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Abstract. In this paper, a nonlinear mathematical model is proposed to study the dynamics of disease transmission

between human beings and animals. The disease free equilibrium is established and it is locally asymptotically

stable if the basic reproduction number R0 < 1 . To determine how a marginal change in any one of the parameters

in R0 would impact on the prevalence of the infection, a sensitivity analysis is carried out by using the Forward

Normalized Sensitivity Index. We then modify the basic model into an optimal control problem by incorporating

three controls to check the spread of the disease. These controls are grouped into curatives and preventives. It

shows that a combine effort of both curatives and preventives is necessary to combat the disease. Numerical

simulations are also provided to illustrate the mathematical results. Finally, various options of combinations of the

controls are examined to determine the most cost effective combination that can control the infection by using the

Incremental Cost-Effectiveness Ratio. It indicates that the combine effort of curatives and preventives is preferable

but the preventive is better than the curative strategies.
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1. Introduction

Health is a very significant ingredient in the life of every living thing. It is estimated that about

75% of human infectious diseases are transmitted from both domestic and wildlife animals [1].

People most at risk of contracting such diseases, sometimes referred as zoonotic diseases, are

those in close contact with animals or animal products such as veterinarians, pet owners, abat-

toir workers, farmers, etc. For this reason many have place more emphasis on the relationship

between the health systems of human beings and animals. Local provisions in animal research

centres and international established institutions such as Centre for Disease Control and Pre-

vention (CDC), World Health Organisation (WHO) among others were established to monitor

and take care of emergency health issues and pandemics.

Mathematical modelling employed at various levels and aspects of ecological studies [2, 3]

is a very useful tool for studying the nature of nonlinear interaction among species of various

animals. This study therefore employs the technique mathematical modelling to investigate the

transmission dynamics of zoonotic disease. Hsieh and Hsiao [4] stated that the population of

animals, including human beings, are significantly controlled by infectious diseases. The threat

of the flu virus, mad cow disease, rabies, etc on human life and the recent outbreak of the deadly

Ebola virus in the West African sub - region shows the possibility of a pandemic. It is therefore

vital to search for measures of controlling such infectious diseases.

Many studies such as [5], have indicated that infection can be eradicated from an ecosys-

tem through treatment by admistratering drugs. Other interventions which include vaccination,

qurantine, education etc were equally suggested for the management of diseases [6, 7, 8]. The

term quarantine is use here to denote the conscious attempt to isolate both symptomatic and non-

symptomatic infected species from a population of susceptible species. Vaccination is rather the

introduction of a dormant pathogen of an infectious disease into a susceptible population. This

allows the vaccinated animal to produce anti bodies against the weaker pathogen so as to devel-

op immunity. Education, for the purpose of this study, is the campaign to bring about awareness

of the disease, its mode of transmission, prevention and control within the population.

Even though these suggested controls may look potent, their ability to curtail an epidemic is

dependent on the rate at which a single infected individual reproduces itself in the population
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within a specific time frame and the amount of an intervension that is applied. This also has

a cost implication. However, there is a huge economic resource constraint with the popula-

tion explosion in the world. Therefore there is the need to select the best possible means of

combination of the various interventions to minimize the cost of implementation.

One other thing that is very important in epidemiological investigations is the reproduction

number. It plays a vital role in the analysis of models thereof. It defines the average number of

new cases of an infection caused by one typical infected individual in a population consisting

of susceptibles only. It is one of the means used to determine whether or not an infection can

easily be controlled. In this study, the New Generation Method to determine the reproduction

number is proposed.

2. Model formulation

In this section a mathematical model is developed to study the dynamics of zoonotic diseases

such as foot and mouth diseases in cattle, Ebola virus, flu, and mad cow disease, etc which

are known to originate from both domestic and wild animals. It will be assume that in this

model the human population represents the predator while the animal population represents

the prey. The dynamics will therefore follow the Michaelis-Menten kinetics Holling type-II

predation function. This functional response refers to the predation rate as a function of the

number of animals per human predator. It is known that as the number of animals increases,

the rate of animal capture per human predator cannot increase indefinitely. Instead, the rate of

animal capture is saturated when the population of animals is relatively large. On this note,

N1(T ) represents the total population density of the animal species with S(T) and I(T) as the

population classes and N2(T ) denotes the population density of the human beings with Y(T) and

Z(T) as the population classes. The model is then divided into four compartmental groups as

the susceptible animals, infected animals, susceptible individuals and infected individual groups

represented by S, I, Y, and Z respectively.
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The model is formulated with the following assumptions:

(i) In the absence of the disease, the susceptible animal (prey) population grows logistical-

ly with intrinsic growth rate r1, environmental carrying capacity K, (r1,K ∈ R+) and

decreases in the population due predation rate of n.

(ii) Only the susceptible S(T) can procreate. Logistic law is then use to model the birth

process with the assumption that births should always be positive.

(iii) The infected animals I(T) is remove with a death rate c or by human predation before

they can possible reproduce. However, both the infected I(T) and susceptible S(T) ani-

mals populations contribute to the population growth towards the carrying capacity K.

(iv) Susceptible animals S(T) become infected through contact with an infected animal I(T)

and this contact process is assume to follow the simple mass action kinetics with β as

the rate of transmission.

(v) The disease can cross species barrier from the animal population N1(T ) to the human

population N2(T ). Hence the susceptible predator(human), Y(T), adds up to the in-

fected predator, Z(T), through predation and/or contact with the infected and it is not

genetically inherited.

(vi) The infected human Z(T) population can recover by treatment at the rates γ and pos-

sesses a death rate of (σ + µ), where σ and µ are the death rates due to infection and

nature respectively.

(vii) The predation functional response of the human being towards both susceptible S(T) and

infected I(T) animals are assume to follow Michaelis-Menten kinetics and is modelled

using a Holling type-II functional form with predation coefficients b, (b > 0) and half-

saturation constant a, (a > 0).

(viii) The efficiency at which the consumed susceptible S(T) and infected I(T) animals (prey)

are converted into predator is given as p and q respectively, where 0 < p < 1 and 0 <

q < 1.
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FIGURE 1. Flowchart of the model

The following set of ordinary differential equations represents the model:

(1)



dS
dT = r1S(1− S

K )−βSI− nSY
aY+S

dI
dT = βSI− bIY

aY+I − cI
dY
dT = pnSY

aY+S −µY + γZ
dZ
dT = qbIY

aY+I − (σ +µ + γ)Z

With initial data values S(0)≥ 0, I(0)≥ 0, Y (0)≥ 0, Z(0)≥ 0.

The number of parameters in the model poses a challenge in the determination of the combi-

nation of parameters that control the behaviour of the system. Hence, we non-dimensionalize

the system (1) to reduce the number of parameters. Assume s = S
K , i =

I
K ,y =

aY
K ,z = Z

K

and t = βKT .

(2)



ds
dt = rs(1− s)− si− msy

y+s

di
dt = si− giy

y+i − cli
dy
dt =

pmsy
y+s −µyl + γzl

dz
dt =

qgiy
y+i − (σ +µ + γ)zl
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where r = r1
βK ,g=

b
βK ,m= n

βK and l = 1
βK ; with initial data values s(0)≥ 0, i(0)≥ 0,y(0)≥ 0

and z(0)≥ 0.

3. Boundedness
For the system to be biologically valid and well behaved in a theoretical eco-epidemiology,

all its solution must be within a certain region of confinement. This will only happen if the

following theorem is satisfied.

Theorem 3.1 All the solutions of the system (2) are uniformly bounded within R4
+

Proof. Assume {s(t), i(t),y(t),z(t)} to be any solution of system (2).

We consider W = s+ i+ y+ z. Therefore dW
dt ≤ k̂(r+1)−hw. where k̂ = max{s(0),k} and

h=min{1,c,µ,σ}. Applying the theorem of differential inequalities, the solution to dW
dt +hw≤

k̂(r+ 1) is given as W ≤ k̂
h(r+ 1)(1− e−ht). As t → ∞, W ≤ k̂

h(r+ 1). This implies that the

solution is bounded for 0 ≤W ≤ k̂
h(r+ 1). It shows that all the solutions of model (2) in ℜ4

+

are confined in the region τ = {(s, i,y,z) ∈ ℜ4
+ : W ≤ k̂

h(r+ 1)+ ε} for all ε > 0 and t → ∞.

Therefore the theorem is satisfied

This shows that we can sufficiently study the dynamics of the model within τ and hence

consider the model to be epidemiologically and mathematically well formed within τ .
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4. Equilibrium states of the model

4.1 Disease free equilibrium states

The disease-free equilibrium point results when there are no infectives, i.e, (i = z = 0).

Setting i = z = 0 in the model and solving for s and y, we obtain the equilibrium point,

BE(S∗,0,Y ∗,0),

where S∗ = {1− pm−µl
rp } and Y ∗ = pm−µl

µl {1−
pm−µl

rp }.

The Disease free equilibrium (DFE), BE(S∗,0,Y ∗,0) does exist if and only if:

(i) pm−µl < rp

(ii) 0 < µl < pm.

From the original system it implies that DFE exists if and only if:

(i) 0 < µ < pn

(ii) pn−µ < r1 p.

Where p is the rate of conversion of the susceptible animal (prey) into human predator, n is the

predation rate of the susceptible animals, r1 is the logistic intrinsic growth rate of the animal

and µ is the rate of natural death.

4.2 Endemic equilibrium state

The equilibrium state of co-existence Ec(S∗∗, I∗∗,Y ∗∗,Z∗∗) is obtain by solving the model

equation (2) for the non-zero sizes of the sub-populations. After some algebraic manipulations

we get:

S∗∗ = Z∗∗l(σ+µ+γ)+cqI∗∗
qI∗∗ , Y ∗∗ = Z∗∗I∗∗l(σ+µ+γ)

qgI∗∗−Z∗∗l(σ+µ+γ) , where I∗∗ = rS∗∗(1−S∗∗)+Y ∗∗(r−rS∗∗−m
(S∗∗+Y ∗∗

and Z∗∗ = µlY ∗∗2+(µl−pm)S∗∗Y ∗∗

γl(Y ∗∗+S∗∗) . Hence the endermic equilibrium state does exist if:

qgI∗∗ > Z∗∗l(σ +µ + γ), (S∗∗+Y ∗∗)> mY ∗∗
r(1−S∗∗ and µl > pm.

5. Reproduction number and stability analysis

5.1 Determination of the reproduction number (R0)
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Our model has two infected states di
dt and dz

dt and two uninfected states, ds
dt and dy

dt . if we set

X̃ = (I,Z)T , where T is the transpose, the linearized infection subsystem can be written as:

(3)
dX̃
dt

= (F−V )X̃

Where the matrix F represents the transmission matrix and V represents the transition matrix.

The transmission constitutes all epidemiological events that involve new infections and all other

events are incorporated in V .

Hence we have

F =

 s− gy2

(y+i)2 0
gy2

(y+i)2 0


and

V =

 cl 0

0 (σ +µ)+ γl

 .
At the DFE of our model

F =

 s∗−g 0

qg 0

 .
Hence the next generation matrix is

G = F = FV−1

 s∗−g
cl 0
qg
cl 0

 .
The basic reproduction number, R0 is the dominant Eigen value of G, given by

(4) R0 =
rp(1−g)− (pm−µl)

clrp

By Theorem (2) of [9], the following result is established.

Theorem 5.1. The disease-free equilibrium state,BE(S∗,0,Y ∗,0) of model (2) is locally asymp-

totically stable if R0 < 1, otherwise it is unstable.

This theorem presupposes that with R0 < 1 , the disease can be eradicated if the initial pop-

ulation is within the restricted region because an introduction of one infectious individual will

generate, on average, less than one infection and this will not therefore cause an epidemic in the

population. The disease will however be difficult to manage if R0 > 1. The threshold value of
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R0 is hence known to be R0 = 1.

5.2. Stability analysis

The local stability will be established by using the Jacobian matrix (J) of the model equation

(2), where

(5) J =



∂ f
∂ s

∂ f
∂ i

∂ f
∂y

∂ f
∂ z

∂g
∂ s

∂g
∂ i

∂g
∂y

∂g
∂ z

∂h
∂ s

∂h
∂ i

∂h
∂y

∂h
∂ z

∂k
∂ s

∂k
∂ i

∂k
∂y

∂k
∂ z


The Jacobian matrix of the model (2) is therefore given as:

(6) J =


r(1−2s)− i− my2

(y+s)2 −s − my2

(y+s)2 0

i s− gy2

(y+i)2 − cl − gy2

(y+i)2 0
pmy2

(y+s)2 0 pms2

(y+s)2 −µl γl

0 qgy2

(y+i)2 − qgi2

(y+i)2 −(σ +µ + γ)l


The disease-free equilibrium state of BE(S∗,0,Y ∗,0) will be investigatedby using (J). The

Jacobian matrix (JBE), when BE is substituted into equation (6) is given by:

JBE =


r 2(pm−µl)

rp −1− (pm−µl)2

p2m 1− (pm−µl)
rp − (µl)2

p2m 0

0 1− (pm−µl)
rp −g− cl 0 0

(pm−µl)2

pm 0 (mul)2

pm −µl γl

0 qg 0 −(σ +µ + γ)l


The Eigen values are obtain by evaluating the determinant of the matrix JBE .

det(JBE) =

∣∣∣∣∣∣∣∣∣∣∣∣

r 2(pm−µl)
rp −1− (pm−µl)2

p2m −λ 1− (pm−µl)
rp − (µl)2

p2m 0

0 [1− (pm−µl)
rp −g− cl]−λ 0 0

(pm−µl)2

pm 0 [ (mul)2

pm −µl]−λ γ l

0 qg 0 −(σ +µ + γ)l−λ

∣∣∣∣∣∣∣∣∣∣∣∣
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= 0

det(JBE) = [1− pm−µl
rp −g− cl−λ ]−(σ +µ + γ)l−λ (b2 +b1λ +λ 2) = 0,

where b1 = r(1− 2(pm−µl)
rp )+ (pm−µl)2

p2m +µl pm−µl
pm ,

b2 = µl pm−µl
pm {r(1− pm−µl

rp )}.

But clR0 = 1− pm−µl
rp −g.

Therefore det(JBE) = [clR0−1−λ ]−(σ +µ + γ)l−λ (b2 +b1λ +λ 2)

λ =


cl(R0−1)

−(σ +µ + γ)l
−b1−
√

b2
1−4b2

2
−b1+
√

b2
1−4b2

2


For the roots of −b1±

√
b2

1−4b2
2 to have negative real parts

(i) b1 > 0,

(ii) b2 > 0

Conditions (i) and (ii) are true if and only if 2(pm− µl) < rp. With these conditions and by

applying theorem 5.1, the disease free equilibrium of system (2) is locally asymptotically if

R0 < 1.

The endemic equilibrium state is also investigated by substituting EC(S∗∗, I∗∗,Y ∗∗,Z∗∗) into

equation (6):

Assume that JEC =


C1 C2 C3 0

C4 C5 C6 0

C7 0 C8 γl

0 C9 C10 −(σ +µ + γ)l


where

C1 = r(1−2s)− i− my2

(y+s)2

C1 =

(
qI∗∗(2rcl+r−I∗∗)−2rZ∗∗l(σ+µ+γ)

qI∗∗

)
−m

(
qZ∗∗I∗∗2(δ+µ+γ)

[Z∗∗(δ+µ+γ)+cqI∗∗][qgI∗∗−Z∗∗l(σ+µ+γ)]+qZ∗∗I∗∗2(σ+µ+γ)

)2

C2 =−s

C2 =− l[Z∗∗(δ+µ+γ)+cqI∗∗]
qI∗∗

C3 =− ms2

(y+s)2
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C3 =−m

(
[Z∗∗(δ+µ+γ)+cqI∗∗][qgI∗∗−Z∗∗l(δ+µ+γ)]

[Z∗∗(δ+µ+γ)+cqI∗∗][qgI∗∗−Z∗∗l(σ+µ+γ)]+qZ∗∗I∗∗2(σ+µ+γ)

)2

C4 = i

C5 = s− gy2

(y+i)2 − cl

C5 =
Z∗∗l(δ+µ+γ)

qI∗∗ −

(
Z∗∗l(δ+µ+γ)

qI∗∗

)2

C6 =− gi2

(y+i)2

C6 =−

(
qgI∗∗−Z∗∗l(δ+µ+γ)

qI∗∗

)2

C7 =
pmy2

(y+s)2

C7 = pm

(
qZ∗∗I∗∗2(δ+µ+γ)

[Z∗∗(δ+µ+γ)+cqI∗∗][qgI∗∗−Z∗∗l(δ+µ+γ)]+qZ∗∗I∗∗2(δ+µ+γ)

)2

C8 =
pms2

(y+s)2 −µl

C8 = pm

(
[Z∗∗(δ+µ+γ)+cqI∗∗][qgI∗∗−Z∗∗l(δ+µ+γ)]

[Z∗∗(δ+µ+γ)+cqI∗∗][qgI∗∗−Z∗∗l(σ+µ+γ)]+qZ∗∗I∗∗2(σ+µ+γ)

)2

−µl

C9 =
qgy2

(y+i)2

C9 =

(
Z∗∗l(δ+µ+γ)

I∗∗

)2

C10 =
qgi2

(y+i)2

C10 =

(
qgI∗∗−Z∗∗l(δ+µ+γ)

I∗∗

)2

det(JEC) =

∣∣∣∣∣∣∣∣∣∣∣∣

C1−λ C2 C3 0

C4 C5−λ C6 0

C7 0 C8−λ γl

0 C9 C10 −(σ +µ + γ)l−λ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0
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(7) det(JEC) = λ
4 +[(σ +µ + γ)l−C1−C5−C8]λ

3

+[C1C5 +C1C8 +C5C8−C2C4−C3C7− γlC10− (σ +µ + γ)l(C5−C8−1)]λ 2

+[(C2C4C8 +C3C7C5−C1C5C8−C2C6C7)+ γl(C1C10+C5C10−C6C9)

+(σ +µ + γ)l(C1C5 +C1C8 +C5C8−C3C7−C2C4)]λ

+[(σ +µ + γ)l(C2C4C8 +C3C5C7−C2C6C7−C1C5C8)

+ γl(C1C6C9 +C2C4C10−C3C4C9−C1C5C10)]

The characteristic equation is of the form: λ 4 + b1λ 3 + b2λ 2 + b3λ + b4 = 0, where b1 =

[(σ +µ + γ)l−C1−C5−C8]

b2 = [C1C5 +C1C8 +C5C8−C2C4−C3C7− γlC10− (σ +µ + γ)l(C5−C8−1)]

b3 = [(C2C4C8 +C3C7C5−C1C5C8−C2C6C7)+ γl(C1C10 +C5C10−C6C9)

+(σ +µ + γ)l(C1C5 +C1C8 +C5C8−C3C7−C2C4)]

b4 = [(σ +µ + γ)l(C2C4C8 +C3C5C7−C2C6C7−C1C5C8)

+ γl(C1C6C9 +C2C4C10−C3C4C9−C1C5C10)]. By Routh stability criterion, the endemic equi-

librium is stable if:

(i) b1 > 0 and b3 > 0

(ii) b1b2b3 > b2
1b4 +b2

3

(iii) b4 > 0

Otherwise it is unstable.

6. Sensitivity analysis

In this section we carry out the sensitivity analysis to determine the responsiveness/robustness

of the model, or otherwise to marginal changes in a parameter or group of parameters. This

helps to identify whether a small change in any of the parameters that determine R0 will lead to
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a greater effect in the prevalence of the infection. We perform the analysis by using the Forward

Normalised Sensitivity Index (FNSI).

It is defined as follows:

Let R0 be a function that depends on xi. Then the FNSI of R0 relative to xi is given by

(8) Γ
xi
R0

=
∂R0

∂xi
· xi

R0
.

This index measures the relative change in R0 due to changes in xi. It shows how significant

each parameter is in determining the prevalence of the disease. Using the estimated parameter

values, x1 = r = 10.00, x2 = l = 0.95, x3 = p = 0.10, x4 = µ = 0.01, x5 = m = 0,42, x6 = c =

0.02 and x7 = g = 1.20, the sensitivity indexes are calculated and indicated in table 1:

TABLE 1. Sensitivity indexes of R0

Parameter Description Value Sensitivity

Index

l = 1
βK K = Environmental carrying capacity of susceptible prey

and β = Disease transmission rate among the prey

0.95 -1

g = b
βK b= Predation rate of infected prey 1.20 1

c Death rate of infected prey 0.02 -1

p Conversion rate of susceptible predator 0.10 0.3204

m = n
βK n= Predation rate of susceptiible prey 0.42 -0.1806

r = r1
βK r1= Logistic intrinsic growth rate of prey 10.00 -0.1398

µ Natural death rate of the predator 0.01 -0.0409

From Table 1, the most sensitive parameters are as l, g and c as Γ
xi
R0

= |1|. The implication is

that an increase or decrease in either one or more of these parameters will have an increasing or

decreasing effect on the prevalence of the disease. For example, an increase (decrease) in l by

10% will lead to a decrease (increase) of R0 by approximately 69% while an increase (decrease)

in g by 10% will result in approximately 27% decrease (increase) in R0.
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Factors such as contact and/or predation rates greatly affect the disease transmission rate.

Vaccination, quarantine and education are interventions for reducing the intra and inter disease

transmission rates. However, these intervention strategy identified may not be feasible because

of resource constraint. There is therefore the need to find the best ways of implementing these

intervention to derive the best possible benefits with minimal cost.

7. Optimal controls analysis

In this section of the work, the aim is to incorporated in the initial model (2) some the i-

dentified interventions called control interventions to determine their impact on the disease

transmission dynamics. These control interventions are:

(i) u1: the control variable based on quarantine of infected prey (Animals) and vaccination

of susceptible prey(Animals).

(ii) u2: the control variable based on education and awareness of the disease by the predator

(Human) as well as vaccination of susceptible predator(Human) for protection against

the disease.

(iii) u3: the control variable due to the efficacy of the drug used for the treatment of infected

predator(Human).

These interventions can be categorize into preventives and curatives. The control interven-

tions such as quarantine, vaccination and education are preventives whilst treatment is curative.

We therefore investigate the following control options to determine the best strategy:

(i) Strategy A: Implementing the control aim at curing the infection,

(ie. u1 = u2 = 0u3 6= 0).

(ii) Strategy B: Implementing only the controls aim at preventing infection,

(ie. u1 6= u2 6= 0,u3 = 0).

(iii) Strategy C: Implementing all controls: (ie. u1 6= u2 6= u3 6= 0). .

With the incorporated controls, the basic model is given by:
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(9)



ds
dt = rs(1− s)− (1−u1)si− msy

y+s

di
dt = (1−u1)si− (1−u2)giy

y+i − cli
dy
dt =

pmsy
y+s −µyl +u3γzl

dz
dt =

(1−u2)qgiy
y+i − (σ +µ)zl−u3γzl

The major objective here is to find the optimal levels of the intervention strategies desired to

reduce the cost of implementation and hence the prevalence of the disease in both the preda-

tor(Human).

The related objective functional J is given by:

(10) J = Minui,i∈[1,3]

∫ t f

0
(i+ z+a1u2

1 +a2u2
2 +a3u2

3)dt,

where ai, i ∈ [1,3] are non-negative weights associated with the controls. These measure the

relative cost of implementing the interventions [3]. To minimize J(u1,u2,u3) over the set of

admissible controls U given by U = (u1,u2,u3)|ui are measurable with 0≤ ui ≤ 1 for t ∈ [0,T ],

i=1,2,3, we find an optimal control triple (u1,u2,u3)

We apply Pontryagin’s maximum principle (PMP) [10], which provides the necessary con-

dition for optimality [3], to find the form of the optimal control of the model (9). This can

be compared with the point-wise minimization of the Hamiltonian function H with respect to

u1,u2 and u3.

(11) H(ui) = f (i,z,u, t)+αX = i+ z+a1u2
1 +a2u2

2 +a3u2
3

+αs

(
rs(1− s)− (1−u1)si− msy

(s+ y)

)
+αi

(
(1−u1)si− (1−u2)giy

(y+ i)
− cli

)

+ αy

(
pmsy
(y+ s)

− µly + u3γlz

)
+αz

(
(1−u2)qgiy

(y+ i)
− (σ + µ)lz − u3γlz

)
,

where αs,αi,αy and αz are the adjoint variables or co-state variables. By the PMP we have
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Proposition 1: [12] If the optimal triple (u∗1,u
∗
2,u
∗
3) minimizes J(u1,u2,u3) over U then there

exists adjoint variables which satisfy the following:

(12)



dαs
dt = ∂H

∂ s =−αsr(2s−1)+(αs−αi)u1i+(αs−αy p) my2

(y+s)2

dαi
dt = ∂H

∂ i = (αs−αi)s+(αi−αs)u1s+αicl−1+(αi−αzq)
(1−u2)gy2

(y+i)2

dαy
dt = ∂H

∂y = (αs−αy p) ms2

(y+i)2 +(αi−αzq)
(1−u2)gi2

(y+i)2 +αyµl
dαz
dt = ∂H

∂ z =−1− (αz +αi)u3γl +αzl(σ +µ)

Where αs(t) = αi(t) = αy(t) = αz(t) are the transversality conditions. The state and adjoint

systems give the solution of the optimal control problem [11]. From equation (11) and by the

stationary condition and after some algebraic manipulations, the optimal control triple is given

as:

(13)



u∗1(t) = min

(
1,max

(
(αi−αs)si

2a1
,0
))

u∗2(t) = min

(
1,max

(
(αzq−αi)

giy
2a2(y+i) ,0

))

u∗3(t) = min

(
1,max

(
(αz−αy)γlz

2a3
,0
))

8. Numerical simulation

In this section we present computer simulation of some solutions of the system. The purpose

of numerical simulation is to verify the analytical results [3]. We therefore choose the follow-

ing parameter values for the system (2) and (9): r = 10.00, l = 0.95, p = 0.10,c = 0.02,µ =

0.01,m = 0,42,g = 1.20,γ = 1.12,σ = 0.02,q = 0.05,a1 = 30.00,a2 = 20.00,a3 = 10.00 with

initial valuea scaled to s(0) = 1.00, i(0) = 0.50,y(0) = 1.20,z(0) = 0.30 per 10,000 individuals.

The results of the computer simulation and plots are as follows:

Strategy A: Implementing the Control Aim at Curing the Infection
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From (2) and (9) the following figures are generated.

FIGURE 2. Susceptible Prey(Animals)

FIGURE 3. Infected Prey(Animals)

Figures 2, 3, 4, and 5 show the simulation results of the effect of control strategy A on the

infection. The profile shows that implementing only control u3 has the ability to reduce the

infected population and increase the susceptible population within a space of 40 months.
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FIGURE 4. Susceptible Predator(Human)

FIGURE 5. Infected Predator(Human)

Strategy B: Implementing the Controls Aim at Preventing Infection
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FIGURE 6. Susceptible Prey(Animals)

FIGURE 7. Infected Prey(Animals)

Figures 6, 7, 8 and 9 show the simulation results of the effect of control strategy B on the

infection. This profile shows that implementing only controls u1 and u2 can reduce the infected

population and increase the susceptible population within a space of 40 months.
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FIGURE 8. Susceptible Predator(Human)

FIGURE 9. Infected Predator(Human)

Strategy C: Implementing all Controls
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FIGURE 10. Susceptible Prey(Animals)

FIGURE 11. Infected Prey(Animals)

Figures 10, 11, 12 and 13 show the simulation results of the effect of control strategy C on the

infection. This profile shows that implementing all the controls also have the ability to reduce

the infected population and increase the susceptible population within a space of 40 months.
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FIGURE 12. Susceptible Predator(Human)

FIGURE 13. Infected Predator(Human)

The question at stake is which of these strategies is preferred in dealing with the infective and

the susceptible populations? This gives the choice of the best possible strategy to implement.

Comparing the Effects of the Strategies
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FIGURE 14. Susceptible Prey(Animals)

FIGURE 15. Infected Prey(Animals)

Figures 14, 15, 16 and 17 show the comparison of the effect of the control strategies on the

infection.

(i) Figure 14 indicates that the effect of preventives is higher by increasing the susceptible

prey population, followed by the combined effect of the preventives and curatives.
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FIGURE 16. Susceptible Predator(Human)

FIGURE 17. Infected Predator(Human)

(ii) Figure 15 indicates that the effect of preventives is higher by reducing the infected prey

population, followed by the combined effect of the preventives and curatives.

(iii) Figure 16 indicates that the effect of curatives is higher by increasing the susceptible

predator population, followed by the combined effect of the preventives and curatives.
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(iv) Figure 17 indicates that the effect of curatives is higher for ten 10 months after which the

combined effect of the preventives and curatives prevailed for the rest of the 40 months

period.

9. Cost-effectiveness analysis

This analysis seeks to highlight the control measure(s) that effectively manage the infection

with minimum cost. This is because an effective strategy identified does not necessarily mean it

is feasible on the grounds of the constraint of resources. Three major types of cost-effectiveness

analysis ratios are identified:

(i) Average Cost C Effectiveness Ratio (ACER): This compares a single intervention with

a baseline practice, say no intervention. It looks at the net cost of the intervention as a

ratio of the total number of infections effectively prevented by the intervention.

(ii) Marginal Cost C Effectiveness Ratio (MCER): This deals with the additional change

that occurs in the cost and effect as a result of an increase or decrease in the intervention

by a specific level.

(iii) Incremental Cost-Effectiveness Ratio (ICER): This also compares the costs of two alter-

native intervention strategies that are competing for the same resources with the number

of infections controlled (i.e the additional cost per an additional infection controlled).

The main aim here is to compare the Cost-Effectiveness of three alternative interventions,

curatives, preventives and both curatives and preventives. Hence the Incremental Cost C Effec-

tiveness Ratio (ICER) is considered. This analysis is done to determine whether there will be

additional benefits that will accrue in terms of lives gain as a result of applying the alternative

interventions and at how much additional cost. It is the ratio of the change in costs to the change

in the number of infections controlled due to the interventions.

To carry out this, we have to rank the strategies in ascending order by effectiveness of lives

gained.

Table 2 shows the result of the analysis:

where
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TABLE 2. Incremental Cost-effectives analysis

Alternative Interventions Total

Cost

Total Effect Change

in Cost

Change

in Effect

ICER

Uncontrolled, u1 = u2 = u3 = 0 0 0 0 0

Preventives u1 6= u2 6= 0,u3 = 0 44,505 14895 44505 14895 2.99

Curative u1 = u2 = 0,u3 6= 0 101,977 15949 57472 1054 54.53

Preventives and Curative u1 6=

u2 6= u3 6= 0

49,558 16102 -52419 153 -4.19

ICER = ∆C
∆E

∆C = Change in Cost

∆E= Change in Effect

From Table 2, the comparison between the preventives and the curatives show a cost saving

of $2.99 for preventives over the curatives. This indicates that the curative is more expensive

and of less effectiveness than the preventive strategies. Therefore, curative is taken off from the

set of alternatives to maximize the limited resources.

The comparison between the preventives and the combined effort of both preventives and

curatives show a cost saving of -$4.19 (negative) for the combined effort of both preventives

and curatives over only preventives. This indicates that the combined effort is less expensive

and of more effectiveness than only the preventive strategies. This is because the negative

ICER for the combine effort of the strategies means there is an improvement in life-years and a

reduction in costs. The ICER for preventives however works out to be positive ($2.99), which

means it costs $2.99 to save an additional life-year.
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10. Conclusion

In this study we formulated and analysed a nonlinear model to determine the transmission

dynamics of infectious disease between human beings and animals in an eco-system. We equal-

ly established the existence of the equilibrium states and carried out a stability analysis of the

equilibrium which shows that the infection can be managed if R0 < 1. A sensitivity analysis of

the basic reproduction number indicates that the rate of infection between the prey populations,

the death rate of the infected prey and the rate of predation of the infected prey are the most sen-

sitive parameters that can be use to control the spread of the infection. Therefore, it is advisable

for policy makers to seriously consider these parameters in the fight against the infection.

In order to obtain a feedback from some interventions we carry out optimal control analysis

base on preventive variables such as quarantining the infected prey and vaccinating the sus-

ceptible prey; creating awareness of the disease by educating and vaccinating the susceptible

predator and a curative variable of drug treatment of the infected predator. Numerical analysis

of the system shows an interesting results , which indicate that all the three strategies (preven-

tives, curatives and a combine effort of both preventives and curative) have positive effects on

the infection, however a further Cost-Effectiveness analysis reveals that the preventive strate-

gies is better in combating the infection than the curative strategy. This conclusion is in line

with a conclusion drawn by Okosun et al [11] who carried out an analysis of recruitment and

industrial human resources management for optimal productivity in the presence of HIV/AIDS

epidemic. It further indicates that a combined effort of both curatives and preventives is superi-

or to the other strategies and therefore necessary to combat the disease. We sincerely hope that

the application of this model will give a better understanding of how to successfully deal with

zoonotic infection.
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