜹𝟐 0.648 (0.14) 0.648 (0.13) 0.649 (0.14) 0.650 (0.14) 

𝜹𝟑 0.699 (0.15) 0.701 (0.13) 0.703 (0.12) 0.700 (0.15) 

𝝐𝟏 0.636 (0.11) 0.637 (0.10) 0.639 (0.10) 0.641 (0.09 )  

𝝐𝟐 0.572 (0.09) 0.573 (0.09) 0.574 (0.09) 0.578 (0.09) 

𝝐𝟑 0.504 (0.09) 0.505 (0.09) 0.507 (0.08) 0.510 (0.08) 

𝜻𝟏 0.407 (0.24) 0.418 (0.19) 0.429 (0.16) 0.432 (0.23) 

Test 

𝜒2 

RMSEA 

p 

SRMR 

CFI 

AIC 

 

28.29 

0.040 

0.205 

0.041 

0.989 

268.466 

 

25.29 

0.026 

0.335 

0.037 

0.994 

259.516 

 

26.82 

0.034 

0.264 

0.038 

0.992 

264.692 

 

57.80 

0.023 

0.001 

0.020 

0.984 

246.317 

 

From Table 5.5 above, it can be seen hat the estimates residual (𝛿3) linked to the 

measurement component recorded the highest estimates with higher standard errors 

across the four estimators whilst computed errors (𝜁1) associated with the manifest 

component recorded the lowest parameter estimates with rather higher values of standard 

errors. Also, on one hand, the estimates obtained under the Bartlett’s method was higher 

than the other two known methods (regression and Anderson-Rubin) whiles the EM, on 
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the other hand, yielded the highest parameter estimates than all the other three methods 

of estimators (Regression, Bartlett’s and Anderson-Rubin). 

 

Again, the Regression method yielded fitness (𝜒2 =28.29; p=0.205, RMSEA=0.040, 

CFI=0.989, SRMR = 0.041) for the study in terms of the estimates obtained for the 

parameters. For the Bartlett’s method, it was observed that the fitness (𝜒2= 25.29, 

p=0.335, RMSEA=0.026, CFI=0.994, SRMR=0.037) were somewhat dissimilar to the 

fitness indices obtained under the regression method. The SRMR stands better for 

purposes of comparison, particularly for a Chi-square distribution. 

 

Also, the Anderson-Rubin method yielded goodness-of-fitness (𝜒2= 26.82, p=0.264, 

RMSEA=0.034, CFI=0.992, SRMR=0.038). It is worth noting that the AIC preferred the 

Bartlett’s estimator over and above the Regression and Anderson Rubin estimators with 

differential values 259.516, 268.466 and 264.692 respectively. This therefore indicates 

somewhat slight heavy tail in the distribution without considering EM method yet. Again, 

to a very large extent, is worth noting that most of the fitness figures and the estimates 

alike (contained in Table 5.5) under all the methods applied here were closer and 

therefore makes choice, a bit trivial, among the three existing estimators utilized in this 

study.  

 

It was however observed that when the EM method was eventually applied to change the 

estimation technique utilized in the other three estimators it yielded higher estimates. The 

EM method produced a fitness indices (𝜒2= 57.80, p< 0.001, RMSEA=0.023, 

CFI=0.984, SRMR=0.020). Close examination of both 𝜒2 and RMSEA indicates a kind 
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of not good fit, though the effect of CFI was pronounced but the SRMR really provided 

a better (supported in literature) fitness as compared to the other three existing methods.   

 

Thus, it means that these methods applied here provided goodness of fitness indices 

which were close to show an obvious choice. Against this backdrop the standard errors 

mirroring the amount of error in estimating the parameters and its equivalent goodness 

of fitness could be utilized to further comprehend the specific residual method estimation 

that produced a better parameter estimate. This therefore supports the choice of Bartlett’s 

and EM as they both recorded minimal standard errors. Also, the comparative fitness of 

the EM method was compared to the other three existing methods. Together, the AIC, 

BIC, and CAIC, strongly preferred the EM method against the other three methods with 

some amount of differentials though.  

 

More so, the estimates shown in Table 5.5 demonstrates that much as the parameters 

were very close for the various estimators, there was an element of robustness in 

Bartlett’s and the EM method in particular. 

 

5.6 Discussions 

It can be noted from Tables 5.3 and 5.4 above, that generally there were mean association 

among the actual estimated errors and the estimated errors off the main diagonal. 

Univocality, and for that matter validity, ideally would be achieved whenever the mean 

correlations computed for known parameter was as much close to its unknown parameter. 

The outcome mirror the results obtained in (Heise & Bohrnstedt 1970; Beauducel & 

Herzberg, 2006; Nussbeck et al, 2006) which indicated that none of the estimators, for 
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all the three applied in this study, was univocally sound or satisfied. More so, all the 

actual estimated errors associated with so many non-equivalent estimated errors. 

 

Also, the measurement error components which loaded the same factors for estimated 

errors associated negatively for all the estimators.  Meanwhile, the Bartlett’s estimator 

yielded an average of a better degree of association compared to the Regression estimator 

which recorded a rather low mean association values corroborates Asparouhov & 

Muthén, (2010b). Again, for all the actual and estimated residuals, there were no 

associations among the components loaded on ono-equivalent factors for the 

measurement errors as they were not dissimilar to zero. Thus it can be indicated that the 

matter of non-validity was attributable to components on equivalent factors other than 

the non-equivalent factors which contradicts some previous studies (Asparouhov & 

Muthén, 2010b; Baldwin & Fellingham, 2013; Hox et al, 2012) as they employed Bayes 

estimation.   

 

Moreover, the Bartlett’s estimator produced mean associations where the estimated 

errors linked to the measurement errors were not correlated with actual manifest error. It 

was however revealing to observe that the actual manifest errors were associated with 

the estimated parameters of the measurement errors for both Anderson-Rubin and the 

Regression methods which supports Asparouhov & Muthén (2010b) but deemed to have 

recorded rather very low associations for the measurement errors that loaded on the 

exogenous manifest component and the manifest errors. Thus, there exist somewhat 

moderate association between the actual manifest errors and the estimated errors linked 

to the measurement error components which loaded on the endogenous manifest 
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observations. These findings mirror the views opined in earlier study by Nussbeck et al 

(2006) which adopted a Monte Carlo approach. 

 

Again, very low negative associations were observed between the measurement errors 

which were linked to the components connecting to the exogenous manifest observations 

and its estimated residuals of the manifest errors affirms the position of Beauducel & 

Herzberg (2006). Moreover, there were somewhat moderate association between the 

estimated errors (residuals) for the manifest errors and the measurement errors of 

components connecting to endogenous manifest observations. Hence, the outcome on the 

univocality concept reflects what was obtained in previous study by Nussbeck et al, 

(2006). 

 

Also, the study applied the group of residual estimators to spot outliers and possible 

controlling observations via uniform horizontal QQ plot. The study implemented the QQ 

plots in SEM using JMP software. The implantation experience supports Sterba and Pek 

(2012) and Yuan and Zhang (2012) who opined that identifying outliers in SEM was 

rarely accessible due to the complexity of modelling, unlike traditional modelling in 

statistics including linear regression models. 

 

Our results showed that the presence of outliers and possible controlling observation 

which affirms the assertion made by Yuan and Zhong (2013) who spotted outliers and 

controlling observations through boxplots. Moreover, it was revealing to note that the 

ease with which outliers and possible controlling observations could be spotted in this 

study, particularly with the Anderson-Rubin technique which contradicts Aguinis et al, 
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(2013) who indicated that only outliers could be identified easily but noting the challenge 

in spotting controlling observations using boxplot under SEM framework. 

 

Also, the present study found Aderson-Rubin technique the most efficient method of 

identifying outliers and possible controlling observations under SEM which corroborates 

the previous studies that utilized general techniques such as Mahalanobis and Cook’s 

distances (Flora et al, 2012; Sterba & Pek, 2012). These residual estimators provided 

parameters and fitness that are insensitive to the influence of outliers and possible 

controlling observations as they were achieved through a robust procedure of estimation 

by assigning weights. Further, the paper affirms the views noted in other studies that 

outliers and possible controlling observations need be of interest in their own right and 

therefore can lead to crucial scientific findings (Aguinis et al, 2013; O’Connell et al, 

2015; Mark & Jiaqi, 2017).  

 

Again, the present study provides a different perspective to spotting outliers and possible 

controlling observations through a uniform horizontal QQ plots approach as was opined 

in earlier methodological works which provided accessible tools to identify outliers and 

possible controlling observations in SEM (Pek & MacCallum, 2011; Sterba & Pek, 2012; 

Mark & Jiaqi, 2017). 

 

It is worth noting that despite the significant contributions of the study, there were some 

limitations that call further studies. To begin with, it should be emphasized that, in the 

current study, we only focused on situations where a small proportion of data is 

partitioned in each quantile, based on the moderate sample sized used. Also, the data 

used in the QQ plot was found to be normal and for that matter further studies could 
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ascertain new way(s) of detecting outliers and controlling observations for a non-normal 

data with the same or similar concept of residual estimators. Corrections for non-

normality such as the Satorra-Bentler procedure which relies on sandwich estimator and 

higher-order moments of the sample data could be adopted as data used under the SEM 

concept often had skewness and kurtosis deviated from those of a normal distribution 

(Mark & Jiaqi, 2017).  
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CHAPTER SIX 

SUMMARY OF FINDINGS, CONCLUSIONS AND RECOMMENDATIONS 

6.1 Introduction 

The main aim of the study was to apply, through simulation, the EM method to examine 

residuals in SEM. This chapter, therefore, entails the summary of the main findings. It 

also draws conclusions based on the objectives of the study and suggested 

recommendations to researchers and for further studies in the area.  

 

6.2 Summary of Main Findings 

To begin with, the mean values of conditional bias, obtained under the Bartllet’s 

estimator were almost zero when the estimating parameter was both known and 

unknown. Thus, it can be indicated that conditional bias was achieved, to a great extent, 

for this study under the Bartlett’s estimator.     

 

Also, the Bartlett’s estimator yielded an average of a better degree of association of values 

compared to the Regression estimator which recorded a rather low mean association 

values. Hence, the outcome on the univocality concept reflects what was obtained in the 

theoretical computation. This indicates that there were, to a very little extent, issues of non-

validity.   

 

Moreover, it is worth noting that the Anderson Rubin method of QQ plot provided a more 

efficient or visual display of spotting outliers and possible controlling observations as 

compared to the other group of estimators. 
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Further, it was revealing to note that the comparative fitness of the Bartlett’s method was 

referred to the other two existing methods (i.e the Regression and Anderson Rubin). 

Together, the AIC, BIC, and CAIC, strongly preferred the EM method against the other 

three methods with some amount of differentials. More so, the estimates demonstrated 

that much as the parameters were very close for the various estimators, there was an 

element of robustness in Bartlett’s and especially the EM method. 

 

6.3 Conclusions  

The main aim of the study was to apply, through simulation, the EM method to examine 

residuals and therefore provide the basis in SEM. To begin with, a group of residual 

estimators were examined in terms of its ability to meet some finite properties of an 

observed data set. Again, the study was specifically aimed at using QQ plots to spot 

outliers and possible controlling observations in a given data. Last but not least, the EM 

method was to be compared against the other three existing estimators in SEM in order 

to ascertain which method estimates better. 

Objective 1  

In conclusion, the results indicate that the mean values of conditional bias, obtained under 

the Bartllet’s estimator were almost zero when the estimating parameter was both known 

and unknown. Thus, it can be indicated that conditional bias was achieved, to a great 

extent, for this study under the Bartlett’s estimator. Also, the outcome mirror the results 

obtained in the methodology, which indicated that none of the estimators, for all the three 

applied in this study, was univocally sound or satisfied. More so, all the actual estimated 

errors associated with so many non-equivalent estimated errors. Again, very low negative 

associations were observed between the measurement errors which were linked to the 

components connecting to the exogenous manifest observations and its estimated residuals 
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of the manifest errors. Moreover, there were somewhat moderate association between the 

estimated residuals for the manifest errors and the measurement errors of components 

connecting to endogenous manifest observations. Hence, the outcome on the univocality 

concept reflects what was obtained in the theoretical computation. This indicates that there 

were, to a very little extent, issues of non-validity.           

Objective 2 

It can be deduced from the results on the various simulation of QQ plots that all these 

methods demonstrated the ability to spot outliers and possible influential observation 

under the SEM concept. It is worth noting that the AR method of QQ plot provided a 

more efficient or visual display of spotting outliers and possible influential observations 

as compared to the other group of estimators. This, therefore, can be deemed as an 

efficient way of expanding the Cook’s method of spotting outliers and influential 

observation with the uniform horizontal QQ plot under the SEM concept.  

Objective 3 

It was unclear and difficult in arriving at a definite decision in terms of which residual 

estimator yielded better residual parameter estimates based on the model fit indices since 

the strength of one residual estimator may be the weakness of the other. It was worth 

noting that the Bartlett’s estimator was preferred over and above the Regression and 

Anderson Rubin estimators with differential values. This therefore indicates somewhat 

slight heavy tail in the distribution without considering EM method yet. Again, to a very 

large extent, is worth noting that most of the fitness figures and the estimates under all 

the methods applied here were closer and therefore makes choice, a bit trivial, among the 

three existing estimators utilized in this study. The comparative fitness of the Bartlett’s 

method was referred to the other two existing methods (i.e the Regression and Anderson 
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Rubin). Together, the EM method was strongly preferred against the other three methods 

with some amount of differentials. It is therefore worth noting that this present study 

contribution to knowledge is demonstration of the fact that EM method could be a better 

residual estimator within the SEM concept compared to other existing methods. 

  

6.4 Recommendations 

To begin with, attention must be given when developing residual diagnostics and tests to 

account for the lack of structure and univocality to ensure the validity of finite properties 

diagnostics and tests. 

 

Again, the Anderson-Rubin method of estimator are conditionally biased and should be 

utilized whenever this property is to be ascertained under the SEM concept.  

 

Moreover, the uniform scale QQ plots, in particular, the Anderson-Rubin method, in 

detecting outliers and potential influential observations in SEM concept is comparatively 

better.  

 

 Further, the Bartlett’s method of estimator could be utilized whenever the structure for 

model is to be ascertained in SEM as it yielded better association among the other group 

of estimators.  

 

Finally, the EM method could be employed for estimating residuals in SEM since it was 

deemed to provide better residual estimates as opposed to the other methods of 

estimators.  
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Future Works 

Based on this current research, further expansion of the residual plots and Cook’s 

distance to examine the behavior of the residual estimators under data contamination 

would necessary.  

 

As the impact of outliers and controlling observations on fitness could be dissimilar 

based on the kind of SEM, complex models, and estimation, later research could improve 

upon the simulation circumstances in order to get other sides of the study covered. 

 

Also, it should be determined if there are alternative ways, other than orthogonality, as 

was required for Anderson-Rubin method in SEM concept.  

 

Again, later research should look at the plausibility for a hypothesized model to have 

more exogenous manifest components than endogenous manifest components. 

 

More so, subsequent studies could utilized derivation of properties of the estimators 

theoretically should there be issues of violations in any assumption.  

 

Further, later research could utilized much more small samples to observe the behavior 

of estimates and model fit indices as it turns to impact negatively on these indices given 

that it is a Chi-square distribution. 

 

Finally, similar residual SEM studies should be developed and implemented in R since 

SAS and JMP are commercial software and often expensive to procure or obtain for such 

analysis.  
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Contribution to Knowledge  

The simulation of uniform scale QQ plots, through the various residual estimators, to 

detect outliers and influential observations extends Cook’s distance within the SEM 

framework. 

 

Again, the simulation of EM method which was achieved by using a split or stepwise 

estimation procedure to obtain better residual estimates against other residual estimators 

(Regression, Bartlett’s and Anderson Rubin methods) is, to the best of my knowledge, 

unprecedented and therefore provides a different method of estimating residual 

parameters within the SEM framework. 
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APPENDIX B 

The SAS System 

 
The MEANS Procedure 

Variable N Mean Std Dev Minimum Maximum 

id 

y1 

y2 

y3 

y4 

y5 

y6 

y7 

y8 

x1 

x2 

x3 

poutlier 
 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 
 

41.6800000 

5.7993333 

4.2506651 

6.5186658 

4.4969775 

5.1488889 

3.0098815 

6.1538963 

4.0708684 

5.0136142 

4.7986681 

3.5662491 

1.2133333 
 

37.6309102 

3.6795223 

3.9488139 

3.3019791 

3.3565237 

2.6013855 

3.3554722 

3.3456306 

3.2291615 

0.8570500 

1.5069082 

1.4045131 

3.0944298 
 

1.0000000 

1.2500000 

0 

0 

0 

0 

0 

0 

0 

1.1166660 

1.3862940 

1.0016740 

0 
 

304.0000000 

28.0000000 

9.9999980 

10.0000000 

10.0000000 

10.0000000 

9.9999980 

9.9999980 

10.0000000 

6.7369670 

7.8720740 

6.4245910 

13.0000000 
 

 

 
The SAS System 

 
The MEANS Procedure 

Variable N Mean Std Dev Minimum Maximum 

id 

y1 

y2 

y3 

y4 

y5 

y6 

y7 

y8 

x1 

x2 

x3 

poutlier 
 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 
 

1.913728E-14 

-2.36848E-17 

-1.40332E-15 

-3.76588E-15 

-6.75016E-16 

9.473903E-17 

-1.58096E-15 

-3.75403E-15 

2.250052E-16 

3.067176E-15 

-1.3974E-15 

-6.36528E-16 

-2.60532E-16 
 

37.6309102 

3.6795223 

3.9488139 

3.3019791 

3.3565237 

2.6013855 

3.3554722 

3.3456306 

3.2291615 

0.8570500 

1.5069082 

1.4045131 

3.0944298 
 

-40.6800000 

-4.5493333 

-4.2506651 

-6.5186658 

-4.4969775 

-5.1488889 

-3.0098815 

-6.1538963 

-4.0708684 

-3.8969482 

-3.4123741 

-2.5645751 

-1.2133333 
 

262.3200000 

22.2006667 

5.7493329 

3.4813342 

5.5030225 

4.8511111 

6.9901165 

3.8461017 

5.9291316 

1.7233528 

3.0734059 

2.8583419 

11.7866667 
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The SAS System 

 
The CALIS Procedure 

Covariance Structure Analysis: Model and Initial Values 

Modeling Information 

Maximum Likelihood Estimation 

Data Set WORK.STANPOLDEM 

N Records Read 100 

N Records Used 100 

N Obs 100 

Model Type PATH 

Analysis Covariances 

 

Variables in the Model 

Endogenous Manifest x1 x2 x3 y1 y2 y3 y4 y5 y6 y7 y8 

  Latent poldem60 poldem65 

Exogenous Manifest   

  Latent ind60 

Number of Endogenous Variables = 13 

Number of Exogenous Variables = 1 

 

Initial Estimates for PATH List 

Path Parameter Estimate 

ind60 ===> x1   1.00000 

ind60 ===> x2 lambda2 . 

ind60 ===> x3 lambda3 . 

poldem60 ===> y1   1.00000 

poldem60 ===> y2 lambda5 . 

poldem60 ===> y3 lambda6 . 

poldem60 ===> y4 lambda7 . 

poldem65 ===> y5   1.00000 

poldem65 ===> y6 lambda9 . 

poldem65 ===> y7 lambda10 . 

poldem65 ===> y8 lambda11 . 

ind60 ===> poldem60 gamma11 . 

ind60 ===> poldem65 gamma21 . 

poldem60 ===> poldem65 beta21 . 
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Initial Estimates for Variance Parameters 

Variance 

Type 

Variable Parameter Estimate 

Exogenous ind60 phi11 . 

Error poldem60 psi11 . 

  poldem65 psi22 . 

  x1 thetadelta11 . 

  x2 thetadelta22 . 

  x3 thetadelta33 . 

  y1 thetaeps11 . 

  y2 thetaeps22 . 

  y3 thetaeps33 . 

  y4 thetaeps44 . 

  y5 thetaeps55 . 

  y6 thetaeps66 . 

  y7 thetaeps77 . 

  y8 thetaeps88 . 

 

Initial Estimates for Covariances Among Errors 

Error of Error of Parameter Estimate 

y1 y5 thetaeps15 . 

y2 y6 thetaeps26 . 

y3 y7 thetaeps37 . 

y4 y8 thetaeps48 . 

y2 y4 thetaeps24 . 

y6 y8 thetaeps68 . 
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The SAS System 

 
The CALIS Procedure 

Covariance Structure Analysis: Descriptive Statistics 

Simple Statistics 

Variable Mean Std Dev 

y1 0 3.67952 

y2 0 3.94881 

y3 0 3.30198 

y4 0 3.35652 

y5 0 2.60139 

y6 0 3.35547 

y7 0 3.34563 

y8 0 3.22916 

x1 0 0.85705 

x2 0 1.50691 

x3 0 1.40451 

 
 

 
The SAS System 

 
The CALIS Procedure 

Covariance Structure Analysis: Optimization 

Initial Estimation Methods 

1 Instrumental Variables Method 

2 McDonald Method 

3 Two-Stage Least Squares 

 

Optimization Start 

Parameter Estimates 

N Parameter Estimate Gradient 

1 lambda2 2.01288 -0.04100 

2 lambda3 1.61197 -0.08009 

3 lambda5 1.39168 -0.02555 

4 lambda6 1.01635 -0.06782 

5 lambda7 1.45850 -0.03016 

6 lambda9 1.25560 0.05569 

7 lambda10 1.32677 0.10023 
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Optimization Start 

Parameter Estimates 

N Parameter Estimate Gradient 

8 lambda11 1.35445 -0.03200 

9 gamma11 1.16533 -0.03268 

10 gamma21 0.50643 0.05010 

11 beta21 0.85790 0.26609 

12 phi11 0.53396 0.00887 

13 psi11 3.75732 0.01550 

14 psi22 0.25538 -0.13875 

15 thetadelta11 0.20058 -1.22852 

16 thetadelta22 0.10735 -0.12016 

17 thetadelta33 0.58520 0.20143 

18 thetaeps11 9.05646 -0.0002096 

19 thetaeps22 6.91171 0.00463 

20 thetaeps33 6.27284 0.00322 

21 thetaeps44 1.73107 -0.03792 

22 thetaeps55 2.53518 -0.01754 

23 thetaeps66 4.58725 -0.00584 

24 thetaeps77 3.74358 -0.03508 

25 thetaeps88 2.66364 -0.00261 

26 thetaeps15 0.25456 -0.03118 

27 thetaeps26 2.09001 -0.01324 

28 thetaeps37 1.66880 0.00832 

29 thetaeps48 -0.27790 -0.05450 

30 thetaeps24 0.35598 -0.01342 

31 thetaeps68 0.93788 -0.03419 

Value of Objective Function = 1.174826315 
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The SAS System 

 
The CALIS Procedure 

Covariance Structure Analysis: Optimization 

Levenberg-Marquardt Optimization 

Scaling Update of More (1978) 

Parameter Estimates 31 

Functions (Observations) 66 

 

Optimization Start 

Active Constraints 0 Objective Function 1.174826315 

Max Abs Gradient Element 1.2285182449 Radius 5.5804208865 

 

Iteration   Restarts Function 

Calls 

Active 

Constraints 

  Objective 

Function 

Objective 

Function 

Change 

Max Abs 

Gradient 

Element 

Lambda Ratio 

Between 

Actual 

and 

Predicted 

Change 

1   0 4 0   1.06421 0.1106 0.0495 0 0.881 

2   0 6 0   1.06190 0.00231 0.00911 0 0.835 

3   0 8 0   1.06174 0.000166 0.00276 0 0.720 

4   0 10 0   1.06172 0.000018 0.00103 0 0.664 

5   0 12 0   1.06172 2.324E-6 0.000365 0 0.627 

6   0 14 0   1.06172 3.411E-7 0.000149 0 0.608 

7   0 16 0   1.06172 5.38E-8 0.000058 0 0.599 

8   0 18 0   1.06172 8.794E-9 0.000024 0 0.595 

9   0 20 0   1.06172 1.463E-9 9.835E-6 0 0.592 

 
 
 
 

Optimization Results 

Iterations 9 Function Calls 23 

Jacobian Calls 11 Active Constraints 0 

Objective Function 1.0617167208 Max Abs Gradient Element 9.834553E-6 

Lambda 0 Actual Over Pred Change 0.5924978695 

Radius 0.0002413858     

 

Convergence criterion (GCONV=1E-8) satisfied. 
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The SAS System 

 
The CALIS Procedure 

Covariance Structure Analysis: Maximum Likelihood Estimation 

Fit Summary 

Modeling Info Number of Observations 100 

  Number of Variables 11 

  Number of Moments 66 

  Number of Parameters 31 

  Number of Active Constraints 0 

  Baseline Model Function Value 8.7109 

  Baseline Model Chi-Square 644.6058 

  Baseline Model Chi-Square DF 55 

  Pr > Baseline Model Chi-Square <.0001 

Absolute Index Fit Function 1.0617 

  Chi-Square 78.5670 

  Chi-Square DF 35 

  Pr > Chi-Square <.0001 

  Elliptic Corrected Chi-Square 0.8351 

  Pr > Elliptic Corr. Chi-Square 1.0000 

  Z-Test of Wilson & Hilferty 3.9621 

  Hoelter Critical N 47 

  Root Mean Square Residual (RMR) 0.3393 

  Standardized RMR (SRMR) 0.0624 

  Goodness of Fit Index (GFI) 0.8645 

Parsimony Index Adjusted GFI (AGFI) 0.7445 

  Parsimonious GFI 0.5502 

  RMSEA Estimate 0.1297 

  RMSEA Lower 90% Confidence Limit 0.0914 

  RMSEA Upper 90% Confidence Limit 0.1681 

  Probability of Close Fit 0.0009 

  ECVI Estimate 2.0617 

  ECVI Lower 90% Confidence Limit 1.7543 

  ECVI Upper 90% Confidence Limit 2.4951 

  Akaike Information Criterion 140.5670 

  Bozdogan CAIC 243.4092 
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Fit Summary 

  Schwarz Bayesian Criterion 212.4092 

  McDonald Centrality 0.7479 

Incremental Index Bentler Comparative Fit Index 0.9261 

  Bentler-Bonett NFI 0.8781 

  Bentler-Bonett Non-normed Index 0.8839 

  Bollen Normed Index Rho1 0.8085 

  Bollen Non-normed Index Delta2 0.9285 

  James et al. Parsimonious NFI 0.5588 

 

 
The SAS System 

 
The CALIS Procedure 

Covariance Structure Analysis: Maximum Likelihood Estimation 

PATH List 

Path Parameter Estimate Standard 

Error 

t Value Pr > |t| 

ind60 ===> x1   1.00000       

ind60 ===> x2 lambda2 2.17437 0.22259 9.7685 <.0001 

ind60 ===> x3 lambda3 1.77491 0.20174 8.7980 <.0001 

poldem60 ===> y1   1.00000       

poldem60 ===> y2 lambda5 1.38908 0.30432 4.5645 <.0001 

poldem60 ===> y3 lambda6 1.06516 0.23876 4.4611 <.0001 

poldem60 ===> y4 lambda7 1.44005 0.28460 5.0599 <.0001 

poldem65 ===> y5   1.00000       

poldem65 ===> y6 lambda9 1.20005 0.17861 6.7187 <.0001 

poldem65 ===> y7 lambda10 1.29162 0.17395 7.4253 <.0001 

poldem65 ===> y8 lambda11 1.31569 0.16995 7.7414 <.0001 

ind60 ===> poldem60 gamma11 1.41058 0.45097 3.1279 0.0018 

ind60 ===> poldem65 gamma21 0.53328 0.25888 2.0600 0.0394 

poldem60 ===> poldem65 beta21 0.83824 0.17383 4.8221 <.0001 
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Variance Parameters 

Variance 

Type 

Variable Parameter Estimate Standard 

Error 

t Value Pr > |t| 

Exogenous ind60 phi11 0.46503 0.11475 4.0527 <.0001 

Error poldem60 psi11 3.48278 1.38415 2.5162 0.0119 

  poldem65 psi22 0.45677 0.29808 1.5323 0.1254 

  x1 thetadelta11 0.26950 0.05010 5.3788 <.0001 

  x2 thetadelta22 0.07216 0.10799 0.6682 0.5040 

  x3 thetadelta33 0.50766 0.11042 4.5974 <.0001 

  y1 thetaeps11 9.15236 1.60718 5.6947 <.0001 

  y2 thetaeps22 6.90213 1.53367 4.5004 <.0001 

  y3 thetaeps33 5.94858 1.10361 5.3901 <.0001 

  y4 thetaeps44 2.12191 0.91001 2.3317 0.0197 

  y5 thetaeps55 2.52335 0.51396 4.9096 <.0001 

  y6 thetaeps66 5.00644 0.95592 5.2373 <.0001 

  y7 thetaeps77 4.01480 0.82650 4.8576 <.0001 

  y8 thetaeps88 3.02432 0.73435 4.1184 <.0001 

 

Covariances Among Errors 

Error of Error of Parameter Estimate Standard 

Error 

t Value Pr > |t| 

y1 y5 thetaeps15 0.62545 0.65457 0.9555 0.3393 

y2 y6 thetaeps26 2.25128 0.77074 2.9209 0.0035 

y3 y7 thetaeps37 1.68137 0.72929 2.3055 0.0211 

y4 y8 thetaeps48 0.14767 0.47015 0.3141 0.7535 

y2 y4 thetaeps24 0.46071 0.85643 0.5379 0.5906 

y6 y8 thetaeps68 1.28783 0.58977 2.1836 0.0290 

 

Squared Multiple Correlations 

Variable Error Variance Total Variance R-Square 

x1 0.26950 0.73453 0.6331 

x2 0.07216 2.27077 0.9682 

x3 0.50766 1.97266 0.7427 

y1 9.15236 13.56042 0.3251 

y2 6.90213 15.40767 0.5520 

y3 5.94858 10.94984 0.4567 
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Squared Multiple Correlations 

Variable Error Variance Total Variance R-Square 

y4 2.12191 11.26309 0.8116 

y5 2.52335 6.79614 0.6287 

y6 5.00644 11.15973 0.5514 

y7 4.01480 11.14302 0.6397 

y8 3.02432 10.42068 0.7098 

poldem60 3.48278 4.40807 0.2099 

poldem65 0.45677 4.27279 0.8931 

 
 
 

 
The SAS System 

 
The CALIS Procedure 

Covariance Structure Analysis: Maximum Likelihood Estimation 

Standardized Results for PATH List 

Path Parameter Estimate Standard 

Error 

t Value Pr > |t| 

ind60 ===> x1   0.79567 0.04711 16.8879 <.0001 

ind60 ===> x2 lambda2 0.98398 0.02430 40.4919 <.0001 

ind60 ===> x3 lambda3 0.86177 0.03670 23.4784 <.0001 

poldem60 ===> y1   0.57015 0.08650 6.5915 <.0001 

poldem60 ===> y2 lambda5 0.74299 0.06903 10.7628 <.0001 

poldem60 ===> y3 lambda6 0.67583 0.07186 9.4043 <.0001 

poldem60 ===> y4 lambda7 0.90089 0.04684 19.2327 <.0001 

poldem65 ===> y5   0.79291 0.05152 15.3893 <.0001 

poldem65 ===> y6 lambda9 0.74255 0.06032 12.3094 <.0001 

poldem65 ===> y7 lambda10 0.79981 0.05029 15.9052 <.0001 

poldem65 ===> y8 lambda11 0.84248 0.04569 18.4394 <.0001 

ind60 ===> poldem60 gamma11 0.45816 0.10354 4.4248 <.0001 

ind60 ===> poldem65 gamma21 0.17593 0.08389 2.0971 0.0360 

poldem60 ===> poldem65 beta21 0.85141 0.06707 12.6945 <.0001 
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Standardized Results for Variance Parameters 

Variance 

Type 

Variable Parameter Estimate Standard 

Error 

t Value Pr > |t| 

Exogenous ind60 phi11 1.00000       

Error poldem60 psi11 0.79009 0.09488 8.3274 <.0001 

  poldem65 psi22 0.10690 0.06793 1.5737 0.1155 

  x1 thetadelta11 0.36690 0.07498 4.8936 <.0001 

  x2 thetadelta22 0.03178 0.04782 0.6644 0.5064 

  x3 thetadelta33 0.25735 0.06326 4.0680 <.0001 

  y1 thetaeps11 0.67493 0.09863 6.8429 <.0001 

  y2 thetaeps22 0.44797 0.10258 4.3669 <.0001 

  y3 thetaeps33 0.54326 0.09713 5.5928 <.0001 

  y4 thetaeps44 0.18840 0.08440 2.2322 0.0256 

  y5 thetaeps55 0.37129 0.08171 4.5442 <.0001 

  y6 thetaeps66 0.44862 0.08959 5.0076 <.0001 

  y7 thetaeps77 0.36030 0.08044 4.4791 <.0001 

  y8 thetaeps88 0.29022 0.07698 3.7699 0.0002 

 
 

Standardized Results for Covariances Among Errors 

Error of Error of Parameter Estimate Standard 

Error 

t Value Pr > |t| 

y1 y5 thetaeps15 0.06515 0.06780 0.9610 0.3366 

y2 y6 thetaeps26 0.17169 0.05796 2.9622 0.0031 

y3 y7 thetaeps37 0.15221 0.06500 2.3418 0.0192 

y4 y8 thetaeps48 0.01363 0.04341 0.3140 0.7535 

y2 y4 thetaeps24 0.03497 0.06508 0.5374 0.5910 

y6 y8 thetaeps68 0.11942 0.05511 2.1671 0.0302 
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