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Abstract
The study examines the effects of adoption of sustainable land management practices on farm households’
technical efficiency (TE) and environmental efficiency, using household-level data from Ghana. We
employ selectivity biased-corrected stochastic production frontier to account for potential bias from both
observed and unobserved factors. The empirical results show that adopters exhibit higher levels of TE and
output, compared with the nonadopters. However, the results reveal that adopters are found to use excess
herbicides that could have adverse environmental consequences. The results also reveal that extension
services and access to credit positively and significantly correlate with TE.
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1. Introduction
The agricultural sector in Ghana is dominated by smallholders cultivating less than 2.5 ha on
average (Ministry of Food and Agriculture (MoFA), 2016). These farmers grow mainly food
and cash crops with low technical and operational efficiencies. They also encounter many chal-
lenges including declining soil fertility, land degradation, and low levels of technology that result
in lower productivity and output, farm incomes, and food security (MoFA, 2016; Nkonya,
Mirzabaev, and von Braun, 2016). To address the low agricultural productivity and environmental
problems, government, with the support of multilateral institutions, has undertaken policies and
initiated projects that aim at conserving agricultural land resources and reducing rural poverty
(MoFA, 2016; Nkonya, Mirzabaev, and von Braun, 2016). Examples of such projects include
the Ghana Environmental Management Project 2004–2009, the National Biodiversity Strategy
and Action Plan 2004, the National Climate Change Policy 2015, and, more recently, the
Ghana Strategic Investment Framework (GSIF) for Sustainable Land Management (SLM) 2011–
2025 (Environmental Protection Agency [EPA], 2011). To accomplish the goals of achieving sus-
tainable food production and poverty reduction, these policies and projects aim at improving
household incomes by promoting SLM practices including the use of cover cropping, crop diver-
sification, and soil and water conservation practices such as stone and soil bunds, minimum till-
age, and organic manures (e.g., Food and Agriculture Organization of the United Nations (FAO),
2011; Zougmore, Jalloh, and Tioro, 2014).
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Thus, promoting productive and efficient use of arable land and other resources is an impor-
tant policy issue that is essential for sustainable food production and poverty alleviation in Ghana.
Some studies have found that adoption of SLM practices contributes to enhanced productivity and
efficiency, as well as carbon sequestration (FAO, 2011; Khanal et al., 2018). Other studies have
indicated that adoption of SLM practices enables farmers to produce enough food even under
climate uncertainty, with yield increases of up to 200% (FAO, 2011; Nkonya, Mirzabaev, and
von Braun, 2016; Zougmore, Jalloh, and Tioro, 2014). However, findings from some studies sug-
gest that adoption of SLM practices leads to a temporary decline in yields and higher poverty,
especially among poor farmers in some parts of sub-Saharan Africa (SSA), resulting in low adop-
tion rates (Kassam et al., 2009; World Bank, 2009). The contrasting findings about the adoption
impacts of SLM suggest the need for further empirical research on the subject. In particular, it is
not quite clear whether it is the adoption of SLM technology that improves efficiency or confound-
ing factors that account for this relationship.

Furthermore, an important issue worth considering in relation to SLM and smallholder crop
production is the recent increase in herbicide use. As part of measures to reduce the drudgery
associated with manual land preparation and weeding, many farmers are increasingly employing
herbicides (Watkins et al., 2018). For example, studies in Ghana have shown that the import of
herbicides into the country grew from 610,000 L in 2008 to more than 22 million L in 2015
(MoFA, 2016). Globally, it has been found that glyphosate-based herbicides account for about
54% of total agricultural herbicides (Coupe and Capel, 2016). Farmers in Ghana use Roundup
(glyphosate-based herbicide) for weed control and sometimes apply it to facilitate drying of plants
for harvesting purposes. It is also employed by many farmers as the main land preparation method
in minimum and zero-tillage farming systems, with significant economic benefits in terms of
reduction in labor costs (Boahen et al., 2007). Although negative externalities because of herbi-
cides and other pesticides use cannot be entirely eliminated, their intensity of use can be mini-
mized through development, dissemination, and promotion of ecologically friendly crop
production technologies (Kurgat et al., 2018). Some studies suggest that SLM practices such as
cover cropping and minimum tillage can be effective in suppressing weed growth and therefore
reducing the use of herbicides in crop production (Price and Norsworthy, 2013). Other studies
suggest that adoption of some SLM practices, such as zero tillage is enhanced through the use of
herbicides (Adnan et al., 2017). In SSA countries, including Ghana, studies that discuss the effects
of adoption of SLM practices on farmers’ technical efficiency (TE) and excess herbicide use (envi-
ronmental inefficiency) are quite rare. Recent findings indicate that the application of herbicides
(Roundup) to control weeds could harm or induce unintended harmful effects on both the envi-
ronment (affecting soil microorganisms and causing water and air pollution) and human health
(Myers et al. 2016). Such findings also suggest that the world’s most widely used herbicide may
have a much greater effect on nontarget species than previously considered (Myers et al., 2016;
Williams et al., 2016).

Our aim in this study is twofold. First, we examine the impact of adoption of SLM technology on
TE, using the stochastic production metafrontier framework while accounting for selection bias
(Greene, 2010; Huang, Huang, and Liu, 2014). Second, we employ data envelopment analysis
(DEA) to derive environmental impact quotient (EIQ) slacks (our proxy for environmental effi-
ciency). We then use fractional regression models (FRMs; Ramalho, Ramalho, and Henriques,
2010) to identify the drivers of technical and environmental efficiency. The determination of the
EIQ is explained in Section 3. We employ recent data from Ghana to realize these research objectives.

Our study fills the gap in studies on the adoption of SLM practices among farm households by
drawing a link between adoption and technical and environmental efficiency. This assessment
may affect policy concerning herbicide use, as well as environmental regulation in general.
The study also contributes to the debate on the role of glyphosate-based herbicides within the
context of conservation agriculture (Myers et al., 2016). Some studies (e.g., FAO, 1986;
Temple and Smith, 1992) have found various reported symptoms, including eye and skin
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irritation, eczema, and respiratory and allergic reactions to be associated with exposure to glyph-
osate. Exposure to excess amounts of glyphosate products in the work environment or through
accidental contacts has also been found to be associated with acute poisoning (Buffin and Jewell,
2001). To the best of our knowledge, this study is among the few or the first in SSA countries that
attempts to assess the relationship between SLM and environmental efficiency, using the excess
EIQ (slacks) of Roundup, one of the most commonly used herbicides.

The rest of the study proceeds as follows. In the next section, we discuss the conceptual and
econometric framework employed in the study. The data and descriptive statistics are discussed in
Section 3. This is followed by the results and discussion (Section 4). The final section presents
conclusions and policy implications (Section 5).

2. Conceptual and econometric framework
Several studies on efficiency in agriculture have shown that inefficiency is a common phenom-
enon among farmers in developing countries (e.g., Abdulai and Huffman, 2000; O’Donnell, Rao,
and Battese, 2008; Solis, Bravo-Ureta, and Quiroga, 2007). In this regard, adoption of SLM prac-
tices may reduce technical inefficiency and production costs and make farms more productive
and sustainable (FAO, 2011). This is necessary to ensure the preservation of energy balance and
the fundamental law of nature concerning energy conservation. The use of herbicides reduces
the energy requirement for weed control and for land preparation in crop production. It also
minimizes the frequency of mechanical tillage and damage to the soil structure. In zero-tillage
systems, chemical herbicides, especially Roundup, and other inputs facilitate adoption (Adnan
et al., 2017). However, this may be achieved at the expense of a high level of glyphosate (the
active ingredient in Roundup herbicide) that is environmentally hazardous (Myers et al.,
2016). Adoption of SLM (e.g., cover cropping, soil and water conservation, mulching, etc.) pro-
motes effective use of soil resources and suppresses weed growth, which can lead to high crop
productivity and a high level of environmental efficiency. As indicated by Lee (2005), although
outputs (such as yields and revenues) of many agricultural systems are often considered in mea-
suring success in terms of household food and livelihood security, sustainable agricultural sys-
tems are often identified by levels and efficiency of input use, which is a major concern for
environmental economists.

On the other hand, some SLM practices that rely on the use of herbicides to control weeds
sometimes result in long-term accumulation of glyphosate and, hence, lead to environmental pol-
lution. In this study, we examine the effect of adoption of SLM practices on TE, as well as the
adoption effect on environmental efficiency measured as excess herbicide EIQ. Although plot-
level analysis of excess EIQ of all pesticides with their active ingredients (AIs) and biological
half-lives would have been the preferred measure of environmental efficiency (Kovach et al.,
1992), we only have data on quantities of Roundup herbicide used by farmers, which we use
to calculate the EIQ. In a DEA framework, excess inputs (input slacks) are indications of ineffi-
ciency (Cooper, Seiford, and Tone, 2007). Thus, in the case of excess EIQ from Roundup, this
would be an indication of environmental inefficiency (see Mal et al., 2011).

It is important to note that sustainable agricultural development encompasses the view that a
healthy production environment (which includes arable land) is key to supporting a vibrant farm-
ing/agricultural sector. Therefore, farming decisions should be made taking into account the pres-
ent and future quality of soil resources in order to ensure continued agricultural development
without decline in value of the environment (Hanley, Shogren, and White, 2007). Ensuring envi-
ronmental quality sometimes conflicts with the immediate welfare objectives of households.
Consequently, many households in developing countries pay less attention to environmental
issues, because their focus is to meet household basic needs, which may involve the use of inputs
that are ecologically harmful (Hanley, Shogren, and White, 2007).
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2.1. Adoption decision

Assume that farmers are risk neutral in their decision to adopt SLM technologies,1 and as such,
compare the expected utilities of adoption (U�

iA) and nonadoption (U�
iN ). Let the latent net utility

for adopters and nonadopters be denoted as A�, such that a utility maximizing household i will
choose to adopt SLM if the utility gained from adopting is greater than the utility of not adopting
(A� � U�

iA � U�
iN > 0�. Given that household utility level is latent and cannot be observed, we

express it as a function of observed adoption behavior and other factors in the following latent
variable model:

A�
i � γZi � ωi withAi � 1 if A� > 0;

0 otherwise
;

�
(1)

where Ai is a dummy indicating the adoption decision, Zi is a vector of explanatory variables, γ is a
vector of parameters to be estimated, and ωi is the error term. The probability that a farmer adopts
the SLM practices can be expressed as follows:

Pr Ai � 1� � � Pr �ωi > � γZi� � 1 � F �γZi� �; (2)

where F is the cumulative distribution function of the error term.
The possibility and ease of farmers switching from nonadoption to adoption is greatly contin-

gent on the capacities and constraints faced by farm households in terms of capital or credit, tech-
nological and biophysical environment, and access to information and existing institutional
environment or issues related to land tenure insecurity (Bezabih, Holden, and Mannberg, 2016).

2.2. Impact of sustainable land management adoption

In this study, we employ stochastic production frontier (SPF) method to estimate the TE and
productivity of food crop farmers with the assumption that farmers either produce food crops
using SLM technology or nonsustainable practices (conventional technology). We start with
the SPF model that is stated as follows:

Yij � f X; A� � � εij; where εij � vij � uij; (3)

where Yij denotes output of farmer i employing technology j; X refers to a vector of inputs and
other environmental variables; and A is as defined earlier. The error term εij is composed of two
parts, the random noise (vij) and the one-sided inefficiency term (uij) (O’Donnell, Rao, and
Battese, 2008). It is essential to note that farmers self-select themselves into adoption and non-
adoption of SLM technology, which implies that sample selectivity bias from both observable and
unobservable factors is an important issue that needs to be addressed. According to Greene (2010),
partitioning of data into subsamples of farmers with different technologies leads to observations
that are no longer random draws from the population, because the observations in each subsample
might depend on the variables influencing adoption of the technology under consideration.
Accounting for sample selectivity bias in this study is therefore necessary to ensure unbiased
and consistent estimates of adoption impacts (Greene, 2010; Villano et al., 2015).

2.3. Sample selectivity–corrected stochastic production frontier

A number of studies have employed SPF approaches to assess productivity and technical efficien-
cies among firms in industry and agriculture (e.g., O’Donnell, Rao, and Battese, 2008; Villano
et al., 2015). However, most of the studies have failed to account for selectivity bias especially

1The SLM technology considered in this study includes a set of land management practices—soil and stone bunds, organic
manure, minimum/zero tillage, and cover cropping. We classify a farmer as an adopter if he/she reported using one or com-
bination of these practices during the last five seasons.
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from unobservable factors (e.g., Khanal et al., 2018; Mal et al., 2011). As indicated by Villano et al.
(2015), failure to account for selectivity bias leads to inconsistent and biased estimates of TE.
Following Villano et al. (2015), we employ the sample selection approach proposed by Greene
(2010) to estimate the impact of adoption of SLM practices on TE among food crop farmers.
This model assumes that the unobserved characteristics in the selection equation (decision to
adopt SLM technology) are correlated with the conventional error term in the stochastic frontier
model. The sample selection SPF model by Greene (2010) is specified as follows:

Ai � 1 γZi � ωi > 0� 	; ωi 
 N 0;1� �; (4)

Yi � ϑXi � εi; εi 
 N�0; σ2
ε�; εi � νi � ui; (5)

where Yi and Xi are observed only when Ai � 1, vi � σvVi with Vi 
 N 0; 1� �,
ui � σuUij j � σu Uij j with Ui 
 N 0; 1� �, and ωi; vi

� � 
 iN2 0; 1� �; 1; ρσv; σ
2
v

� �� �
. Also, Yi denotes

the logarithmic farm revenue of farmer i, Xi is a vector of logarithmic input quantities, Ai is a
binary dummy variable that equals 1 for adopters of SLM practices and 0 otherwise, Zi is a vector
of covariates in the sample selection equation, ϵi is the composed error term of the stochastic
frontier model that includes the conventional error (vi) and inefficiency term (ui), ωi is as defined
earlier, and γ and ϑ are parameters to be estimated. It is assumed that the inefficiency term ui
follows a half-normal distribution with the dispersion parameter σu, whereas ωi and vi follow
a bivariate normal distribution with variances of 1 and σ2

v , respectively. The correlation coefficient,
ρσv (if significant), indicates self-selection bias implying that estimates of the standard SPF model
would be inconsistent (Greene, 2010). The two-stage estimation procedure, as well as the log-
likelihood function of this model, is described in Greene (2010). Thus, two separate selectivity
corrected SPFs are estimated. From the two estimated stochastic frontier models, we can
derive the group-specific TE estimates, TEij � E e�uij ; j � 1; 0

� �
, for adopters and nonadopters,

respectively.
By comparing these TE estimates, we are able to assess whether or not the farm productivity of

adopters or nonadopters is closer to the production frontiers of their respective groups. However,
the group TE estimates alone do not allow for effective comparison of the productivity between
adopters and nonadopters, as this approach does not account for technology differences
(O’Donnell, Rao, and Battese, 2008). The adoption of SLM practices generally results in hetero-
geneous production technologies undertaken by smallholder farmers (Khanal et al., 2018;
O’Donnell, Rao, and Battese, 2008). Such technology differences can be measured by the gap
between the metafrontier and group-specific frontiers. Therefore, we follow the approach of
Huang, Huang, and Liu (2014) to obtain a metafrontier that envelopes the production frontiers
of the two groups of farmers.

2.4. Stochastic metafrontier framework

According to Huang, Huang, and Liu (2014), TE is derived from estimating a production frontier
for each group (adopters and nonadopters) as follows:

Yij � f j Xij;ϑj

� �
evij�uij ; (6)

where Yij denotes the farm revenue and Xij refers to the vector of inputs of the ith farm household
in the jth group, vij is the conventional error term that captures stochastic noise, uij represents
technical inefficiency, and ϑj are parameters to be estimated. It is assumed that vij and uij are
uncorrelated and that uij follows a truncated-normal distribution (Huang, Huang, and Liu,
2014). Consequently, TE derived from the model specific to each household and adoption status
can be stated as
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TEj
i �

Yij

f j Xij;ϑj

� �
evij

� e�uij : (7)

Let f M Xij; ϑj

� �
denote the common metafrontier, which envelops the group frontiers of both

adopters and nonadopters. This is expressed relative to the group frontier as follows:

f j Xij; ϑj

� � � f M Xij; ϑj

� �
e�u

M
ij ; 8 i; j; (8)

where uMij ≥ 0. Thus, f M Xij;ϑj

� � ≥ f j Xij;ϑj

� �
, and therefore, the ratio of the group frontier to the

metafrontier, referred to as the meta-technology gap ratio (TGR), can be expressed as

TGR � f j Xij;ϑj

� �
f M Xij;ϑj

� � � e�u
M
ij ≤ 1: (9)

The TE with respect to the metafrontier production technology f M :� � (MTE) is determined as

MTE � Yij

f M Xij;ϑj

� �
evij

� TGRij × TEij: (10)

Thus, a relatively high average TGR for a specific technology group (e.g., adopters) suggests a
lower technology gap between farmers in that group compared with all available set of production
technologies represented in the all-encompassing production frontier.

2.5. Data envelopment analysis approach and environmental efficiency

In this section, we present the DEA approach for relative productivity efficiency scores, as well as
environmental efficiency analyses (from EIQ slacks). The DEA is a nonparametric method that
enables us to handle multiple inputs and outputs in efficiency analyses. In this study, we employ
an input-output oriented DEA as presented in Ji and Lee (2010). The model uses available data on
K inputs and M outputs for each of the N decision-making units (DMUs) to obtain efficiency
scores and slacks for inputs and output. Input and output vectors are represented by the vectors
xi and yi, respectively, for the ith farm. The data for all farms may be denoted by the K × N input
matrix (X) and M × N output matrix (Y). The envelopment form of the input-oriented DEA
model is specified as follows:

min θ ;λ θ;

subject to: θxi � Xλ ≥ 0; Yλ ≥ yi; λ ≥ 0; (11)

where λ is semipositive vector in Rk, and θ is a DEA efficiency score. An efficiency value (θ) of 1
indicates that the farm is technically efficient. In the DEA procedure, equation (11) is presented as
follows:

min θ ;λ θ;

subject to: θxi � Xλ � s� � 0; Yλ� s� � yi; λ ≥ 0; (12)

where s+, s−, and λ are semipositive vectors (DEA reference weights). Input excesses (s−) and the
output shortfalls (s+) are identified as “slacks” as indicated by Cooper, Seiford, and Tone (2007).
Thus, slacks (s−) in herbicide captured by EIQ can be an indication of environmental inefficiency
(Cooper, Seiford, and Tone, 2007).

2.6. Determinants of technical and environmental efficiency

The choice of regression model for the second-stage of DEA is not a trivial econometric problem,
as the standard ordinary least square (OLS) method is generally considered inappropriate
(Ramalho, Ramalho, and Henriques, 2010). Many previous studies employed the Tobit in the
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second-stage DEA (e.g., Bravo-Ureta et al., 2007) to relate socioeconomic variables to efficiency
scores. To address the problem of inconsistent estimates associated with OLS and Tobit
approaches, Ramalho, Ramalho, and Henriques (2010) proposed FRMs in the second-stage anal-
yses of the determinants of efficiency scores. Contrary to the OLS and Tobit models, the FRM
deals with dependent variables defined on the unit interval, irrespective of whether or not the
boundary value (0, 1) is observed (Papke and Wooldridge, 1996; Ramalho, Ramalho, and
Henriques, 2010). Thus, guided by the preceding arguments, in addition to the fact that FRMs
can be estimated by quasi–maximum likelihood (QML) methods that do not require assumptions
about the distribution of the DEA efficiency scores (Ramalho, Ramalho, and Henriques, 2010), the
present study employs the FRM to assess the determinants of technical and environmental effi-
ciency scores (slacks of EIQ).

From the DEA analysis, we extract the efficiency scores and input slacks that signify inefficien-
cies with respect to input allocation. Let the relationship between the DEA scores (efficiency scores
and slacks of EIQ), DEAEFFi, and a vector of socioeconomic variables be expressed as follows:

DEAEFFi � ϑzi � Γi; (13)

where zi is a vector of explanatory variables, ϑ is a vector of coefficients to be estimated, and Γi is
the error term. As indicated by Solis, Bravo-Ureta, and Quiroga (2007), zi includes managerial
characteristics such as adoption status, experience (age), gender of farmer, access to credit, exten-
sion contacts, off-farm work participation, and the land usufruct right2 operated by the DMU.
Because the DEA scores fall within the boundaries of 0 and 1, we employ FRM to estimate equa-
tion (13). Ramalho, Ramalho, and Henriques (2010) employed the following Bernoulli log-
likelihood specification:

Li β;α� � � yi ln G�ϑzi� �� � 1 � yi
� �

ln 1 � G zi� �� �; (14)

where 0 ≤ yi ≤ 1 denotes the dependent variable equivalent to DEAEFF in our study, and zi is as
defined earlier. Thus, the estimation in equation (13) is well defined for 0 < G(zi) < 1. According
to Papke andWooldridge (1996), the Bernoulli QMLE β or α is consistent and

p
N asymptotically

normal regardless of the distribution of the DEA efficiency scores, yi, conditional on z. Therefore,
the second-stage QML regression used for the empirical analysis is specified as follows:

E�DEAEFFijz� � G ϑzi� �; (15)

where DEAEFFi and zi are as defined previously, and G(.) is the logistic function. We used the
DEA-efficiency scores, as well as the slacks of EIQ, as dependent variables in equation (15). In
this study, we considered different variants of the FRM, particularly the logit, probit, loglog,
and complementary loglog (cloglog) functional specifications (see Ramalho, Ramalho, and
Henriques [2010] for the various specifications). The marginal effects irrespective of the specifi-
cation are stated as @E�yjz�

@zk
(see Ramalho, Ramalho, and Henriques, 2010). The adoption variable,

which is captured as part of zi in equation (15), is potentially endogenous because farmers adopt-
ing SLM practices such as zero tillage or minimum tillage rely mainly on the use of herbicides to
control weeds, and as such, these farmers will tend to generate higher excess EIQ. On the other
hand, lower slacks of EIQ may be associated with nonadopting farmers, as they may be employing
other methods to control weeds. We used Wooldridge’s (2015) control function approach to
address the potential endogeneity of adoption in this context.

In the control function approach, the adoption variable is expressed as function of the rest of
the variables in z, together with an instrument. The generalized residual in the auxiliary probit

2Farm land in the northern savanna agroecological zones is considered a community property, and its use is often governed
by customary rights or usufruct rights, whereby community members have user rights but they cannot own or sell the land (see
Kansanga et al., 2018). Thus, the duration of usufruct right may influence farmer investment and for that matter the efficiency
level of the household.
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regression is retrieved. The adoption variable and the residual are then included as explanatory
variables in equation (15). We used farmers’ perceived vulnerability to drought as an instrument
in the first-stage regression. Farmers’ perceived vulnerability to drought has been found to sig-
nificantly influence their decisions to adopt SLM (Issahaku and Abdulai, 2019; Kurgat et al.,
2018), but vulnerability to drought may not necessarily influence efficiency or EIQ slacks. A sim-
ilar approach was employed to address the potential endogeneity of off-farm work participation.

3. Data and descriptive statistics
The data for this study came from a survey that was conducted in 2016 between June and July in
25 communities across five districts in Ghana (see the supplementary Research Questionnaire). A
multistage random sampling procedure was employed to select and interview 476 households
across three regions: Upper East (UE), Northern Region (NR), and Brong-Ahafo (BA). Based
on agroecology, we selected five districts (Bongo and Talinse in UE, Tolon and Kumbungu in
NR, and Techiman-South in BA). We took into account the land size and farmer population
of the Guinea savanna and put greater weight on the subsample from the NR. Finally, we obtained
203 households for NR, 147 households for UE, and 126 households for BA.

The dependent variable in the household productivity model to be analyzed is the total value of
household food crop production. This variable, measured in Ghanaian cedis (GHS), represents the
sum of households’ crop production (including self-consumption), following the example of Solis,
Bravo-Ureta, and Quiroga (2007) for mixed-crop farming situations. The control variables in the
production function reflect mainly production inputs and farm characteristics (Solis, Bravo-Ureta,
and Quiroga, 2007). Inputs include the area of land cultivated, which is measured in hectares,
labor (value of hired and family labor), and capital inputs (value of fertilizer and seed) also mea-
sured in Ghanaian cedis, as well as the quantity of Roundup herbicide used. In addition, we deter-
mined EIQ values for Roundup based on the quantity (volume, mass) of herbicide used, the active
ingredient (glyphosate),3 and rate of application. This variable is constructed using equation (16),
which has been configured into an online calculator for easy application.

3.1. Glyphosate environmental impact quotient

As noted earlier, the EIQ is regarded as a comprehensive index for assessing pesticides’ risks in
agricultural production systems. The EIQ was developed by Kovach et al. (1992) and captures
three components—namely, farmworker, consumer, and ecological effects—and is calculated
as follows:

EIQ � C DT × 5� � � DT × P� �� 	 � C ×
S� P
2

× SY

� �
� L

	 


� F × R� � � D ×
S� P� �
2

× 3

� �
� Z × P × 3� � � B × P × 5� �

	 

=3 ; (16)

where C is chronic toxicity, DT is dermal toxicity, SY is systemicty, F is fish toxicity, L is leaching
potential, R is surface loss potential, D is bird toxicity, S is soil half-life, Z is bee toxicity, B is
beneficial arthropod toxicity, and P is plant surface half-life. We used the calculated field EIQ4

values as the potentially detrimental input in a DEA approach to estimate efficiency scores

3Roundup usually comes in two strengths called 360 and 480. A 360 label contains 360 grams of glyphosate acid equivalent per
liter (http://www.monsanto-ag.co.uk/roundup/roundup-amenity/application-information/sprayers-and-water-volumes/).

4The calculation was done using the online EIQ calculator of the New York State Integrated Pest Management website
(https://nysipm.cornell.edu/eiq/calculator-field-use-eiq/) based on quantity of weedicide farmers reportedly used in the pre-
vious season.
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and EIQ slacks (our proxy for environmental inefficiency). The EIQ field-use rating is expressed
as EIQfield use � EIQ × AI × rate of application.

Although the study by Peterson and Schleier III (2014) criticized the use of EIQ in environ-
mental impact analyses, partly because of its failure to capture environmental risk as joint prob-
ability of toxicity and exposure, the EIQ is still considered an important single index that captures
various components of pollution and is therefore useful in economic analysis (Veettil, Krishna,
and Qaim, 2017). It is also easy to calculate and can be adapted to different econometric model
applications.

We also captured information on socioeconomic variables including education of household
head, household size, age of household head, membership in a farmers’ group, and access to exten-
sion service. Farmers’ credit constraint5 was measured as a dummy variable to capture access to
credit. A number of studies have found a positive link between farmers’ access to credit and TE
(e.g., Ogundari, 2014; Solis, Bravo-Ureta, and Quiroga, 2007). The descriptions, means, and stan-
dard deviations of variables are presented in Table 1. The mean age of the household head of
adopters and nonadopters is about 40 years, with an average of 5 years of schooling. The reported
mean schooling of both groups in our sample reflects the generally low level of education among
Ghanaian farmers (Ghana Statistical Service [GSS], 2012). The average household size is about six
persons, which reflects the average family size in the study area, as reported by the GSS (2012).

3.2. Analytical strategy

We start with propensity score matching method following Bravo-Ureta et al. (2007) and Villano
et al. (2015). First, a probit model was estimated, using observable farm and household character-
istics in order to generate an adoption propensity score. Information on sociodemographic and
farm characteristics was included in the probit model used for the propensity score matching. We
employed the nearest neighbor matching algorithm with a maximum of five matches and caliper
of 0.01. The matching procedure yielded a sample of 466 matched observations, made up of 307
adopters and 159 nonadopters, respectively. Table A1 in the Appendix presents the descriptive
statistics for the matched and unmatched samples of adopters and nonadopters. As opposed
to the significant differences between adopters and nonadopters in most of the variables in
the unmatched sample, no significant differences in the observed characteristics are found in
the matched sample, an indication that the balancing condition is satisfied (Caliendo and
Kopeinig, 2008). The detailed description of the matching procedure and how it is applied in
SPF analysis is presented in Bravo-Ureta et al. (2007) and Abdul-Rahaman and Abdulai (2018).

We estimated a series of SPF models, including (1) a conventional unmatched pooled sample
model with SLM adoption dummy as an independent variable, (2) a matched sample pooled
model with SLM adoption as an explanatory variable,6 and (3) two SPF models, one for adopters
of SLM and one for nonadopters, using the Greene’s (2010) sample selection model, which cor-
rects for selection bias from both observable and unobservable variables. Preliminary comparisons
led to the rejection of the Cobb-Douglas in favor of the translog (TL) functional form.7 The TL
specification for the stochastic frontier used in our analyses is given as follows:

lnYi � α0 �
X

4
k�1

αklnXik �
1
2

X
4
k�1

αkk lnXik� �2 �
X

4
m�1

X
4
k�1

αiklnXimlnXik

�
X

2
l�1

βllnDl � vi � ui ; (17)

5Credit-constrained farmers are those who failed to obtain any amount or only received part of what they requested.
6This type of estimation corrects for selection bias from observable characteristics only.
7A specification test using the pooled sample showed a chi-square value of 73.57 at 1% significance level, rejecting the Cobb-

Douglas in favor of the translog.
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where Yi represents output (total value of production) of the i th household; Xim, Xik is the quan-
tity of input m or k, for m ≠ k; Dl captures dummy variables; α and β are parameters to be esti-
mated; and vi and ui are the components of the composed error term ε. The four inputs include
land cultivated, labor, capital, and herbicide, and agroecological zone dummies (Dl) were also
employed in the TL function.

The second aspect of the empirical analysis involves nonparametric estimation of environmen-
tal efficiency, which we do by estimating a DEA to obtain efficiency scores and the input slacks.
We employ the procedure developed by Ji and Lee (2010), where we capture the four inputs (land,

Table 1. Variables and descriptive statistics

Variable Description Adopter Nonadopter Pooled SD

Output variable

Farm revenue Total value of household production including
self-consumption in GHS

2,751.98 1,965.57 2,474.37 2,141.67

Inputs

Land Farm size in hectares 2.10 1.69 1.96 1.48

Labor Value of labor (hired and family) 219.62 109.88 182.73 530.66

Capital Expenditure on fertilizer and seed (GHS) 157.49 92.35 135.59 320.74

Herbicides Monetary value of Roundup herbicide 68.66 37.46 58.17 204.49

EIQ valuea Environmental impact quotient (EIQ) field
use value of Roundup herbicide

15.91 10.69 14.16 43.79

Farm and household characteristics

Age Age of farmer in years 39.49 39.92 39.64 13.83

Education Number of years of formal education 5.96 4.96 5.62 4.70

Household size Number of household members 6.15 5.47 5.92 3.02

Offarm Farmer participates in off-farm work= 1, 0
otherwise

0.35 0.45 0.39 0.49

Extension Number of contacts with extension personnel 0.55 0.26 0.45 0.50

Fbo memb Farmer belongs to a group/association= 1, 0
otherwise

0.17 0.14 0.16 0.36

Vulnerability to
drought

Perceived high vulnerability to drought= 1, 0
otherwise

0.24 0.41 0.30 0.46

Weatherinfo Farmer is informed about local weather= 1, 0
otherwise.

0.50 0.43 0.45 0.50

Credit constraint Farmer applied for credit and did not get
enough or failed to get it= 1, 0 otherwise

0.42 0.36 0.40 0.49

Farm machinery Farmer owned tractor, power tiller/
Motorking= 1, 0 otherwise

0.10 0.21 0.17 0.38

Tenure type Farmer has user right over farm land for 5 or
more years= 1, 0 otherwise

0.72 0.61 0.68 0.47

SS Sudan savanna= 1, 0 otherwise 0.26 0.41 0.31 –

GS Guinea savanna= 1, 0 otherwise 0.49 0.31 0.43 –

TZ Transitional zone= 1, 0 otherwise 0.26 0.28 0.26 –

Note: GHS, Ghanaian cedis; SD, standard deviation.
a Source: The online calculator https://nysipm.cornell.edu/eiq/calculator-field-use-eiq/.
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labor, capital, and field EIQ) and one output. Higher slacks with respect to field EIQ imply excess
use of glyphosate herbicide, which might indicate environmental inefficiency (Myers et al., 2016).
As indicated by Cooper, Seiford, and Tone (2007), a slacks-based measure provides a more suit-
able model to capture the DMU’s (farm) performance, especially if the goal is to enhance desirable
output and minimize undesirable outputs and inputs.

4. Results and discussion
This section presents the results from the empirical analysis. First, we present the results of the
maximum likelihood estimates of SPF models for the unmatched and matched samples. In each
case, we have estimates for conventional and sample selection SPF, as well as metafrontier results.
Second, the results of the TEs, TGRs, and MTEs are presented. Finally, the results of the DEA
efficiency scores and herbicide-EIQ input slacks, as well as determinants of technical and envi-
ronmental efficiency, are discussed.

4.1. Maximum likelihood estimates of conventional, sample selection stochastic production
frontier and metafrontier models

Tables 2 and 3 present the maximum likelihood estimates of separate SPF models for the
unmatched and matched samples, respectively. For each table, the pooled sample estimates are
presented first, sample selection SPF estimates for adopters and nonadopters of SLM are presented
next, and the estimates of the metafrontier are presented last. The group sample estimates in
Table 2 (unmatched sample) have been corrected for sample selectivity bias from unobservable
factors, whereas their counterparts in Table 3 (matched) have been corrected for selectivity bias
from both observable and unobservable factors. The inefficiency terms (sigma(u) or σ2) in all SPF
models are significant, suggesting that most of the farmers are producing below the production
frontier. The sample selectivity term (ρ) for adopters is negative and statistically significant in both
the unmatched and matched samples, an indication of the presence of selectivity bias from unob-
served factors that lends support to the use of the sample selectivity framework to estimate the SPF
(Greene, 2010). Thus, accounting for selectivity bias is essential for unbiased and consistent TE
estimates in this study (Bravo-Ureta et al., 2007).

The estimates of the probit model in the SPF selection equation are presented in Table A2 in
the Appendix. The results (matched sample of Table A2) showed that extension services and own-
ership of machinery positively and significantly associated with farmers’ decision to adopt SLM
technology, signifying the role of extension access in technology adoption as observed in earlier
studies (e.g., Solis, Bravo-Ureta, and Quiroga, 2007). Farmers’ perceived vulnerability to drought
based on experience also significantly influenced their decision to adopt SLM technology, a find-
ing that is consistent with the study by Ainembabazi and Mugisha (2014) in Uganda. As noted
earlier, we focus our discussions concerning the SPF results on the matched sample in Table 3.

The coefficients of the first-order terms for most of the inputs representing partial elasticities
are positive and significant, implying that these inputs contribute to moving farm productivity to
the frontier. It is important to note that the coefficient of herbicide, the input that contains the
environmentally detrimental active ingredient (glyphosate), is positive in most of the SPF models,
especially in Table 3. This implies that the use of herbicides is positively correlated with increased
productivity. It is also important to mention that farmers in the transitional agroecological zone
(the reference location) are likely to be more productive compared with their counterparts in the
Sudan savanna or Guinea savanna agroecological zones, signifying the relevance of capturing
agroecological zone differences in specifying agricultural production functions (Solis, Bravo-
Ureta, and Quiroga, 2007). Apart from capturing climatic effects, the agroecological zone differ-
ences may also capture unmeasured location-specific institutional differences that may influence
productivity.
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4.2. Technical efficiency and technology gap ratios

Table 4 presents the TE scores and TGR obtained from the estimated sample-selectivity SPF and
metafrontier models. In the unmatched sample, the TE estimate for adopters (55%) appears to
be significantly higher than that of nonadopters (49%). However, there appears to be no differ-
ence between adopters and nonadopters in the matched sample (that is 47% and 46% for adopt-
ers and nonadopters, respectively). To make a more reasonable comparison across groups, a
metafrontier regression was estimated, using Huang, Huang, and Liu’s (2014) approach, and
the gaps between the metafrontier and the individual group frontiers (TGRs) were derived, with
higher TGRs indicating better returns from technology. The MTE was then calculated. The
results (Table 4, matched sample) indicate that the average TGR for adopters is about 0.95,

Table 2. Estimates of conventional and sample selection stochastic production frontier models: unmatched sample

Conventional Sample selection models

MetafrontierPooled sample Adopters Nonadopters

Coefficient SE Coefficient SE Coefficient SE Coefficient SE

Constant 7.53*** 0.13 7.82*** 0.18 6.24*** 0.37 7.49*** 0.03

Ln(land) 0.13 0.09 0.12 0.12 0.10 0.14 0.13*** 0.02

Ln(capital) 0.11** 0.06 0.15*** 0.07 0.01 0.15 0.04*** 0.01

Ln(labor) 0.13** 0.06 0.04 0.08 0.11*** 0.02 0.11*** 0.01

Ln(herbicide) 0.18** 0.07 0.13 0.09 0.06*** 0.01 0.07*** 0.02

0.5Ln(land)2 −0.01 0.12 −0.05 0.16 −0.22 0.34 −0.01 0.03

0.5Ln(capital)2 −0.004 0.02 −0.01 0.03 −0.04 0.05 −0.005 0.004

0.5Ln(labor)2 −0.03* 0.02 −0.03 0.03 −0.06 0.07 −0.01* 0.004

0.5Ln(herbicide)2 −0.02 0.03 −0.03 0.04 −0.01 0.13 −0.03*** 0.006

Ln(land) × Ln(capital) −0.01 0.02 −0.04 0.03 −0.01 0.07 −0.01** 0.006

Ln(land) × Ln(labor) −0.02 0.02 −0.01 0.06 −0.11 0.08 −0.03*** 0.006

Ln(land) × Ln(herbicide) 0.07** 0.03 0.07* 0.04 0.02 0.11 0.06*** 0.007

Ln(capital) × Ln(labor) −0.002 0.07 −0.001 0.01 0.01 0.02 −0.01*** 0.002

Ln(capital) × Ln(herbicide) −0.01 0.01 −0.02 0.01 0.001 0.03 −0.01*** 0.002

Ln(labor) × Ln(herbicide) −0.01 0.01 −0.01 0.01 0.003 0.03 −0.01*** 0.002

Adoption 0.35*** 0.08 – – – – – –

SS −0.60*** 0.10 −0.54*** 0.13 −0.62*** 0.18 −0.57*** 0.03

GS −0.34*** 0.11 −0.29** 0.15 −0.43* 0.25 −0.35*** 0.03

λ 1.25*** 0.002 0.28*** 0.001

σ2 2.12*** 0.23 1.63*** 0.14

Sigma(u) 1.15*** 0.13 1.21*** 0.26

Sigma(v) 0.53*** 0.11 0.56*** 0.15

ρ(w,v) – – −0.73*** 0.21 0.20 0.41 – –

N 476 316 160 476

Log likelihood −597.54 −493.75 −362.83 80.30

Notes: Asterisks (*, **, and ***) refer to 10%, 5%, and 1% significance levels, respectively. GS, Guinea savanna; SE, standard error; SS, Sudan
savanna.
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ranging from 0.63 to 1. However, the TGR among nonadopters ranges from 0.14 to 0.98, with an
average of 0.88.

In the unmatched sample, the MTE scores for adopters and nonadopters of SLM technology
are 47% and 38%, respectively. However, the MTE scores indicate that on average, SLM technol-
ogy farms are about 43% technically efficient, and the non-SLM technology farms are 40% tech-
nically efficient. This implies that with respect to the matched sample, adoption of SLM
technology tends to increase TE by 7.5% among adopters compared with nonadopters.
Although the differences in TE between adopters and nonadopters appear marginal (and signifi-
cant at the 10% level), our results are still consistent with previous findings and field reports of the
positive impact of SLM on farm performance (Zougmore, Jalloh, and Tioro, 2014). Farmers who

Table 3. Estimates of conventional and sample selection stochastic production frontier models: matched sample

Conventional Sample selection models

MetafrontierPooled sample Adopters Nonadopters

Coefficient SE Coefficient SE Coefficient SE Coefficient SE

Constant 6.97*** 0.36 7.42*** 0.29 7.75*** 0.51 6.72*** 0.29

Ln(land) 0.29*** 0.05 0.37*** 0.06 0.39*** 0.05 0.31** 0.15

Ln(capital) 0.11 0.07 0.06 0.04 0.04** 0.01 0.12*** 0.03

Ln(labor) 0.14** 0.06 0.07*** 0.02 0.09 0.22 0.09*** 0.03

Ln(herbicide) 0.12*** 0.01 0.08*** 0.03 0.03* 0.01 0.12** 0.03

0.5Ln(land)2 −0.10 0.18 −0.14 0.10 −0.74 0.97 0.01 0.14

0.5Ln(capital)2 −0.89* 0.46 0.003 0.02 −0.03 0.05 −0.004 0.01

0.5Ln(labor)2 −0.01 0.02 −0.02 0.03 −0.07 −0.07 −0.05*** 0.01

0.5Ln(herbicide)2 −0.13*** 0.03 −0.03 0.02 − 0.30** 0.13 0.05*** 0.01

Ln(land) × Ln(capital) −0.04 0.08 0.04* 0.02 −0.04 0.12 −0.07*** 0.02

Ln(land) × Ln(labor) 0.17** 0.06 0.04 0.04 −0.15*** 0.04 −0.012 0.02

Ln(land) × Ln(herbicide) 0.03 0.04 0.05 0.10 0.06 0.19 0.12*** 0.02

Ln(capital) × Ln(labor) 0.03 0.06 0.01 0.002 0.01 0.02 0.001 0.003

Ln(capital) × Ln(herbicide) 0.24* 0.13 0.01 0.01 1.3E-3 0.04 −0.02*** 0.003

Ln(labor) × Ln(herbicide) −0.30** 0.15 0.01 0.01 0.002 0.03 −0.01*** 0.003

Adoption 0.35*** 0.08 – – – – – –

SS −0.51*** 0.11 −0.11 0.34 −0.62*** 0.18 −0.34*** 0.11

GS −0.21*** 0.02 −0.63*** 0.11 −0.43* 0.25 −0.63*** 0.11

λ 0.31*** 0.09 0.29*** 0.001

σ2 1.48*** 0.76 1.53*** 0.14

Sigma(u) 1.27*** 0.12 1.11*** 0.28

Sigma(v) 0.49*** 0.11 0.68*** 0.14

ρ(w,v) – – −0.71*** 0.23 0.27 0.37

N 466 307 159 466

Log likelihood −597.54 −496.33 −368.14 −7.73

Notes: Asterisks (*, **, and ***) refer to 10%, 5%, and 1% significance levels, respectively. GS, Guinea savanna; SE, standard error; SS, Sudan
savanna.
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shift from conventional farming to SLM practices might be the ones with higher managerial abil-
ities and who are also more environmentally conscious. To show how the two groups perform in
terms of expected farm revenues, we predicted and compared their frontier outputs for both
unmatched and matched samples (Table 5). The results showed that adopters performed better
in terms of expected farm revenues with much higher performance coming from the matched
sample, confirming the output enhancement potential of the SLM technology.

4.2.1. Data envelopment analysis technical efficiency and input slacks among adopters and
nonadopters
The distribution of the DEA TE scores are shown in Table A3 in the Appendix. The results confirm
that adopters generally obtain higher efficiency scores than nonadopters. The TE scores of the
pooled sample appear to be normally distributed, but the distributions are negatively skewed among
adopters and nonadopters, with a higher number of adopters (42%) compared with 36% of non-
adopters obtaining efficiency scores of 60% to 80%. The DEA analysis also reveals the existence of
slacks in some inputs. Because a slack indicates excess of an input, a farm household can reduce its
use of an input by the quantity of slack without reducing its output. From Figure 1, it is obvious that
adopters and nonadopters make excess use of herbicides (excess field EIQ) at an average of 57% and
26%, respectively. Because excess use of herbicides has environmental implications, we discuss the
determinants of TE and environmental efficiency (excess EIQ) in the next section.

4.2.2. Determinants of technical and environmental efficiency
In the context of policy, it is more useful to determine what influences efficiency/inefficiency (i.e.,
the variables to which TE and environmental inefficiency are related). Thus, the DEA scores were

Table 4. Technical efficiency scores with the estimated models

Unmatched sample Matched sample

Item Mean SD Min. Max. Mean SD Min. Max.

Adopters

TE 0.55*** 0.18 0.08 0.86 0.47 0.22 0.05 0.86

[2.83] [0.49]

TGR 0.87*** 0.03 0.77 0.97 0.95*** 0.07 0.63 1.00

[15.16] [21.00]

MTE 0.47*** 0.16 0.07 0.77 0.43* 0.18 0.05 0.80

[6.06] [1.82]

Nonadopters

TE 0.49 0.21 0.46 0.53 0.46 0.17 0.080 0.80

TGR 0.77 0.11 0.47 0.97 0.88 0.01 0.14 0.98

MTE 0.38 0.17 0.04 0.74 0.40 0.17 0.05 0.75

Pool (adopters and nonadopters)

TE 0.46 0.19 0.06 0.85 0.44 0.20 0.05 0.86

MTR 0.84 0.08 0.47 0.97 0.80 0.23 0.14 1.00

MTE 0.44 0.17 0.04 0.77 0.35 0.20 0.03 0.86

Notes: Asterisks (*, **, and ***) refer to 10%, 5%, and 1% significance levels, respectively. MTE, technical efficiency
with respect to the metafrontier; SD, standard deviation; TE, technical efficiency; TGR, technological gap ratio.
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regressed on specific household socioeconomic characteristics, using the FRMs, following the
example of recent studies (e.g., Abdulai and Abdulai, 2017; Ogundari, 2014; Ramalho,
Ramalho, and Henriques, 2010). We report the specification of the test statistic for each of the
FRMs8 (logit, probit, loglog, and cloglog). All the models of the FRM (with respect to the TE
scores) show similar test statistics, indicating that all the competing models fit out data
(Ramalho, Ramalho, and Henriques, 2010). Based on the RESET test for misspecification, we dis-
cuss the determinants of DEA efficiency scores using the cloglog specification (Table 6). The esti-
mates reveal that TE scores are significantly influenced by adoption status, credit access, extension
access, and household size. On the other hand, environmental inefficiency appears to also be influ-
enced by adoption of SLM, credit access, and usufruct right/tenure security.

Adoption is positively associated with DEA TE scores, confirming the results of the SPF anal-
ysis discussed previously. This finding is in-line with the results reported by Khanal et al. (2018),
who found that adoption of soil and water conservation practices by households in Nepal resulted
in improved farm efficiency. However, the positive correlation between adoption of SLM and
environmental inefficiency (excess EIQ) implies that adoption of some SLM practices (e.g., mini-
mum/zero tillage) may be associated with the use of higher levels of herbicides to control weeds
and to ensure minimum soil disturbance. Although our finding is not able to indicate the thresh-
old EIQ level that is considered environmentally unsustainable, our results confirm the concern
about the increasing levels of glyphosate use in crop production, especially in zero-tillage practices
(Myers et al., 2016). Some recent studies propose the use of weed suppressing crops, cover crop-
ping, and mixed cropping to minimize the dependence on herbicides for weed control in SLM and
soil conservation systems (Price and Norsworthy, 2013).

Table 5. Predicted frontier of log farm revenues of adopters and nonadopters In unmatched and
matched samples

Adopter Nonadopter ATT
Percent change
log farm revenue t-Statistic

Unmatched sample 8.32 8.04 0.28*** 3.5 7.37

Matched sample 8.71 8.03 0.69*** 8.5 19.42

Notes: Asterisks (*, **, and ***) refer to 10%, 5%, and 1% significance levels, respectively. The t-statistic is based
on the mean difference between the predicted frontiers of adopters and nonadopters. ATT, average treatment
effect on the treated.

0

10

20

30

40

50

60

70

Farm Size Labor Capital Herbicide (EIQ)

E
xc

es
s 

In
pu

t U
se

 (
%

)

Inputs in DEA Model

Adopter Nonadopters

Figure 1. Input slacks from data envelopment analysis (DEA) model by adoption status.

8We used the RESET test statistic based on the fitted power of the response index (Ramalho, Ramalho, and Henriques,
2010).
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Table 6. Determinants of technical efficiency and environmental inefficiency (excess EIQ)

(1) logit (2) probit (3) loglog (4) cloglog

Variable Coefficient SE Coefficient SE Coefficient SE Coefficient SE

Determinants of technical efficiency

Age −0.001 0.003 0.00 0.002 −0.001 0.002 0.000 0.002

Adoption 0.31*** 0.09 0.190*** 0.06 0.19*** 0.06 0.24*** 0.07

Household size 0.05*** 0.01 0.034*** 0.01 0.04*** 0.010 0.04*** 0.01

Education 0.01 0.01 0.004 0.01 0.004 0.01 0.01 0.01

Offarm −0.001 0.10 0.00 0.05 0.004 0.05 −0.003 0.06

Credit_const −0.14* 0.08 −0.09* 0.05 −0.09* 0.06 −0.11* 0.06

Extension 0.32*** 0.08 0.20*** 0.05 0.21*** 0.06 0.24*** 0.06

Tenure type 0.02 0.10 0.012 0.05 0.01 0.06 0.02 0.06

Adopt_resid −0.11 0.21 −0.11 0.23 −0.11 0.21 −0.12 0.21

Offfarmresid 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01

Constant −1.09*** 0.19 −0.67*** 0.12 −0.36** 0.13 −1.191*** 0.15

Test statistica 1.08 0.98 2.05 0.37

P value 0.29 0.32 0.15 0.54

Sample size 466 466 466 466

Log pseudo-likelihood −314.80 −314.83 −314.90 −314.82

Determinants of environmental inefficiency (percent excess EIQ)b

Age 0.01 0.01 0.003 0.003 0.003 0.002 0.01 0.01

Adoption 0.52** 0.18 0.267** 0.10 0.20** 0.08 0.48*** 0.16

Household size −0.01 0.02 −0.01 0.01 −0.01 0.01 −0.01 0.02

Education −0.02 0.02 −0.01 0.01 −0.01 0.01 −0.02** 0.01

Offarm 0.01 0.14 0.01 0.08 0.01 0.07 0.004 0.13

Credit_const 0.24* 0.13 0.12 0.07 0.09 0.06 0.21* 0.12

Extension 0.04 0.14 0.02 0.08 0.01 0.07 0.05 0.13

Tenure type 1.01*** 0.20 0.54*** 0.10 0.42*** 0.08 0.94*** 0.19

Adopt_resid −0.22 0.29 −0.20 0.28 −0.20 0.21 −0.23 0.30

Offfarmresid 0.34 0.30 0.34 0.30 0.324 0.32 0.35 0.32

Constant −3.05*** 0.39 −1.71*** 0.21 −1.15*** 0.17 −3.06*** 0.35

Test statistic 4.95 4.29 3.14 3.38

P value 0.03 0.03 0.07 0.076

Sample size 183 183 183 183

Log pseudo-likelihood −197.81 −197.95 −198.13 −197.74

Notes: Asterisks (*, **, and ***) refer to 10%, 5%, and 1% significance levels, respectively. EIQ, environmental impact quotient; SE, standard
error.
aThe statistic used to assess misspecification is the Ramsey test, RESET test.
bIn the matched sample, the analysis was restricted to only farmers who applied glyphosate herbicide, because they are the only farmers
expected to have excess EIQ in our context.
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The results also show a positive and significant relationship between extension access and TE,
but not in the environmental efficiency models, suggesting that farmers with lower extension con-
tacts tend to be less efficient. Although education has the expected sign in both the TE and envi-
ronmental efficiency models, the estimates are only statistically significant in the environmental
efficiency model, particularly in the cloglog model. The estimate for household size is positive and
statistically significant, implying that efficiency of farms could be associated with family size. In a
meta-analysis of efficiency studies in Africa, Ogundari (2014) reported that 22% of increase in
technical efficiency was attributed to household size.

In addition, the results reveal a negative and significant relationship between the variable rep-
resenting credit constraint and technical efficiency, suggesting that credit-constrained farmers
tend to be less efficient, a finding that is consistent with other studies in SSA countries
(Abdulai and Huffman, 2000; Ogundari, 2014). The findings are also in-line with the assertion
that enhancing farmers’ access to credit could significantly improve agricultural productivity
and output, as well as help reduce food insecurity in SSA countries (Lee, 2005). The estimate
of farmland usufruct right/tenure security is positive and significant in the environmental effi-
ciency models, implying that tenure security (longer usufruct right) may be associated with higher
field EIQ. This may appear strange, but possible, given the fact that farmers with tenure security
are usually the ones who will be prepared to invest in SLM including practices that may involve the
use of more herbicides. Because of data limitations, the present study is unable to establish
whether organic manure generated through SLM practices that use herbicides is sufficient to speed
up the breakdown of glyphosate into nontoxic components (Williams et al., 2016). If this scenario
holds, as suggested by Williams and others, then adoption of SLM, even with the use of Roundup
herbicides, will positively influence the quality of arable lands.

5. Conclusions
In this study, we examined the impact of adoption of SLM on technical and environmental effi-
ciency among smallholder farmers in Ghana. The empirical results revealed that SLM technology
farmers are technically more efficient than conventional technology farmers, implying that SLM
has the potential to reduce the economic drain. The metafrontier estimates also showed that SLM
technology adopters are 7.5% more technically efficient than the nonadopters. Apart from adop-
tion of SLM technology, the results revealed other key drivers of efficiency levels of smallholder
food crop farmers to be credit access, extension service, and land tenure security. The results also
showed that adoption of SLM positively and significantly influenced excess EIQ, which might
have environmental implications.

Overall, the findings suggest that the potential role of agriculture in achieving national food
security, eradicating poverty, and reducing unemployment could be enhanced if policy actions
are undertaken to address problems associated with the identified drivers of farmers’ efficiency.
In addition, the findings indicate that while government and other agencies focus on promoting
production technologies that will enhance land use sustainability and fertility, there is the need
for caution about potential harmful effects of excess herbicides, particularly glyphosates that are
used with some SLM practices. For instance, promotion of non-herbicide-based SLM practices
such as crop rotation and cover crops or the use of weed-suppressive crop varieties should be
encouraged to minimize the use of herbicides among farmers. Moreover, intensifying farmer
education through enhanced extension services should also be encouraged. Furthermore,
improving access to credit will help improve food crop farmers’ efficiency levels and help
improve food productivity. However, further research is required to determine whether organic
manure generated through SLM practices that rely on herbicides, such as zero tillage or con-
servation agriculture, is sufficient to facilitate the decomposition of glyphosate into nontoxic
components.
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Appendix

Table A1. Summary statistics of variables for matched and unmatched samples

Unmatched sample

Variable Pooled SD Adopters Nonadopter Difference t-Test

Gender 0.84 0.36 0.85 0.82 0.04 1.01

Age 39.64 13.83 39.49 39.92 −0.42 −0.32

Education 5.62 4.70 5.96 4.96 1.00** 2.19

Extension 0.45 0.50 0.55 0.26 0.29*** 6.34

Offarm 0.39 0.49 0.35 0.45 −0.10** −2.03

Fbo memb 0.16 0.36 0.17 0.14 0.03 0.85

Weatherinfo 0.45 0.50 0.43 0.51 −0.08 −1.64

Household size 5.92 3.02 6.15 5.47 0.68** 2.34

Vulnerable 0.30 0.46 0.24 0.41 −0.16*** −3.71

Credit-const 0.40 0.49 0.42 0.36 0.06 1.36

Tenure type 0.68 0.47 0.72 0.61 0.12*** 2.64

Machinery 0.17 0.38 0.21 0.10 0.11*** 2.99

Farmsize 1.96 1.11 2.10 1.69 0.41*** 2.89

Sample size 476 316 160

Matched sample

Gender 0.84 0.37 0.86 0.85 0.01 0.3

Age 39.66 13.88 39.81 40.94 −1.13 −0.93

Education 5.56 4.69 5.79 5.53 0.26 0.67

Extension 0.44 0.50 0.52 0.52 0.00 0.00

Offarm 0.39 0.49 0.16 0.42 −0.27 −1.2

Fbo memb 0.15 0.36 0.16 0.17 −0.02 −0.6

Weatherinfo 0.46 0.50 0.45 0.43 0.03 0.64

Household size 5.86 2.88 6.01 6.09 −0.08 −0.36

Vulnerable 0.30 0.46 0.26 0.22 0.04 1.1

Credit-const 0.39 0.49 0.41 0.41 0.00 0.1

Tenure type 0.68 0.47 0.71 0.72 −0.01 −0.17

Machinery 0.16 0.37 0.18 0.21 −0.03 −1.03

Farmsize 1.90 1.22 1.97 1.83 0.14 1.2

Sample size 466 307 159

Note: Asterisks (*, **, and ***) refer to 10%, 5%, and 1% significance levels, respectively.
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Table A3. Distribution of efficiency scores by adoption status

Technical efficiency scores Pooled sample Adopters Nonadopters

Up to 20% 11.76 6.33 11.88

20% to 40% 24.37 15.51 23.13

40% to 60% 36.97 32.59 26.25

60% to 80% 25.21 41.77 35.63

More than 80% 1.68 3.8 3.13

Table A2. Estimates of the probit selection equation using unmatched and matched
samples

Unmatched sample Matched sample

Variable Coefficient Coefficient

Gender −0.018 (0.15) −0.02 (0.15)

Age −0.006 (0.004) −0.006 (0.004)

Education 0.03** (0.01) 0.02 (0.01)

Extension 0.68*** (0.13) 0.67*** (0.13)

Offarm −0.25** (0.12) −0.25** (0.12)

Fbo memb 0.05 (0.17) 0.04 (0.18)

Weatherinfo 0.14** (0.06) 0.13** (0.06)

Vulnerable 0.65**(0.23) 0.59**(0.21)

Household size 0.02 (0.02) 0.02 (0.02)

Credit-const 0.11 (0.13) 0.11 (0.13)

Tenure type 0.27** (0.12) 0.27** (0.13)

Machinery 0.49*** (0.18) 0.478*** (0.18)

Sample size 476 466

Log likelihood −272.24 −271.82

Notes: Asterisks (*, **, and ***) refer to 10%, 5%, and 1% significance levels, respectively. Values in
parentheses are standard errors.
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