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ABSTRACT

There is speed limitation on hardware built on Weighted Number Systems (WNS) due to

carry propagation. In recent years, attempts have been made to circumvent the speed

limitation imposed on WNS in arithmetic operations by investigating into number systems

such as Residue Number System (RNS) which has special carry characteristics for parallel

computations. RNS is carry-free in nature and is able to support parallel and high speed

arithmetic such as addition and multiplication. Overflow detection is one of the difficult

operations of RNS; but overflow can lead to the representation of incorrect values in the

RNS system ifnot detected. Schemes that will be able to detect and correct overflow during

arithmetic operations will boost research in the RNS. This thesis presents three schemes

for detecting and correcting overflow in RNS arithmetic computations such addition: Two

efficient algorithms for RNS overflow detection and correction for a generalised moduli

set {2an - 1,2an, 2an + 1}, a = 1,2, ... is presented. By taking a = 1, the algorithms

are applied to the popular moduli set {2n - 1, 2n, 2n + 1} for implementation and

comparison. This is done by first devising a novel technique based on the Chinese

Remainder Theorem (CRT) and another based on the Mixed Radix Conversion (MRC)

method by performing partial RNS-binary conversion. The other technique also based on

the MRC for the reverse conversion is applied on the moduli set {22n+1 - 1,2n + 1,2n -

1} with a redundant modulus 2, which assists in detecting overflow during addition

operations in the given moduli set. All the proposed schemes are able to prevent the

representation of illegitimate numbers in the RNS system as if they were legitimate

numbers thus correcting overflow. The schemes are demonstrated theoretically to be more

efficient than similar state-of-the art schemes.
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CHAPTER ONE

INTRODUCTION

1.0 Introduction

A number system is a language for representing numbers. It is defined by the set of values

that each digit can assume and by the interpretation rule that defines the mapping between

the sequences of digits and their numerical values (Kettani, 2006). The main task of

computers is computing, which deals with numbers all the time. Numbers are the basis and

object of computer operations (Lu, 2004). There are various forms of number systems:

Weighted and Non-weighted. The Weighted Number System (WNS) is composed ofa set

of weights Wi such that, any number X can be expressed in the form: X = Lf=l aiwi where

ai are the set of permissible digits. The values of Wi can be successive powers of the same

number in which case the system is said to have fixed radix, however, if the weights are

not the powers ofthe same radix then it is said to have mixed radix (Parhami, 2000).

Everyday number systems that are being used include the decimal (base 10) for easy

counting and the Babylonians number system (base 60) which makes dealing with time

easy (Parhami, 2000). Other systems that are used extensively in computer work are binary

(base 2) in particular and octal (base 8) and hexadecimal (base 16); all these systems belong

to the category ofWNS. The WNS possesses features that makes it useful in computation:

(i) Relative-magnitude comparison of two numbers can be mechanised easily.

(ii) Multiplication or division in binary and decimal is achieved by merely shifting the

digits in the storage registers.

1
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(iii) Extending the range of the number system is easily realised by adding more digits

position.

(iv) Overflow detection is also easily mechanised. Just to mention a few.

The attributes which lead to these advantages impose a limitation on the speed with which

many arithmetic operations can be performed (Parhami, 2000 and Gbolagade, 2010).

In this system, true parallel arithmetic operations in which all the digits are processed

simultaneously is not feasible because of carry propagation. Carry propagation results from

the fact that, in this system, for all arithmetic operations, every digit of the result is a

function of all digits of equal or lower significance. This characteristic makes it

impracticable to implement parallel addition, subtraction, multiplication or division, and

thus impose a limitation on the speed of arithmetic operations and ultimately hardware

built on this system. In recent years, there have been two schools of thought as to how to

circumvent this speed limitation namely, one, adding specialised look-ahead carry circuits

and two, the use of number systems with special carry characteristics.

Residue Number System (RNS) belongs to the second school of thought. To enhance

system performance, the RNS was proposed for computation-intensive application design

because of its ability to support high-speed concurrent arithmetic (Sheu et al., 2004). These

RNS features have been put to good use in various digital signal processing applications

(Nannarelli, Re, & Cardarilli, 2001). Today RNS is also regarded as one of the most

popular techniques for reducing the power dissipation and the computation load in Very

Large Scale Integrated Circuits (VLSI) system design (Stouratitis & Paliouras, 2001). RNS

is a non-weighed number system with special carry characteristics and a potential that

2
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results in high computations (Bankas & Gbolagade, 2013b). In RNS, addition, subtraction

and multiplication are inherently carry-free (Bankas & Gbolagade, 2013c and Bankas &

Gbolagade, 2014), for instance, each digit of the result is a function of only one digit from

each operand, hence independent of all other digits. As a result of the carry-free property,

it is feasible to mechanise operations such as addition, subtraction and multiplication.

1.1 Residue Number System

As stated earlier, RNS is a non-weighted number system that utilizes remainders to

represent numbers. This number system is capable of supporting parallel, carry-free and

high speed arithmetic (Bhardwaj, Srikanthan, & Clarke, 1999). This system also offers

some useful properties such as parallelism, modularity, fault tolerance, and carry-free

operations (Gbolagade et al., 2010 and Bankas & Gbolagade, 2013a). It is very efficient

in carrying out arithmetic operations like additions, subtractions and multiplications.

The speed of the arithmetic operations relies on the size of the numbers involved; smaller

numbers imply faster operations. Since, the numbers used in this system are smaller, it is

known for faster implementation of arithmetic operations, and hence it is very attractive

(Gbolagade, 2010 and Chang, Low, & Yung, 2011). The system is applied in the fields of

Digital Signal Processing (DSP) intensive computations like digital filtering, convolutions,

correlations, Discrete Fourier Transform (DFT) computations, Fast Fourier Transform

(FFT) computations and direct digital frequency synthesis (Mohan, 2007).

However, RNS has not found a widespread usage in general purpose computing due to the

following difficult RNS arithmetic operations: overflow detection, magnitude comparison,

sign detection, moduli selection, and data conversion (Omondi & Premkumar, 2007),

3
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(Jaberipur & Ahmadifar, 2014 and Singh, 2008). Out of these numerous RNS challenges,

Moduli selection, Data conversion, magnitude comparison, sign and overflow detection

are the most critical issues (Bankas & Gbolagade, 2012 and Siewobr & Gbolagade,

2014a). Data conversion can be categorized into forward and reverse conversions. The

forward conversion involves converting a binary or decimal number into its RNS

equivalent whilst the reverse conversion involves converting the RNS number into binary

or decimal (Bankas, 2013). Relatively, reverse conversion is more complex. A general

structure of a typical RNS processor (Narayanaswamy, 2010), is shown in Figure 1.1.

Input
Decimal/B

1 I~ "I Moduloml I :=cQ

~
~-e
~~

1 I
.,., rIJ

Q.. 1 Modulom2 ~
data f) I f) Outl4
inary Q Q Decim= . =-< -<

~ . ~., ~rIJ.... ..•.
Q I I Q

= 1 ModulomN I =

Processing units

utdata
al/Blnary

Figure 1. 1: General structure of an RNS-based processor

1.1.1 Overflow in RNS

Overflow, in general computing is said to occur if a calculated value is greater than its

intended storage location in memory (Daabo, 2015). In RNS, overflow is a condition where

a calculated number falls outside the valid dynamic range of a given RNS (Rouhifar et al.,

2011 and Siewobr & Gbolagade, 2011). Generally an overflow situation usually arises

during addition and multiplication operations and failure to detect it will normally lead to

improper or wrong representation of numbers and calculated results. Thus detecting

overflow is one ofthe fundamental issues in the design of efficient RNS systems (Debnath

4
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& Pucknell, 1978). For example in the popular moduli set {3,4, 5}, the dynamic range is

60 and in representing numbers in this range, no number should be greater than 59. Ifwe

consider the decimal numbers 40 and 25 in this range, their sum is 65, which results in an

overflow condition. In an RNS system, 40 and 25 are represented with respect to the

moduli set {3,4, 5} as (1, 0, 0) and (1, 1,0) respectively. Their sum with respect to {3, 4, 5}

is (2, 1,0) which is equivalent to the decimal number 5. Surely, this is an error (overflow)

because the sum of 40 and 25 cannot be the number 5. Such an error will be used in any

system that the RNS is applied thereby leading to distorted or inefficient systems.

Effects of overflow in RNS systems

In DSP, an input signal is converted into a sequence of numbers that are the result of

sampling and quantizing analog signals. In the process of extracting useful information,

the signals are usually transformed from one type of representation into another type in

which certain characteristics ofthe signal would become obvious (Omondi & Premkumar,

2007). An overflow in a representation therefore will lead to a wrong interpretation of the

signal. Also, as computer chips become increasingly dense, the probability that some part

may fail also increases; however, the large number of components also means that

exhaustive testing is not likely to be practical. Therefore, computational integrity has

become critical (Flynn & Huang, 2005 and Omondi & Premkumar, 2007). And so, there

is the need to have fault tolerant systems. In communication, the multiple-access technique

(easily achieved by use of RNS) used in communication engineering is one way of

efficiently allocating a rare communication resource, namely, the radio spectrum. This

technique becomes meaningful when a large number of users seek to communicate with

each other simultaneously. This sharing of the frequency spectrum must be done in such a

5
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way that it does not negatively affect the quality of performance ofthe system. Errors such

as overflow during the sharing can affect the communication system. Finally, an image

encryption system that contains errors will result in blurriness of the image. These are but

a few ofthe RNS applications in which the occurrence of overflow can affect negatively.

1.1.2 Fundamentals of RNS

RNS is defined in terms of a set of relatively prime moduli set {mili=t,z, ...,n such that the

gcd(mi, mj) = 1 for i '* i,where gcd means the greatest common divisor of rn, and mj'

and M = Df=t mb is the Dynamic Range ( DR). The residues of a decimal number X can

be obtained as Xi = 1X1mi' thus X can be represented in RNS as X = (xv Xz, ... , xn), 0 :::;;

Xi :::;;m, which representation is unique for any integer X E [0, M - 1]. 1X1mi is the

modulo operation of X with respect to mi (Gbolagade et al., 2010). Arithmetic operations

such as (addition, subtraction and multiplication are performed totally in parallel on those

independent residues as:

X 0 Y = {(Xt 0 Yt), (Xz 0 yz), ... , (Xn 0 Yn)}; 0 == (+, -,x) (Younes & Steffan, 2013).

The sign of the range of representable integers can be detected by dividing into two equal

intervals as:

o s X < lM/2J (for positive integers) and

lM /2J s X < M (for negative integers)

1.1.3 Advantages of RNS

Several advantages can be derived from the use ofRNS. Some of them are outlined below:

(i) High speed arithmetic operation

(1.1)

When a weighted number is broken into residues, which are relatively smaller than

their weighted equivalents, performing arithmetic operations tends to be faster.

6
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(ii) Parallel Arithmetic Operation

Arithmetic operations such as addition, subtraction, multiplication and division can

be performed on residues simultaneously with each operation being independent

of the other (Omondi & Premkumar, 2007 and Soderstrand et al., 1986).

(iii) Carry Free Arithmetic

In RNS carries and borrows are not propagated and the result of an operation is

with respect to a modulus as opposed to weighted number system where there are

carries and borrows. To find the value of a negative number in a given modulus,

the modulus is iteratively added to the given number until a positive number is

obtained (Gbolagade, 2010).

(iv) Error Detection and Correction Capabilities

The modular nature ofRNS makes error detection and correction easy as compared

to other number systems. In operations such as addition, subtraction and

multiplication, any particular digit of the resultants depends solely on the

corresponding digits of the sub operation (Dugdale, 1992 and Gbolagade, 2010).

Also multiplication is executed in a single step without any partial product and it

is difficult for errors to propagate between parallel sub operations since they are

independent of each other.

1.1.4 Challenges of RNS

Notwithstanding the numerous advantages associated to the use of RNS, it is confronted

with a lot of challenges which make its application and implementation very difficult.

Some of these challenges are outlined below:

7

www.udsspace.uds.edu.gh 

 

 

 

 



(i) Data Conversion

The most direct way to convert from a conventional representation to a residue

representation, a process known as forward conversion, is to divide by each of the

given moduli and then collect the remainders. This however, is likely to be a costly

operation if the number is represented in an arbitrary radix and the moduli are

arbitrary. If on the other hand, the number is represented in radix-2 (or a radix that

is a power oftwo) and the moduli are ofa suitable form (for example 2n - 1),then

the procedures can be implemented with more efficiency. The conversion from

residue notation to a conventional notation, a process known as reverse conversion,

is more difficult (conceptually, ifnot necessarily in the implementation) and so far

has been one of the major impediments to the adoption and use of RNS (Omondi

& Premkumar, 2007).

(ii) Overflow Detection

As mentioned earlier, Overflow is a condition where a number which falls outside

the legitimate range of a particular RNS i.e.,[O, M - 1], (M = Of=1 mi) is

represented as a legitimate RNS number. The general method of detecting overflow

in RNS is by comparing the result of addition with one of the addends. If X2: 0 and

Y < M then eX + Y) mod M causes overflow if and only ifthe result is less than X

(Theodore, 1989; Omondi & Premkumar, 2007 and Younes, 2013). One of the

most efficient ways to detect overflow in RNS is via parity checking (Rouhifar et

al., 2011). It indicates whether an integer is even or odd. Suppose two integers (X,

Y) have the same parity: Z = X + Y. An overflow occurs if Z is odd. Contrary, if

(X, Y) have different parity, then an overflow occurs if Z is even. This technique

8
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is one of the best and fastest suggested methods to detect the overflow in RNS.

However, this technique is only suitable for moduli sets with odd dynamic range.

But RNS systems that have even dynamic ranges, have more attractive features

than those with odd dynamic ranges. This is because using (Z") modulo which

turns dynamic ranges to even, greatly simplifies and reduces the delay and

complexity of the scheme (Gbolagade, 2010).

(iii) Sign Detection

In contrast to the conventional weighted number systems, the sign of a residue

number is a function of all the residue digits of that number. Due to this, numbers

represented in RNS are without the use of negative or positive signs thus making it

virtually impossible to differentiate positive and negative numbers (Omondi &

Premkumar, 2007).

(iv) Moduli Selection

The kind of moduli set that is used, determines the range of values that can be

represented in RNS, the complexity of the arithmetic operation and also the speed

of the arithmetic operations (Molahosseini et al., 2010). The efficiency of RNS

largely depends on the moduli set selected.

(v) Magnitude Comparison

It is very difficult to determine the magnitude of a residue number at a glance due

to the fact that it is not weighted. This to some extent limits the operations that can

be performed in RNS.

9
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(vi) Difficulty in carrying out complex arithmetic operations

It is practically easy when it comes to performing arithmetic operations such as

addition and subtraction in RNS, this is not so in the case of division (Keir, Cheney,

& Tannenbaum, 1962). The complexity associated with the division of numbers in

RNS makes it difficult to implement.

1.1.5 Application ofRNS

One of the advantages of RNS is its ability to carry out high speed computation as well as

perform parallel arithmetic; this has led to its adoption in Digital Signal Processing (DSP)

applications. RNS is used in DSP applications such as:

(i) Digital Filtering

A digital filter refers to an electronic device designed to operate on a sample

discrete-time signal to enhance or reduce certain aspects ofthat signal. Digital filter

microprocessors are constructed using RNS; it carries out intensive numerical

operations (Etzel & Jenkins, 1980 and Younes, 2013). Digital filters make it

possible to have many designs which are impracticable with analogue filters and

find a whole range of applications in areas of cell phone and stereo receiver

production (Omondi & Premkumar, 2007).

(ii) Discrete Cosine Transform (DCT)

This makes use of a sequence of finitely many data points expressed in terms of

the sum cosine functions oscillating at different frequencies. DCT's are important

to a number of applications in science and engineering from lossy compression of

audio and images to spectral methods for the numerical solution of partial

differential equations (Omondi & Premkumar, 2007).

10
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(iii) Discrete Fourier Transform (DFT)

Here, a special kind of transform called the Discrete Fourier Transform is used in

fourier analysis where one function is transformed into another called the domain

representation or DFT for short of signal function. This is mostly a function in the

time domain (Omondi & Premkumar, 2007 and Younes, 2013).

(iv) Fast Fourier Transform (FFT)

RNS is also used in Fast Fourier Transform algorithm that is used to efficiently

compute the DFT and its inverses. A DFT breaks down or decomposes a sequence

of values into components of different frequencies. This operation is useful in many

fields, but computing it directly from the definition is often too slow to be practical.

A FFT computes the same results more quickly (Omondi & Premkumar, 2007).

(v) Digital Communication

The application of RNS in digital communication is mainly for performing tasks

such as direct digital synthesis using RNS processors.

(vi) Error Detection and Correction

The modular nature of RNS makes it a fault tolerant number system. This feature

makes RNS a desirable tool for error detection and correction.

1.2 Problem Statement

Many researchers have proposed schemes for both odd and even dynamic range using

techniques that do not require the full-reverse conversion process. Recently proposed RNS

overflow detection algorithms still rely on the later (Younes & Steffan, 2013), and other

costly and time consuming procedures such as base extension, group number and sign

detection (Rouhifar et al., 2011) and (Siewobr & Gbolagade, 20 14b). From literature

11
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available, most works on overflow detection are silent on how to correct overflow if it

occurs. Failure to detect overflow in the RNS processor during operations such as addition

and multiplication will lead to wrong representation and calculated results; detecting

overflow alone is not enough. The ability to correct it in a more efficient way will lead to

an enhancement of the RNS processor. The RNS will gain prominence in the world of

computing if errors such as overflow can be detected and corrected as well.

This thesis presents efficient algorithms for RNS overflow detection and correction in RNS

arithmetic computations such as addition.

1.3 Research Questions

As a result of the problems stated above, the following research questions are to be

investigated;

(i) Can the CRT and MRC be simplified for a generalised moduli set

{2an - 1, 2an, 2an + 1} with even dynamic range?

(ii) Can the simplification in (i) be simplified to the popular moduli set

{2n - 1, 2n, 2n + 1} in order to design an overflow detection and correction

scheme?

(iii) Can the MRC be simplified for the moduli set {22n+1 - 1,2n + 1, 2n - 1} in

a manner that overflow detection and correction will not require full reverse

conversion?

(iv) What will be the performance ofthe proposed algorithms in terms of hardware

resources and speed compared to similar state-of-the art schemes?

12
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1.4 Main Objective of the study

The main goal of the thesis is to propose efficient schemes to detect and correct overflow

in RNS arithmetic computations.

1.4.1 Specific Objectives ofthe Study

The specific objectives of the thesis include but not limited to the following:

(i) Simplify the CRT and MRC for a generalised moduli set {2an - 1,2an, 2an + 1}

with even dynamic range.

(ii) Apply the simplification in (ii) to the popular moduli set {2n - 1, 2n, 2n + 1} in

order to design overflow detection and correction schemes.

(iii) Simplify the MRC for the moduli set {22n+1 - 1, 2n + 1, 2n - 1} in a manner that

overflow detection and correction will not require full reverse conversion process.

(iv) Evaluate the performance of the proposed algorithms against the state of the art

designs in terms of hardware resources and speed.

1.5 Significance of the Study

For a successful application of RNS, data conversion must be very fast so that the

conversion overhead does not nullify the RNS advantages but the converted data may

contain errors if overflow occurs and is not detected, more so, if it cannot be corrected.

The effective design and implementation of schemes that can detect and correct overflow

in RNS arithmetic computations will eliminate the errors associated with the conversion

process and also build fault tolerant architectures. Proposing efficient reverse converters

and overflow detection algorithms will therefore bring enhancement in speed and area

consumption to DSP intensive computations like digital filtering, convolutions,

13
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correlations, DFT, FFT computations, direct digital frequency synthesis, image processing

and cryptography.

1.6 Organisation of the Study

The rest of the thesis is organised as follows: In chapter two, a background information on

RNS as well as a review of related works on overflow detection will be presented. In

chapter three, two techniques for detecting and correcting overflow during addition

operations in the moduli set {2an - 1, 2an, 2an + 1} will be presented. For purpose of

implementation, the popular moduli set {2n - 1,2n, 2n + 1} thus taking a = 1, will be

used. The first technique is going to be based on the CRT and the second based on the

MRC by using MRDs to evaluate the sign of the addends. In chapter four, a different

method of detecting and correcting overflow in the moduli set {22n+l - 1,2n + 1, 2n - 1}

will also be presented. In this method, a redundant modulus 2 will be added to the given

moduli set for detecting overflow during RNS addition. Finally, chapter five presents

summary of findings, conclusions, recommendation and future work of the study.
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CHAPTER TWO

BACKGROUND INFORMATION AND REVIEW OF RELATED WORKS

2.0 Introduction

Notwithstanding the many advantages and vast application areas of the RNS, overflow is

still one of the challenges of this system. This chapter presents some history and

background information on RNS and overflow detection in RNS and reviews other

selected research works on overflow detection.

2.1 History of RNS

A riddle posted in a book authored by a Chinese scholar called Sun Tzu in the first century

was the first documented manifestation of RNS representation (Omondi & Premkumar,

2007 and Singh, 2008). The riddle is described by the following statements:

We have things of which we do not know the number:

If we count them by threes, the remainder is 2.

If we count them byjives, the remainder is 3.

If we count them by sevens, the remainder is 2.

How many things are there?

The answer is 23.

In other words, "What number yields the remainders 2, 3, and 2 when divided by 3, 5, and

7, respectively?" In modem terminology, 2, 3, and 2 are residues, and 3, 5, and 7, are

moduli. Sun Tzu gave a rule, the Tai-Yen (Great Generalization) for the solution of his

puzzle. In 1247 AD, another Chinese mathematician, Qin Jiushao, generalized the Great
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Generalization into what is now known as the Chinese Remainder Theorem (CRT), a

mathematical jewel (Omondi & Premkumar, 2007). The CRT provides an algorithmic

solution of decoding the residue encoded number back into its conventional

representation. This theorem is considered the cornerstone in realizing RNSs

(Narayanaswamy, 2010). Encoding a large number into a group of small numbers results

in significant speed up of the overall data processing. This fact encourages the

implementation ofRNS in some applications where intensive processing is inevitable.

In the 1950s, RNS was rediscovered by computer scientists, who sought to put it to use in

the implementation of fast arithmetic and fault-tolerant computing (Omondi &

Premkumar, 2007). Three properties of RNS make it well suited for these. The first is

absence of carry-propagation in addition and multiplication, carry-propagation being the

most significant speed-limiting factor in these operations. The second is that because the

residue representations carry no weight-information, an error in any digit-position in a

given representation does not affect other digit-positions. The third is that there is no

significance-ordering of digits in an RNS representation, which means that faulty digit-

positions may be discarded with no effect other than a reduction in dynamic range.

The new interest in RNS was not long-lived, for three main reasons: One, a complete

arithmetic unit should be capable of at least addition, multiplication, division, square-root,

and comparisons, but implementing the last three in RNS is not easy; two, computer

technology became more reliable; and, three, converting from RNS notation to

conventional notation, for "human consumption", is difficult. Nevertheless, in recent years

there has been renewed interest in RNS. There are several reasons for this new interest,
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including the following. A great deal of computing now takes place in embedded

processors, such as those found in mobile devices, and for these high speed and low-power

consumption are critical; the absence of carry-propagation facilitates the realization of

high-speed, low-power arithmetic. Also, computer chips are now getting to be so dense

that full testing will no longer be possible; so fault-tolerance and the general area of

computational integrity have again become more important. Lastly, there has been

progress in the implementation of the difficult arithmetic operations (Omondi &

Premkumar, 2007). True, that progress has not been of an order that would justify a deluge

of letters home; but progress is progress, and the proper attitude should be gratitude for

whatever we can get. In any case, RNS is extremely good for many applications - such as

digital signal processing, communications engineering, computer security (cryptography),

image processing, speech processing, and transforms - in which the critical arithmetic

operations are addition and multiplication (Younes, 2013).

2.2 The Concept of Overflow Detection

Overflow, in general computing is said to occur if a calculated value is greater than its

intended storage location in memory. In RNS, overflow is said to be a condition where a

calculated number falls outside the valid dynamic range of a given RNS (Siewobr &

Gbolagade, 2011) and (Daabo & Gbolagade, 2012). Overflow detection is one of the

fundamental issues in efficient design of RNS systems. In a more generalized approach,

overflow occurs in the addition of two numbers X and Y, whenever eX + Y) mod M is less

than X, where M = nr=l m, is the system dynamic range (Daabo & Gbolagade, 2014).

Thus, the problem of overflow detection in RNS arithmetic is equivalent to magnitude

comparison (Askarzadeh, Hosseinzadeh, & Navi, 2009). Another algorithm that has been
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proposed for overflow detection in odd dynamic range M is a ROM-based algorithm and

is called the parity checking technique. Parity indicates whether an integer number is even

or odd. Given the operands X and Y which have the same parity, and Z = X + Y. The

addition process is with overflow, if Z is an odd number (Shang, et al., 2008). For signed

overflow detection in RNS, overflow occurs when the sign of the sum of operands is

different from the sign of the operands (Rouhifar et al., 2011).

2.3 Traditional Methods of Overflow Detection

In the traditional approach, overflow detection is done by full reverse conversion (Siewobr

& Gbolagade, 2014b). Thus, given the residue representation of a number, overflow can

only be detected by fully converting the number back to its binary or decimal equivalent.

Given the residues Xi = IXlm., i = 1,2,3, ..., many techniques/algorithms have been
l

devised to convert back to its binary equivalent. Popular among these residue-to-binary

conversion techniques are the Chinese Remainder Theorem (CRT), Mixed Radix

Conversion (MRC), and the recently modified CRT to CRT-I, CRT-II and CRT-III among

others (Hosseinzadeh, Molahosseini, & Navi, 2009).

2.3.1 Chinese Remainder Theorem

The Chinese Remainder Theorem (CRT) can be used to backward convert the residue

digits (xv X2, ... , xn) of the moduli set {mv m2, ... , mn} to its decimal number X to detect

overflow as follows:

n

X = L Ii IkiXdmi
i=l M

(2.1)

where,
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N-r-.
i=l

The main problem with the CRT is the involvement oflarge modulo M operation which is

generally expensive.

2.3.2 Mixed Radix Conversion

The Mixed Radix Conversion (MRC) approach serves as an alternative method to the CRT

as it does not involve the use of the large modulo- M computation. This method also detect

overflow by converting the residue digits (xv xz, ..., xn) ofthe moduli set {mv mz, ...,mn}

to its decimal equivalent X as follows:

(2.2)

where ei' i = 1,2, ... , n are the Mixed Radix Digits (MRDs) and computed as follows:

The MRDs ei are within the range 0::; ei ::; mi' and a positive number, X, in the

interval [0, M] can be uniquely represented. It can be seen that the MRC method has an

advantage over the CRT approach since it only uses mod-rn, instead of mod-M as in the

case ofthe CRT. However, MRC by its very nature involves sequential operations and can

limit speed (Gbolagade et al., 2010).
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2.4 Dynamic Range Overflow

Most research work on overflow detection are based on processors built separately to

detect multiplicative and additive overflow (Theodore, 1989). Invariably, most of the

schemes adopted are still completely dependent on the CRT or the MRC and thus resulting

in processors that are hardware intensive and slow in nature. Siewobr & Gbolagade, (2011)

proposed an overflow detection algorithm for the moduli set {M, M + 1}. In their proposal,

the residue number (Xi,Xi+1) is obtained from {M,M + 1} and the validity of no overflow

occurs when xi = Xi+l. However building adders with the M + 1 modulus is very

expensive. The authors again developed an additive overflow detection algorithm that

reduces the large modulo M to Mi by scaling M and integers X and Y with ml = 2n. This

approach is hardware intensive with increase in delay since the process involves scaling.

2.5 Other Approaches

Recently other techniques have been developed to detect overflow without necessarily

completing the reverse conversion process; Askarzadeh et al., (2009) proposed an

algorithm to detect overflow in the moduli set (Z" - 3, 2n - 1, 2n, 2n + l,2n + 3) by

adding a redundant modulus 2 to this moduli set and making use of ROM and XOR gates.

It was demonstrated that their proposed algorithm could be implemented by a limited

number of components and had less delay compared to previous works. Rouhifar et al.,

(2011) presented a novel method for detecting overflow in the moduli set (2n - 1,2n, 2n +

1) based on group of numbers. In their proposed method, numbers [0, M - 1] are

distributed among several groups. Then, by using the groupings, they were able to diagnose

in the process of addition of two numbers, whether overflow has occurred or not without

20
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doing a complete comparison or need to use the residue to binary converter. Younes &

Steffan, (2013) evaluated the sign of the sum of two numbers X and Y and used it to detect

__ •__ Cl_ ••• 'T'1.. __ • _1 •• •._.l •.1.._ •.••• 1.. • •__ Cl_ ••• •• __ _.l.l! __ 1..__ 1. I .• /!_

dynamic range) to the result will give the correct value and thus called it overflow

correction technique. The authors adopted a residue-to-binary converter proposed by

(Piestrak, 1995). Siewobr & Gbolagade, (2014b) presented a generalised scheme for

detecting overflow in RNS, followed by a simplified Operands Examination Method for

overflow detection for the moduli set (2n - 1,2n, 2n + 1). Their proposed method

detected overflow in RNS addition of two numbers without pre-computing their sum. All

these schemes either relied on complete reverse conversion process as in the case of

(Younes & Steffan, 2013), or other costly and time consuming procedures such as base

extension, group number and sign detection as in (Rouhifar et al., 20 II and Siewobr &

Gbolagade, 20 14b).
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CHAPTER THREE

OVERFLOW DETECTION AND CORRECTION SCHEMES FOR

MODULI SETS OF THE FORM {2an - i.a=, a= + 1} DURING

RNS ADDITION

3.0 Introduction

In this chapter, two efficient algorithms for RNS overflow detection and correction for

generalised moduli sets of the form {2an - 1,2an, 2an + 1}, a = 1,2, ... are proposed.

But in order to implement and compare the proposed algorithms, a = 1 is considered and

applied to the popular moduli set {2n - 1,2n, 2n + 1} for implementation and

comparison. Thus, the choice of a values will determine the range of legitimate RNS

numbers that can be represented.

3.1 RNS Additive Overflow Detection and Correction Based on the Chinese

Remainder Theorem

In this section, a novel method for detecting overflow as well as preventing the

representation of illegitimate numbers as if they are legitimate numbers in the DR (thus

correcting overflow) is presented. The ensuing method will be based on a simplification

the Chinese Remainder Theorem to achieve a partial reverse conversion of two RNS

numbers X and Y and then a novel algorithm developed to check the occurrence or

otherwise of overflow during the addition of these numbers; and if overflow occurs, the

technique avoids the representation of wrong values and gives the correct values.
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3.1.1 Proposed Method

Given the RNS numbers X = (xv Xz, X3) and Y = (yv Yz, Y3) with respect to the moduli

set {2n - 1,2n, 2n + 1}, where m1 = 2n - 1, mz = 2n and m3 = 2n + 1 we have from

equation (2.1):

/1 = 2n(2n + 1); /z = (2zn - 1); (3.1)

Lemma 3.1: For the given moduli set, we have, (Bankas & Gbolagade, 2013b):

Ik11ml = 12n-11ml (3.2)

Ikzlm2 = I-11m2 (3.3)

Ik31m3 = 1-2n-1Im3 (3.4)

Proof: If it can be demonstrated that I/i x kdmi = 1then Ikdmi is the multiplicative

inverse of /i mod mi, i = 1,2,3:

Thus for (3.2), 12n(2n + 1) x (2n-1)lzn_1 = 1(2n + 1) x (2n-1)lzn_1

= 12 x (2n-1) Izn-1

= 12nlzn_1

= 111zn-1 = 1

Also for (3.3), 1(2Zn -1) x (-l)lzn = 1(-1) X (-l)lzn

= 111zn = 1

Lastly for (3.4), 12n(2n - 1) x (-2n-1)lzn+1 = 1(2n - 1) x (2n-1)lzn+1

= 1-2 x (2n-1)lzn+1

= 1(-1) X (-l)lzn+1

= 111zn+1 = 1 •
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Theorem 3.1: For the given moduli set, any RNS number X can be represented as;

(3.5)

where,

(3.6)

Proof: Substituting equations (3.1) through to (3.4) into equation (2.1) and factorizing out

2n we obtain (3.5).

From (3.5), let X and Y be two RNS numbers such that their sum is Z. Which implies that:

X = 2npx + Xz (3.7)

(3.8)

Z = 2n(px + Py) + Xz + Yz

(3.9)

Where K = Px + Py and u = Xz + Yz

Let

{

O; Jl. < 2n

p=
1; Jl. ~ 2n

(3.10)

Theorem 3.2: Given any two RNS numbers X = (XVXZ,X3) and Y = (YvYZ,Y3),

overflow occurs if and only if

K ~ 2Zn-l (3.11)

or

K = 2Zn - 2 and p = 1 (3.12)

Proof: Assume (3.11) holds true; then for (3.9)
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z ~ 2n(2zn - 1) + /1

~ M +/1

Which is outside the legitimate range, i.e. [0, M - 1], hence overflow will occur.

Furthermore, if (3.12) holds true then (3.9) can be rewritten as

Z = 2n(2zn - 2 + 1)

=M,

(3.13)

(3.14)

which is also outside the legitimate range, therefore overflow will occur. Hence proofed.

From equation (3.9), Z will be the correct result of summing X and Y whether overflow

occurs or not in the given moduli set, but will be out of the range in [0, M - 1] if either

(3.11) or (3.12) holds; therefore K should be added to the DR to be [0, M + K - 1] in order

to legitimize Z.

3.1.2 Hardware Implementation

Equation (3.6) can further be simplified as follows

p = 1<P1+ <Pz + <P3 + <p4Iz2n-1

where

<P1 = I(2nX1 + x1)2n-1!z2n_1

<Pz = 1-2nxz!z2n_1

<P3 = I-X3!z2n_1

<P4 = 12n-1X3!z2n_1

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

Now, we consider (3.15)-(3.19) and simplify them for implementation in a VLSI system.

It is necessary to note that Xi,j means the j-th bit of Xi.
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Evaluation of CfJI

The residue Xl can be represented as follows;

(3.20)

Thus,

(

n Bits n Bits )n I ,-...-., ,-...-.,
2 - ~l,n-l ... XI,OO... ~ + ? ..0 XI,n-1 ... XI,O,

2n-bits 2n 22n-1

= 2n-
1

(~l,n-l ... XI,IXI,oxI,n-1 ... XI'IXI'~)
2n-bits 22n-1

n+l Bits
= XI,OXI,n-1 ... XI,lXI,a ~l,n-l ... XI,n+2XI,I,

n-l

(3.21)

Evaluation of CfJ2:

The residue X2 can be represented as follows;

(3.22)

Therefore,

nBits

1-2nX2b2n_1 = X2,n-1 ",X2,IX2,O't1. .. 1i (3.23)

Evaluation of CfJ3and CfJ4:

The residue X3 can be represented as follows;

(3.24)

Therefore,

nBits

CfJ3= l-x3122n_1 = 'tl ..• li~3,n_1 ",X3,IX3,~
n Bits

(3.25)

Again,
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n-I Bits

<fJ4 = 12n-IX3b2n_1 = ?X3,n ,,,X3,IX3,1?, '00... 06
n+1 Bits

(3.26)

Correction unit

In order to evaluate the sum Z, we further simplify equation (3.9).

Z=T+J.l. (3.27)

nbits------
T = 2nK = [(2nK2n-1 ... KIKo 00 ... ~

3n+1 bits

(3.28)

J.l.= J.l.nJ.l.n-1···J.l.IJ.l.O
, "

(3.29)
n+1 bis

Therefore,

2n bits------Z = T3n T3n-1 .,. TI To + 00 ... 0 J.l.nJ.l.n-1 ... J.l.IJ.l.O
•.. ,

3n+1 bits

(3.30)

Implementation of equations (3.27) - (3.30) gives the correct result of Z whether overflow

occurs or not.

3.1.3 Proposed Architecture

The floor function p, in (3.6) is computed according to equation (3.15) where all the

parameters are defined in equations (3.16) - (3.19). For two numbers X and Y, Px and Py

are the p values corresponding X and Y respectively and are computed separately. As

shown in Figure 3.1, p is computed using CSAs land 2 and two regular 2n-bit CPAs 1 and

2. The results of these CPAs are passed on to a multiplexer (MUX 1), which would then

pass either of them down. MUX 1 will pass on the result of CPA 1 if the carry out ofCSA

1 is a '0', otherwise the result of CPA 2 is passed on. Px corresponding to the binary

number X and Py corresponding to the binary number Yare added using a regular (2n +

1) bits CPA 3 in order to get K; at the same time, X2 and Y2 is computed using a regular
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(n + 1) bits CPA 4 to obtain /1. A multiplexer (Mux 2) is used to select the value of P to

be zero if the most significant bit (MSB) of /1 is 0, otherwise, it selects one (1) ifthe MSB

of /1 is 1. This is shown in Figure 3.2 which is the overflow detection unit. CSAs 1 and 2

require an area of 2nLlpA each as well as CPAs 1 and 2. In order to obtain p will require a

total area of 8nLlpA. So for two numbers X and Y, the total area requirement will be

16nLlpA- CPA 3 demands an area of (2n + l)LlpA and CPA 4 also requires (n + l)LlpA of

resources. Thus, the area requirement for the overflow detection component is (3n +

2)LlpA. Therefore, the total area requirement of the overflow detection scheme is (19n +

2)LlpA. Regarding the delay, each CSA (i.e. CSAs 1 and 2) impose a delay of DpA while

the CPA pair 1 and 2 impose a delay of 2nDpA since they are in parallel, for two numbers

this will become 4nDpA, thus delay imposed on computing p is (4n + 2)DPA. Also the two

CPA pair 3 and 4 imposes a delay of (2n + l)DPA for the overflow detection unit. The

delay required for the proposed scheme is (6n + 3)DFA. The correction unit (shown in

Figure 3.3) uses a regular (3n + 1) bits CPA 5. The area requirement is (3n + l)LlpA and

its delay is also (3n + 1)DpA. The schematic diagrams for the proposed scheme are shown

in figures 3.1, 3.2 and 3.3.
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MSB(CSA2

p

Figure 3.1: Block diagram of the partial reverse converter

CPA 3
2n + 1Bits

CPA 4
n + 1Bits

K
MSB(jL

------------------------------------~------------
Figure 3.2: Overflow detection unit

z
Figure 3.3: Correction Unit
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3.1.4 Numerical Illustrations

This subsection looks at numerical examples with the proposed scheme.

Checking overflow in the sum of 49 and 21 using RNS moduli set {3, 4,5}

49 = (1,1,4hNs(314IS) = (01,01,100)RNS(1111001101)

21 = (0,1,lhNs(314IS) = (00,01,001hNS(1111001101)

= ((01,01,100) + (00,01,001)) RNS(1111001101)

= (01,10,000hNS(1111001101)

RNS to decimal conversion of (01,10,000hNS(1111001101) will result in the decimal

number 10. Whilst the sum of the decimal numbers 49 and 21 is 70 which is obvious of

overflow occurring.

Checkingfor RNS overflow using the proposed algorithm

Px = 12 = 01100

Py = 5 = 00101

K = Px + Py = 01100 + 00101 = 10001

u = 01 + 01 = 010, P = °
Since the MSB of K is "I", the scheme will detect that overflow has occurred.

From (3.25),

Z = 1000100 + 0000010 = 1000110 = (70)decimal

Checking overflow in the sum of28 and 32 using RNS moduli set {3, 4, 5}

28 = (1,0,3hNs(314IS) = (01,00,011hNS(1111001101)

32 = (2,0,2hNS(314IS) = (10,00,010hNS(1111001101)
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= ((01,00,011) + (10,00,010)) RNS(11110oI101)

= (00,00,000hNS(1111001101)

RNS to decimal conversion of (00,00,000hNS(1111001101) will result in the decimal

number o. Whilst the sum of the decimal numbers 28 and 32 is 60, a clear sign of overflow

occurring.

Checking for RNS overflow using the proposed algorithm

Px = 7 = 00111

P» = 8 = 01000

K = Px + Py = 00111 + 01000 = 01111

J.l = 00 + 00 = 000, p = O.

Even though, the MSB of K is not "I", all other bits are "I" therefore the scheme will

detect that overflow has occurred.

From (3.25),

Z = 0111100 + 0000000 = 0111100 = (60)decimal

Checking overflow in the sum of 10 and 11 using RNS moduli set {3, 4, 5}

10 = (1,2,0)RNS(314IS) = (01,10,000hNS(1111001101)

11 = (2,3,lhNs(314IS) = (10,11,001)RNS(1111001101)

= ((01,10,000) + (10,11,001))RNS(1111001101)

= (00,01,001hNS(1111001101)

RNS to decimal conversion of (00,01,001hNS(1111001101) will result in the decimal

number 21 which is the correct result of 10 + 11.

Checking for RNS overflow using the proposed algorithm
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Px = 2 = 00010

Py = 2 = 00010

K = 00010 + 00010 = 00100

u = 10 + 11 = 101, P = 1.

After processing, the scheme will obviously detect no overflow since it is only Kzn-z = 1.

And from (3.25),

Z = 0010000 + 0000101 = 0010101 = (21)decimal

3.1.5 Performance Evaluation

In order to evaluate the performance of the proposed overflow detection scheme, it is

compared with similar best known state ofthe art schemes. Theoretical analysis from Table

3.1 shows that the proposed scheme has less delay and complexity without compromising

on accuracy compared to that in (Younes & Steffan, 2013) which has a correction

component. The proposed scheme is also faster than the scheme in (Siewobr & Gbolagade,

20 14b). Even though, the hardware complexity of the proposed scheme is higher than that

in (Siewobr & Gbolagade, 2014b), the proposed scheme uses three comparators and a

single AND gate whilst the scheme (Siewobr & Gbolagade, 20 14b) uses six comparators

and three AND gates which are not included in the comparison. It is also clear from the

ADZ analysis that the proposed scheme is very efficient than the previous schemes. The

correction part is not included in the evaluation just as it is not included in (Younes &

Steffan, 2013) for fairness. In any case, the accurate result is a (3n + 1) bit sum (Z) in

(3.8) therefore, a (3n + 1) bit adder is designed to cater for the addition.
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Table 3.1: Area and Delay Comparison for Proposed Schemel

Scheme Area(.1FA) Delay(DFA) ADz

Siewobr & GboJagade, lln+6 22n + 12 5324n3 + 81712n2 + 4752n + 864

(2014b)

Younes & Steffan, 37n + 18 16n + Jogn + 13 9472n3 + 20000n2 + 13661n

(2013) +3042

Proposed 19n+2 6n+3 684n3 + 756n2 + 243n + 18

Table 3.2: Area and Delay analysis for various values of n
AREA DELAY ADz

n S&G Y&S Proposed S&G Y&S Proposed S&G Y&S Proposed

(1014) (1013) (1014) (1013) (1014) (1013)

1 17 55 21 34 29 9 92652 33880 1701

2 28 92 40 56 45.3 15 379808 161550 9000

3 39 129 59 78 61.48 21 894276 442884 26019

4 50 166 78 100 77.6 27 1668000 934714 56862

5 61 203 97 122 93.7 33 2732924 1693872 105633

6 72 240 116 144 109.78 39 4120992 2777190 176436

7 83 277 135 166 125.85 45 5864148 4241500 273375

8 94 314 154 188 141.9 51 7994336 6143634 400554

9 105 351 173 210 157.95 57 10543500 8540424 562077

10 116 388 192 232 174 63 13543584 11488702 762048

Total 665 2215 1065 1330 1016.56 360 47834220 36458350 2373705

S&G: Siewobr & Gbolagade; Y&S: Younes & Steffan

Table 3.2 shows a detail analysis of the complexities and delay of the proposed scheme

with similar state-of-the-art scheme by taking different values of n (in this case values of

n from I to 10). The values obtained from this table is used to plot the graphs in Figures
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3.4 to 3.6 in order to give a clear pictorial view of the performance of the proposed scheme.

An error analysis from the table shows that the proposed scheme is about 95% more

efficient in terms of the AD2 values than the scheme by (Younes & Steffan, 2013) and over

96% than the scheme by (Siewobr & Gbolagade, 2014b) for the chosen values ofn. The

graph in Figure 3.6 depicts this clearly.

Comparison of area
450
400
350
300

~ 250
~ 200

150
100
50
o

2 3 4 5 6 7 8 9 10

n values

-AREA S&G (2014) AREA Y&S (2013) -AREA Proposed

Figure 3.4: Graph of area comparison of proposed schemel with other schemes

From Figure 3.4, it clear that (Siewobr & Gbolagade, 2014b) requires the lesser resources

and the Proposed Scheme also requires less than the scheme by (Younes & Steffan,

2013). Figure 3.5 is the graph of the delay comparison ofthe various schemes; it shows

that the Proposed Scheme is much faster than the compared schemes.
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Comparison of delay
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-DELAY S&G(2014) -DELAY Y&S(2013) -DELAY Proposed

Figure 3.5: Graph of delay comparison of proposed scheme 1 with other schemes

Figure 3.6 shows the efficiency comparison of the various schemes. As shown in this

figure, the Proposed Scheme is the most efficient by plotting the AD2 values of the

schemes against the chosen values of n.

16000000

14000000

12000000

10000000

~ 8000000

6000000

4000000

2000000

o

Comparison of A[)2

1 2 3 6 7 8 9 104 5

n values

-AD2 S&G(2014) -AD2 Y&S(2013) -AD2 Proposed

Figure 3. 6: Graph of AD2 comparison of proposed scheme 1 with other schemes
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In the next section, another method for detecting and correcting overflow during addition

using Mixed Radix Digits (MRDs) by magnitude evaluation will be presented for the same

moduli set.

3.2 RNS Additive Overflow Detection and Correction Scheme through

Magnitude Evaluation using Mixed Radix Digits

In this section, a new technique for detecting and correcting overflow during the addition

of two RNS numbers for the moduli set {Zn - 1, Zn,Zn + 1} is presented; the technique

evaluates the sign of an RNS number by performing a partial reverse conversion using the

mixed radix conversion method. The sign of the addends is evaluated using only the MRDs

which is then used to detect the occurrence of overflow during RNS addition.

3.2.1 Proposed Method

Given the moduli set {Zn -l,zn,Zn + 1}, where ml = Zn + 1, m2 = Zn and m3 = Zn-

1, then

(3.31)

This implies

~/z = Zn-l(Zn + l)(zn - 1)

= (zn + 1)(z2n-l _ zn-l) (3.32)

Lemma 3.2: Given the moduli set {Zn - 1, zn, Zn + 1}, where m1 = zn + 1, m2= Zn and

m3= Zn - 1 for every integer n > 1, the following hold true, (Siewobr & Gbolagade,

2014b):

(3.33)
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(3.34)

(3.35)

Proof: If it can be demonstrated that Imil x mi I
mi

= 1, then mil is the multiplicative

inverse of mi with respect to mi' Thus;

For (3.33), 1(2n + 1) x 1bn = 11x 1bn

= 11bn = 1

Also for (3.34), 1(2n) X 1lzn-l = 11 X 1lzn-l

= 11lzn-l = 1

Finally for (3.35), 1(2n + 1) x (2n-l)lzn_l = 12 x (2n-l)bn_l

Therefore we can re-write (2.3) as;

(3.36)

Theorem 3.3: For the given moduli set, any integer X ~ M /2 if and only if

e3 = 2n - 2n-l (3.37)

or

e3 = 2n - 2n-l - 1 AND ez = 2n - 2n-l (3.38)

for any n > 1.

Proof: Ifit can be shown that by substituting (3.37) and (3.38) into equation (2.2) that,

X ~ (2n + 1) (2Zn-l - 2n-l) then, it implies X ~ M /2.
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Assume (3.3 7) is true, then

X = el + (2n + 1)e2 + (2n - 2n-1 )2n(2n + 1)

= el + (2n + 1)e2 + (2n + 1)(22n - 22n-1)

= el + (Z" + 1)[e2 + 22n - 22n-1] > (2n + 1)(22n-1 - 2n-l), V n > 1

Also, assume (3.38) is true, then

X 2:= el + (2n - 2n-1)(2n + 1) + (2n - 2n-1 - 1)2n(2n + 1)

= e1 + (2n + 1)[(2n - 2n-1) + (22n - 22n-1 - 2n)]

= el + (Z" + 1)[22n - 22n-1 - 2n-1] 2:= (2n + 1)(22n-1 - 2n-l), V n > 1 •

Thus, from (3.37) and (3.38), it is possible to determine the sign (from (1.1» of an RNS

number X whether X 2:= M /2 (for a negative number) or X < M /2 (for a positive number).

The proposed method uses comparison by computing the MRDs of each of the addends to

determine which half of the RNS range it belongs rather than performing a full reverse

conversion to determine this. To detect overflow during addition of two addends X and Y

based on the moduli set {2n - 1,2n, 2n + 1}, a single bit that indicates the sign of that

addend is defined. Now, based on this bit, three cases will then be considered:

(i) Overflow will definitely occur if both of the addends are equal to or greater than

half of the dynamic range (M/2).

(ii) Overflow will not occur if both of the addends are less than M /2.

(iii) Overflow mayor may not occur if only one of the addends is equal or greater than

M/2 and will require further processing to determine whether overflow will occur

or not.
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Let the magnitude evaluation of the addends (X, Y) be represented by fl, such that if fl =

1 or fl = 0 represents a positive number or a negative number respectively as shown in

equation (3.39). The evaluation of the undetermined case in (iii) is also represented by a

single bit Ain (3.40).

e3 = Zn - Zn-l

e3 = 2n - 2n-l - 1 AND ez = 2n - 2n-l

otherwise
(3.39)

and

(
1 ; Xl + Yl ~ 2n + 1

A=
o ; otherwise

(3.40)

From (3.39), it is possible to get a number that is less than half of the DR and another

number that is greater than or equal to half of the DR. A further processing from (3.40)

determines whether overflow will occur or not in such a situation.

The proposed method will then detect overflow as follows;

(

0 ; flx + fly = 0
overflow = 1 ; flx· fly = 1

A ; flx $ fly = 1
(3.41)

where (+;,$) refer to the logical operations (OR, AND, XOR), respectively. For clarity,

'1' means overflow occurs whilst '0' means no overflow.

Correction unit

The sum Z will normally be less than one of the addends once overflow occurs (thus the

representation of an illegitimate number as if it is legitimate within the DR), this does not

give the accurate result of the addition operation anytime overflow occurs. Let Z be the
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sum of the two addends. By substituting the individual MRDs for both addends (X and y),

Z can be obtained as follows;

Z=X+Y

by letting l/Ji = ei(X) + ei(Y), we shall have

(3.42)

Thus by adding the individual MRDs of the two addends, we obtain the sum Z according

(2.2) without having to compute separately for its MRDs. The value of Z obtained from

(3.42) is the correct result of the addition whether overflow occurs or not. In case of

overflow occurrence, M should be shifted one bit to the left in order to accommodate the

value.

3.2.2 Hardware Implementation

From equation (3.36), the MRD's el, e2 and e3 can be represented in binary as;

el = ~l,n el,n-l ... el,l el,O,
n+l

(3.43)

e2 = ~2,n-1 e2,n-2 ••• e2,1e2,C!,

n

(3.44)

e3 = ~3,n-1 e3,n-2 ••• e3,1e3,O,

n

(3.45)

Equations (3.43) to (3.44) can further be simplified as follows;

el = Xl = ~1,nXI,n-1 ... XI,IXI,C!,
n+l

(3.46)
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where,

and

where

2nn n

= ~2,n-l e2,n-2 ..• e2,1e2,~

n

tl = I-Xlbn = - (~l,nXl,n-l ."Xl'lXl'~)

n+l 2n

= - (~1,n-1Xl,n-2 ... Xl'lXl'~)

n 2n

(3.47)

nn n

= ~3,n-l e3,n-2 ... e3,1e3,~

n

n

= ~3,OX3,n-l ... X3,2X3,~

n

t3 = 1-2n-1Xlbn_l = _2n-
1

~Xl,nXl,n-l ",Xl,lXl,O~

n+l 2n-l

41

(3.49)

(3.50)

www.udsspace.uds.edu.gh 

 

 

 

 



= -2n-I(XI,n x 2n + ~l,n-l ."XI,IXI,O), (3.51)
n 2n-1

Since, Xl is a number that is smaller than 2n + 1, two cases are considered for Xl. First,

when Xl is smaller than 2n, and second, when Xl is equal to 2n (Molahosseini et al., 2010).

If xI,n = 0, we have

n

= !1,oXI,n-1 •.•XI,2XI,~
n

(3.52)

Else if XI,n = 1, the following binary vector can be obtained as

t32 = 1-2n-1 x 2n(~XI,n)1 = O~
n-l 2n-1 n-l

(3.53)

Therefore, t3 is calculated as

ifxI,n = 0
ifxI,n = 1

(3.54)

And finally,

n

(3.55)
n

Let y and w represent the MRDs of the two integers X and Y respectively. Thus from

equations (3.46) to (3.48), we have

(3.56)

which implies
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finally,

n+l

n+l

l/Jz = yz + Wz

n
= YZ,n-1Yz,n-z ... Yz,~ + WZ,n-l ... WZ,O

n

= l/Jz,n-ll/Jz,n-z .. ·l/Jz,o

n

= Y3,n-1Y3,n-z ... Y3,~ + W3,n-l ... W3,O

n

and so, Z is implemented as;

where,

Zn n+l,..---.., ,..---..,
= 0 ... 0 ~l,n ... z1,1 Zl,~ + 0 ~3,3n-l ... z3,1 Z3,~ + 0 ... 0 ~4,Zn-l ... Z4,1Z4,~

n+l 3n Zn
3n+l

Zn...-'---.= l/J3 n-l ..·l/J3 1l/J3 0 00 ... 0 1><1 Zz Zn-l ... Zz 1Zz 0, " , "... "
n Zn

43
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www.udsspace.uds.edu.gh 

 

 

 

 



n....-.-...
= l/JZ,n-l ···l/JZ,ll/JZ,O00 ... 0 ~ l/Jz,n-l ···l/JZ,ll/JZ,O

•.. ".. "'
n n

(3.63)

and,

n....-.-...
= Y'3,n-l ... l/J3,1l/J3,O,00 ... 0

n

(3.64)

3.2.3 Hardware Realisation

The hardware realisation of the proposed scheme is divided into four parts and shown in

Figures 3.7 - 3.10. First is the Partial Conversion Part (PCP) shown in Figure 3.7, which

evaluates the MRDs based on (3.46), (3.47) and (3.49) with their parameters clearly

defined according to (3.48) and (3.49) - (3.55). The PCP begins with an Operands

Preparation Unit (OPU) which prepares the operands in (3.48), (3.50) and (3.54) by simply

manipulating the routing ofthe bits of the residues. Also, an n-bit 2: 1 Multiplexer (MUX)

is used for obtaining (3.54). ADD! is an n-bit Carry Propagate Adder (CPA) and is used

to compute (3.47), meanwhile (3.49) is obtained by using an (n - 1)-bit CPA as ADD2

whose save (Sl) and carry (el) are then added using ADD3 which is also an (n - 1)-bit

CPA. These MRDs are used to determine the sign of the RNS number in Figure 3.8. Thus,

the critical path for the PCP unit is made up of one (Z") modulo adder and two (2n - 1)

modulo adders.
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Second, is the Magnitude Evaluation Part (MEP) shown in Figure 3.8 which evaluates

whether an RNS number is positive or negative according to (3.39). The MEP uses one

AND gate and an OR gate. These are both two input monotonic gates. Next, is the

Overflow Detection Part (ODP) which compares the sign bits of the two addends by using

an AND gate according to (3.41) which is then ORed with the evaluated bit of the

undetermined case in (3.40) as shown in Figure 3.9. This is where the scheme detects the

occurrence of overflow during the addition of two numbers.

Lastly, in Figure 3.10 is the Overflow Correction Part (OCP). The OCP evaluates the

individual MRDs of the two addends separately to achieve the sum Z in (3.42). This is

done using five adders; four regular CPAs and one carry save adder (CSA). This is

computed according to (3.57) - (3.64). ADD4, ADDS and ADD6 add separately the MRDs

ev e2 and e3 respectively for the two addends. The result of ADD4 is of importance

because it is used in evaluating the undetermined case in (3.40). Zz is a result of

concatenation as well as Z3 which do not require any hardware. ADD7 is a CSA which

computes the result of Zb Zz and Z3 whose save (S2) and carry (cz) are added using ADD

8 which is a CPA in order to get accurate sum Z whether overflow occurs or not. The

schematic diagrams for the proposed scheme is presented in figures 3.7, 3.8 3.9 and 3.10.
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Figure 3.7: Partial Conversion Part (PCP)

e3,n-l------------\

Figure 3.8: Magnitude Evaluation Part (MEP)

{3Y----i

{3x----I >----..Overflow

A-----~

Figure 3.9: Overflow Detection Part (ODP)
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z
Figure 3.10: Overflow Correction Part (OCP)

The area (A) and time (D) requirements of the proposed scheme are estimated based on the

unit-gate model as used in (Zimmermann, 1999 and Chang et al., 2011) for fair

comparison. In this model, each two-input monotonic gate such as AND, OR, NAND,

NOR has area A = 1 and delay D =1, each two-input gate XORlXNOR has A = D = 2,

The area and delay of an inverter is a negligible fraction of a unit, and it is thus assumed

to require zero units of area and delay (Sousa, 2015). A 2: 1 multiplexer has an area A = 3

and delay D = 2; A full adder has an area of seven gates and a delay of four gates but a

CSA has a constant delay. Also, the adder requirements based on this model as presented

in (Sousa, 2015) is adopted for the comparison since the adopted adders are similar to the

adders used for the proposed scheme. The results state that an estimation modulo;
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(2n): A = Sn + (~) n logz n , D = 2logz n + 3

(2n - 1):A = 12n + 3n(logz n - 1), D= 2logz n + 3

Therefore, the hardware requirements of the scheme are as follows:

Apcp = AADDl + AMUX + AADDZ + AADD3 = 23n + CZS) log, n + 3

AMEP = 2(AAND) = 2

AODP = 2(AAND) = 2

Aocp = AADD4 + AADDS + AADD6 = 63n + 14

The estimated delay ofthe scheme will be as follows:

Dpcp = DADDl + DADDZ + DADD3 = 4logz n + 5

DMEP = 2(DAND) = 2

DODP = 2(DAND) = 2

Docp = DADD4 + AADD7 + AADD8 = 9 gates

Now, in order to make an effective comparison, the proposed scheme is divided into two:

Proposed Scheme I for when the OCP is not included in the comparison and Proposed

Scheme IIfor the OCP being included in the comparison. The delay of the OCP overrides

the delay of the delays of the MEP and the ODP if Proposed Scheme IIis consider since

they will all be computed in parallel and the critical path in that case will be dictated by

the OCP. The area for the PCP and the MEP is double for two numbers X and Y but this is

not the case for the delay of the two numbers since they are computed in parallel. Thus,

the total area and delay of the proposed schemes are:

ATOTAL(I) = 2Apcp + 2AMEP + AODP = 46n + lSlogz n + 10

DTOTAL(I) = Dpcp + DMEP = 410gz n + 7
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That is when the overflow correction part is not included in the analysis of the scheme and,

ATOTAL(lI) = 2Apcp + 2AMEP + AODP + Aocp = 109n + 151og2 n + 24

DTOTAL(II) = Dpcp + Docp = 4log2 n + 16

For when the overflow correction part is included in estimating the requirements of the

proposed scheme.

3.2.4 Numerical Illustrations

This subsection presents numerical illustrations of the proposed scheme.

Checking overflow in the sum of 49 and 21 using RNS moduli set {3, 4, 5}

X = 49 = (4,1,lhNS(5\4\3) = (100,01,01hNS(101\100\11)

Y = 21 = (1,1,0)RNS(5\4\3) = (001,01,00hNS(101\100\11)

z = ((100,01,01) + (001,01,00») RNS(101\100\11)

= (000,10,01)RNS(101\100\11)

RNS to decimal conversion of (000,10,01)RNS(101\100\11) will result in the decimal

number 10. Whilst the sum of the decimal numbers 49 and 21 is 70 which is obvious of

overflow occurring.

Checkingfor RNS overflow using the proposed technique

e2(49) = 101 - 1001100 = 001

e3(49) = 1(01- 01)(10) - 01111 = 1-01111 = 10 = 22 - 2

Which implies, P(49) = 1 from (3.39)

Also, e2(21) = 101 + 1- 00111001100= 101 + 111100= 000

e3(21) = 1(11 - 01)(10) - 11111 = 1100 - 11111 = 01 = 22 - 3

49
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But e2(21) =000, which implies ,8(21) = 0 from (3.39)

Therefore, from (3.41) overflow = A and needs further processing.

Since e3(49) + e3(21) = 10 + 01 = 11 > 22 - 2, the scheme detects overflow

occurring after processing.

Correction unit

Z = (100 + 001) + (01 + 00)(101) + (10 + 01)(101)(100)

= 1000110 = (70)decimal

Checking overflow in the sum 0/28 and 32 using RNS moduli set {3, 4, 5}

X = 28 = (3,0,1)RNS{SI413)= (011,00,01)RNS{1011100111)

Y = 32 = (2,0,2)RNS{SI413)= (010,00,lOhNS{1011100111)

z = ((011,00,01) + (010,00,10)) RNS(1011100111)

= (000,00,00)RNS(1011100111)

RNS to decimal conversion of (000,00,000hNS{1011100111)will result in the decimal

number o. Whilst the sum of the decimal numbers 28 and 32 is 60, a clear sign of overflow

occurring.

Checking/or RNS overflow using the proposed technique

e2(28) = 100 -111t00 = 1100 -111100 = 001 = 2n - 3

e3(28) = 1(01- 011)(10) - 01111 = 110 - 01111 = 01 = 22 - 3

Which implies, ,8(28) = 0 since e2(28) = 001 < 2n - 2, from (3.39)

Also, e2(32) = 100 + I - 01011001100= 100 + 101100 = 10 = 22 - 2

so
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e3(32) = 1(10 - 010)(10) - 10111 = 1-10111 = 01 = 22 - 3

this implies P(32) = 1 since e3(32) = 01 = 22 - 3 and e2(32) = 10 = 22 - 2, from

(3.39). Therefore, from (3.41) overflow = A and needs further processing.

Since e3(28) + e3(32) = 01 + 01 = 10 = 22 - 2, the scheme will detect that overflow

occurred after processing.

Correction unit

Z = (011 + 010) + (01 + 10)(101) + (01 + 01)(101)(100)

= 111100 = (60)decimal

Checking overflow in the sum 0/10 and 11 using RNS moduli set {3, 4, 5}

X = 10 = (0,2,lhNs(SI413) = (000,10,01hNS(1011100111)

Y = 11 = (1,3,2)RNS(SI413)= (001,11,10hNS(1011100111)

Z = (000,10,01) + (001,11,10))RNS(1011100I11)

= (001,01,00hNS(1011100111)

RNS to decimal conversion of (001,01,00hNS(1011100111) will result in the decimal

number 21 which is correct result of 10 + 11.

Checking/or RNS overflow using the proposed algorithm

e2(10) = 110 - 0001100 = 10 = 22 - 2

e3(10) = 1(01 - 000)(10) - 10111 = 110 - 10111 = 00 < 22 - 3

Which implies, P(10) = 0 since e3(10) = 00 < 22 - 3, from (3.39)

Also, e2(11) = 111 + 1- 0011t001100= 111 + 111100= 10 = 22 - 2

e3(11) = 1(10 - 001)(10) - 10111 = 110 - 10111 = 00 < 22 - 3
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this implies, P(11) = 0 since e3(10) = 00 < 22 - 3, from (3.39).

ThFrom (3.41) overflow = 0, which implies no overflow has occurred according to the

proposed scheme after processing.

Correction unit

Z = (000 + 001) + (10 + 10)(101) + (00 + 00)(101)(100)

= 010101 = (21)decimal

3.2.5 Performance Evaluation

The performance of the proposed scheme is compared to schemes in (Younes & Steffan,

2013) and (Rouhifar et al., 2011); the scheme in (Rouhifar et al., 2011) does not contain a

correction unit; the scheme by (Younes & Steffan, 2013) has a correction unit but is not

included in the comparison. And so both schemes do not have the correction component

in the comparison. Table 3.3 shows the analysis of the proposed scheme with that of similar

state-of-the art schemes.

Table 3.3: Area, Delay comparison for scheme2

Scheme Area Delay

Rouhifar et al., (2011) 76n + (33/2) nlog , n 6log2 n + 23

Younes & Steffan, (2013) 37n + +18 16n + log2 n + 13

Proposed Scheme I 46n + 15log2 n + 10 4log2 n + 7

Proposed Scheme II 109n + 15log2 n + 24 4log2 n + 16

As shown in Table 3.3, the proposed scheme for detecting overflow (in Proposed Scheme

I) in the given moduli set is very cheap in terms of hardware resources and faster than the
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scheme by (Rouhifar et al., 2011) but requires a little hardware resources than the scheme

by (Younes & Steffan, 2013) even though the Proposed Scheme I is completely faster than

it. However, the complete proposed scheme (Proposed Scheme II) for detecting and

correcting overflow requires more hardware resources than the other compared schemes

but faster than both schemes by (Rouhifar et al., 2011) and (Younes & Steffan, 2013).

Clearly, Proposed Scheme I completely outperforms the similar state-of-the-art scheme by

(Rouhifar et al., 2011) for detecting overflow, but the trust of this work is to detect and

correct overflow anytime it occurs; in so doing it has made tremendous gains in speed as

shown in Table 3.3.

Table 3.4 shows a detailed analysis ofthe complexities and delay of the proposed scheme

with that of the similar state-of-the-art schemes.

Table 3.4: Area, Delay analysis for various values of n for schemes2

AREA DELAY
n R. et al Y&S Proposed I Proposedll R. et al Y&S Proposed I ProposedU

(201n (2013) (2011) (]013)
1 76 57 56 133 23 29 7 16
2 185 96 117 257 29 46 11 20
4 436 174 224 490 35 79 15 24
8 1004 330 423 941 41 144 19 28
16 2272 642 806 1828 47 273 23 32
32 5072 1266 1557 3587 53 530 27 36
64 11200 2514 3044 7090 59 1043 31 40
128 24512 5010 6003 14081 65 2068 35 44
256 53248 10002 11906 28048 71 4117 39 48
512 114944 19986 23697 55967 77 8214 43 52

Total 212949 40077 47833 112422 500 16543 250 340
R. et al: Rouhifar et al; Y&S: Younes & Steffan

Table 3.4 reveals interesting results theoretically, from the analysis it is clear that the

Proposed Scheme I requires less resources than what is required by (Rouhifar et al., 2011).

From the table, smaller values ofn shows that Proposed Scheme II requires more resources
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than that by (Rouhifar et al., 2011) but drastically improves upon this requirements up to

over 51% better than (Rouhifar et al., 2011) for higher values of n (i.e n> 4), this is

clearly shown in the graph in Figure 3.11. The analysis from the table also shows that

whilst for smaller values of n (say n = 1), the Proposed Scheme I is better than the scheme

by (Younes & Steffan, 2013) in terms of hardware resources, it tends to require up to about

18% resources more than that by (Younes & Steffan, 2013).

Area comparison
140000

120000

100000

ro 80000
OJ~-c 60000

40000

20000

0
1 2 4 8 16 32 64 128 256 512

n values

-AREA R.et al (2011) -AREA V&S(2013)'w'K'"'~AREAProposed I -AREA Proposed II

Figure 3.11: Graph of area analysis of proposed schemes2 with other schemes

From Figure 3.11, the scheme by (Rouhifar et al., 2011) sharply increases for higher values

ofn followed by the Proposed Scheme II whilst the scheme by (Younes & Steffan, 2013)

requires the lesser resources. Regarding the delay, the proposed schemes (Scheme I and

Scheme II) completely outperforms both schemes by up to over 35% than the scheme by

(Rouhifar et al., 2011) and over 90% faster than the scheme by (Younes & Steffan, 2013)

as shown in Table 3.4 and in Figure 3.12. It is worth noting that whiles the scheme by
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(Younes & Steffan, 2013) is the best performer in terms of hardware resources, it tends to

be the worst performer for speed and the percentage difference shows that the Proposed

Scheme I is more efficient. Figure 3.12 is the graph analysis of the delay imposed by the

various scheme. It is clear from the graph that the scheme in (Younes & Steffan, 2013)

sharply increases with increasing values of n whiles the marginal increase of the rest of

the schemes are minimal.

400
350
300
250

~
~ 200
o

150
100

Delay comparison

50

o
2 3 4 5 8 9 106 7

n values

-DELAY R. et al (2011) -DELAY Y&S (2013)

DELAY Proposed I - DELAY Proposed II

Figure 3.12: Bar graph of delay analysis of proposed schemes2 with other schemes

3.3 Conclusion

Detecting overflow in RNS arithmetic computations is very important but can be difficult,

more so, if it has to be corrected. In this chapter, two schemes for detecting and correcting

overflow during RNS addition for the moduli set {Zn - 1, Z", 2n + 1} were presented; the

first was a novel technique based on the CRT. The proposed technique did not require full
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RNS-binary conversion. The proposed scheme was able to give the correct result for the

sum of two numbers whether overflow occurred or not and the scheme was demonstrated

theoretically to be very efficient than similar state of the art designs. The results of this

method have been published (see Appendix). The second was an ingenious technique of

detecting overflow by use of the MRC method through magnitude evaluation as well

correcting the overflow when it occurs. This technique did not also require full reverse

conversion but used the MRDs to evaluate the sign of a number to detect the occurrence

of overflow. With this technique, the correct value of the sum of two numbers is always

guaranteed whether overflow occurred or not. The scheme has been demonstrated

theoretically be very fast than similar-state-of-the-art scheme but required little more

hardware resources. However, the Proposed Scheme I, which is the one without the

correction component completely outperformed the scheme by (Rouhifar et al., 2011) in

terms of both area and delay requirements. Also, results from Table 3.4 and Figure 3.11

showed that for higher values of n, the Proposed Scheme II also outperformed the scheme

by (Rouhifar et al., 2011).

The moduli set presented in this chapter and its variants for higher dynamic ranges are

even moduli sets. Even dynamic range moduli sets are useful due to the fact that using the

2n modulo greatly simplifies and reduces the delay and complexity of the residue

arithmetic operations and the reverse conversion process. In the next chapter, another

method for detecting and correcting overflow during addition in an odd dynamic range

moduli set will be presented.
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CHAPTER FOUR

ADDITIVE OVERFLOW DETECTION AND CORRECTION FOR

THE MODULI SET {22n+1 - 1, 2n + 1,2n - 1}

4.0 Introduction

The techniques presented in the previous chapter were for an even dynamic range. An

additive overflow detection and correction scheme for the moduli set {22n+1 - 1,2n +

1,2n - I}, which has odd dynamic range is presented in this chapter. The scheme uses a

redundant modulus 2 by extending the dynamic range of the moduli set. This redundant

modulus is then used to detect overflow during addition whenever it occurs by XORing

the sum of the residues corresponding to the redundant modulus and the LSB of the result

of summing the residues corresponding to two numbers in the original moduli set.

4.1 Proposed Method

Given the moduli set {22n+1 - 1,2n + 1, 2n - I}, (Bankas & Gbolagade, 2014) and

(Molahosseini et al., 2010), let m1 = 22n+1 - 1, m2 = 2n + 1 and m3 = 2n - 1. Let

m4 = 2 be a redundant modulus by extending the original moduli set. In order to detect

overflow in the given moduli set, this redundant modulus 2 is added so that the new set

becomes {22n+1 - 1, 2n + I, 2n - 1,2}; but the dynamic range M = (22n+1 - 1)(2n +

1)(2n - 1).

Theorem 4.1: Given the moduli set {22n+1 - 1, 2n + 1, 2n - I}, where m1 = 22n+1 - 1,

m2 = 2n + 1 and m3 = 2n - 1, we have;

Iml11m2 = 1

Iml11m3 = 1

(4.1)

(4.2)
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I -11 - 2n-lmZ m3- (4.3)

Proof: If it can be shown that la x him- = 1, then Ihlm- = la-lim_ is the multiplicative
! !!

inverse of a. Thus, for (4.1)

= 1(2(-1)(-1) - l)lzn+1

= 1(2- l)lzn+l

Hence 1 is the multiplicative inverse of ml with respect to mz.

Similarly, for (4.2)

Hence 1 is the multiplicative inverse of ml with respect to m3'

Also, for (4.3)

Hence 2n-l is the multiplicative inverse ofmz with respect to m3'

Let the sum Z = (zv zz, Z3' Z4) = (Xi + YD, i = 1,2,3,4. Then two scenerios arise;

(i) Ifboth addends have the same parity then Z = (zv Zz, Z3) is even and Z4 = 0

(ii) If the addends have different parity then Z = (zv Zz, Z3) is odd and Z4 = 1
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Therefore, overflow occurs whenever Z = (zv zz, Z3) is odd and Z4 = 0 or Z = (zv Zz, Z3)

is even and Z4 = 1.

Thus the proposed method detects overflow as follows;

{

1; Z4 XOR LSB(Z) = 1
Overflow =

0, Otherwise
(4.4)

Where LSB(Z) is the least significant bit of the sum Z.

Next, a partial residue-binary conversion of the addends is done by computing their

respective MRDs. The MRDs of one addend (say X) is done by substituting (4.1) - (4.3)

into equation (2.3) to simplify as follows;

(4.5)

Therefore, Z is obtained by adding the individual MRDs of the two addends as in equation

(3.42). In case of overflow occurrence, the dynamic range should be shifted one bit to the

left thus including the modulus 2 in order to legitimize the value of Z. The value of Z

computed this way is the correct result whether overflow occurs or not.

4.2 Hardware Implementation

From equation (4.5), the MRDs can be represented in binary as;

el = ~l,znel,zn-l ... el,lel,O,

Zn+l

(4.6)
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--

e2 = ~2,ne2,n-l ... e2,le2,<!,

n+l

(4.7)

e3 = ~3,n-l e3,n-2 ... e3,1e3,O,

n

(4.8)

Equations (4.6) - (4.8) can further be simplified as follows;

el = Xl = ~1,2nXl,2n-~ ,,,Xl,lXl,<!, (4.9)
2n+l

= ~2,ne2,n-l .•• e2,le2,<!, (4.10)
n+l

where,

A = - ~Xl,2nXl,2n-l ",Xl,lXl,O),

2n+l 2n+l

n n

(4.11)
n

n n n

Also,

= X3 OX3n-lx3n-2 ... X31 + Bn-1Bn-1 ... B1Bo + Cn-1Cn-1 ... CICO
...' I I I " ••• ., •• "

n n n 2n-l

= ~3,n-le3,n-2 ... e3,le3,<!,

n
(4.l3)

where,
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B = 1-2n-lxl!zn_l = _2n-l ~Xl,2nXl,2n-l".Xl,lXl,ol
2n+l 2n-l

= _2n-l (00 ...OXl,2n)_2n-l (Xl,2n-l ...Xl,n) _2n-l (Xl,n-l ...Xl,O)
.. "... .J" ,

nn n

= xIJ2nl1 ... 1+ Xl,nXl,2n-l ... Xl,n+l + Xl,oXl,n-l ... XI,l.. • '... ,......#
n n n 2n-l

(4.14)

n n

B3 = ~l,oil,n-l ...il,1:.

n

(4.15)

Finally,

c = 1-2n-le2!zn_l = _2n-l ~e2,ne2,n-l .•. e2,lel,O)
n+l 2n-l

= -2n-1(e2,n x 2n + ~2,n-l ''',e2,1el,o) (4.16)
n 2n-l

Since, e2 is a number that is smaller than 2n + 1, two cases can be considered. First, when

e2 is smallerthan 2n, and second, when e2 is equal to 2n (Molahosseini et al., 2010).

If e2,n = 0, we have

n

= ~2,Oe2,n-l...e2,2e2,1:.

n

(4.17)

Else if e2,n = 1, the following binary vector can be obtained as

C2 = 1-2n
-
l x 2n(~ e2,n) I = O!.!.;::J

n-l 2n-l n-l
(4.18)
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Therefore, t3 is calculated as

{
CvC= C21

if e2,n = 0
if e2,n = 1

(4.19)

Let Y and w represent the MRDs of the two integers X and Y respectively. Then from

equations (4.9), (4.10) and (4.13), we have

(4.20)

which implies

2n+1
= r1,nY1,n-1 ..• Y1,1Y1,~ + l«>t,nW1,n-1 ... W2,1W1,Q

2n+1

(4.21)

1/12 = Y2 + W2

n+1
= r2,nY2,n-1 ..• Y2,1Y2,~ + W2,nW2,n-1 .. , W2,1W2,Q

n+1

= 1/12,n1/J2,n-1 .. ·1/12,11/12,0 (4.22)

finally,

n

= r3,n-1Y3,n-2 ... Y3,1Y3,~ + W3,n-1 W3,n-2 ... W3,1 W3,Q
n

(4.23)

and so, Z is implemented as;
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n-l 3n+l 3n 2n+l,---.. ...--.-. .....--.... ....---..= !2,4n ... t1,O.+ 0 ... 0 !3,2n+1 ... t3,O.+ 0 ... 0 !4,n-l ... Z4,lZ4,O. + 0 ... 0 ~s,n ... ts,1!. + 0 ... 0 !6,n ... t6,O. (4.24)
4n+l 3n+2 n n+l 2n

where,

and,

4n+l

n 3n+l

= tZ,4n ... tZ,l tz,o (4.25)

Zn+l,.........-.,
= 1/J3,n-l ·.. 1/J3,ltP3,O00 ...0 M tPl,zn ..·1/J1,ltPl,O

'- ,... "

n Zn+l

(4.46)

Zn+l,.........-.,
= 1/Jz,ntPz,n-l ·.. tPZ,l1/JZ,O00 ...0.•. .,

n+l

(4.27)

n

(4.28)
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= '!P2,n1P2,n-l ... 1P2,l1P2,o,
n

(4.29)

finally,

n- - - - ,.-............
= Y'3,n-l tfJ3,n-2 ... l/J3,1l/J3,O,11."1

n

(4.30)

4.2.1 Hardware Realisation

The hardware architecture of the proposed scheme is first realised by computing the MRDs

of the two addends X and Y according to (4.10) and (4.13) which parameters are defined

in (4.11), (4.12), (4.14), (4.15) and (4.19). This MRDs are e2 and e3, and el in (4.2) which

is equivalent to Xl. Figure 4.1 shows the unit for computing the MRDs of one addend X

and repeated for the other addend Y. Figure 4.1 consists of a two level Carry Save Adder

(CSA) tree for computing e2 and another three level CSA tree for computing e3 whose

sum and carry are added using two separate CPAs each. This unit is called here Partial

Reverse Converter (PRC) as a component of the proposed scheme. The PRC starts with an

Operands Preparation Unit (OPU 1), which prepares the operands in (4.12) and (4.15) by

simply manipulating the routing of the bits of the residues. The operands in (4.12) added

with CSA 1 at a first level and at a second level includes X2 in CSA 3 which sum and carry

are added using CPA 1 to get e2. A multiplexer is used to determine (4.19) by either

choosing (4.17) or (4.18) depending on the MSB of e2. The value from (4.19) and the
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operands in (4.15) are then added using the three level CSA tree in CSA 2, CSA 4 and

CSA 5 and finally propagated with CPA 2 in order to get e3' These MRDs are useful in

computing the sum of the addends Z by the Reverse Converter (RC) in Figure (4.2). The

respective MRDs of the addends are summed according to (4.21) - (4.23) and computed

according to CPA 3, CPA 4 and CPA 5. These and other four adders made up the

architecture for the reverse converter for the sum Z in Figure 4.2; after an operand

preparation (4.24) is computed by a three level carry save tree in CSA 2, CSA3 and CSA

4 in a cascading manner whose sum and carry are then added using CPA6 in order to get

Z which the correct result of the addition operation whether overflow occurs or not.

Finally, overflow is detected by XORing the LSB(Z) with IZ!z = Z4 according to (4.4) and

shown in Figure 4.3.

The hardware complexities and delay (time required for processing) of the proposed

scheme are estimated as follows;

The area (A) and delay CD) of the PRC are:

APRC = ACSAl + ACSAZ + ACSA3 + ACSA4 + ACSAS + ACPA1 + ACPAZ

= (n + l)dFA + ndFA + (n + l)dFA + ndFA + ndFA + ndFA + ndFA

= (7n + 2)dFA

DpRC = DCSAl + DCSA3 + DCPA1 + DCSAS + DCPAl + DCPAZ

= (4n + 3)DFA

The area requirement and delay imposed by the RC are:
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ARC = ACPA3 + ACPA4 + ACPAS + ACSA2 + ACSA3 + ACSA4 + ACPA6

= (2n + l)LlFA + (n + l)LlFA + (n -l)LlFA + 3(4n + l)LlFA + (4n + l)LlFA

= (20n + 5)LlFA

DpRC = DCPA3 + DCSA2 + DCSA3 + DCSA4 + DCPA6

= (4n + 2)DFA + 3DFA + (Sn + 2)DFA = (12n + 7)DFA

The ODU is a two input XOR gate and requires a unit of gate each for the area and delay.

Equations (4.25) and (4.26) are realised by merely joining (concatenating) bits since the

sum of a and 2n b is computed as b concatenation a if a is an n-bit number (Bankas &

Gbolagade, 2013b), hence does not require any hardware or impose a delay. Also, the area

for two addends will be double in the case of the PRe but the same delay.

Therefore, the total area requirements and delay of the proposed scheme are:

ATOTAL = 2APRC + ARC + AODU = (14n + 4)LlFA + (20n + 5)LlFA + LlFA

= (34n + 10)LlFA

DroTAL = DpRC + DRC + DODU = (4n + 3)DFA + (12n + 7)DFA + DFA

= (16n + 11)DFA

The schematic diagrams ofthe proposed scheme are shown in figures 4.1,4.2 and 4.3.
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n-bitCSA4
{Mod (2n -1) adder)

s c

n-bitCPA I

Figure 4.1: Partial Reverse Converter (PRC)

Overflow

Figure 4.2: Overflow Detection Unit (ODU)
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Y2 W2

Z

Figure 4.3: Reverse Converter (RC)

4.3 Numerical Illustrations

This section presents numerical illustrations of the proposed scheme.

Checking overflow in the sum 0/225 and 275 using RNS moduli set {31,5,3, 2}.

Legitimate range (DR) = 465. Let;

x = 225 = (8,0,0, lhNS(31ISI312) = (01000, ODD,~O,1)RNS(31ISI312)

Y = 275 = (27,0,2, 1)RNS(31ISI312) = (11011, ODD,10, lhNS(31ISI312)
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Z = ((01000, ODD,00,1) + (11011, 000, 10, 1))RNS(31ISI312)

= (00100, 000,10, OhNS(31ISI312)

RNS to decimal conversion of (00100, ODD,lOhNS(31ISI3) results in decimal number 35.

Meanwhile the sum of 225 and 275 is 500, a clear case of overflow occurrence.

Checking for RNS overflow using the proposed method

Z = (00100, ODD,10, OhNS(31ISI312)implies Z4 = 0 and

Z = (00100, 000,lOhNS(31ISI3) = 100011BINARY which implies LSB(Z) = 1

Therefore, LSB(Z)XOR Z4 = 1 XOR 0 = 1. Thus overflow has occurred according to the

proposed method since both numbers have the same parity.

Correction part

The correct value of Z is RNS to decimal conversion of (00100, ODD,10, OhNS(31ISI312)

which results in decimal number 500.

Checking overflow in the sum of225 and 322 using RNS moduli set {31,5,3,2}.

Legitimate range (DR) = 465. Let;

x = 225 = (8,0,0, 1)RNS(31ISI312)= (01000, ODD,~O, 1hNS(31ISI312)

Y = 322 = (12,2,1, O)RNS(31ISI312)= (01100, OlD, 01, OhNS(31ISI312)

Z = ((01000,000,00,1) + (01100, 010, 01, O))RNS(31ISI312)

= (10100, OlD, 01, 1hNS(31ISI312)
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RNS to decimal conversion of (10100, 010, 01hNS(31/S/3) results in decimal number 82.

Meanwhile the sum of225 and 322 is 547, a clear case of overflow occurrence.

Checkingfor RNS overflow using the proposed method

Z = (10100,010,01, 1hNS(31/S/3/2)implies Z4 = 1 and

Z = (10100,010,01hNs(31/s/3) = 1010010BINARY which implies LSB(Z) = 0

Therefore, LSB(Z)XOR Z4 = 0 XOR 1 = 1. Thus overflow has occurred according to the

proposed method since both numbers have different parity.

Correction part

The correct value of Z is RNS to decimal conversion of (10100, 010, 01, 1hNS(31/S/3/2)

which results in decimal number 547.

Checking overflow in the sum of 225 and 35 using RNS moduli set {31, 5, 3, 2}.

Legitimate range (DR) = 465. Let;

x = 225 = (8,0,0, 1hNS(31/S/3/2)= (01000,000,00, 1hNS(31/S/3/2)

Y = 35 = (4,1,1, 1)RNS(31/S/3/2) = (00100,001,01, 1hNS(31/S/3/2)

Z = ((01000,000,00,1) + (00100,001,01,1)) RNS(31/S/3/2)

= (001100,001,01, OhNS(31/S/3/2)

RNS to decimal conversion of (001100,001, 01hNS(31/S/3) results in decimal number

260 which is the correct result of summing 225 and 35. In this case overflow has not

occurred.
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Checking for RNS overflow using the proposed method

Z = (001100,001,01, O)RNS(31ISI3IZ)implies Z4 = 0 and

Z = (001100, 001, 01)RNS(31ISI3) = 100000100BlNARY which implies LSB(Z) = 0

Therefore, LSB(Z)XOR Z4 = 0 XOR 0 = o. Thus overflow has not occurred according

to the proposed method.

Since overflow has not occurred, there will not be any need for the correction unit.

4.4 Performance Evaluation

The performance ofthe proposed scheme is compared to similar schemes of equal dynamic

range reverse converter as well as the scheme by (Askarzadeh et al., 2009) that have odd

dynamic range. The complexities that are considered here for the analysis are a Full Adder

(FA), a Half Adder (converted to FA) and a two input XOR gate. It is also worth noting

that the complexities (area) as presented in (Mohan, 2008) are for a single number (say X)

and so would have to be doubled in order to take care of two numbers (say X and Y) for

the reverse conversion process. Table 4.1 presents the complexities and delay by the

various schemes for the purpose of comparison.

Table 4.1: Area and Delay analysis of proposed scheme3 with similar schemes of equal
DR

Scheme AREA DELAY
(Mohan, 2008) (28n + (5n2/2) + 12)A1FA (18n + 23)DFA

(Askarzadeh et aI., 2009) (48n + 21)A1FA (16n + 15)DFA

Proposed Scheme (34n + 10)A1FA (16n + 11)DFA
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From table 4.1, it is obvious that the proposed scheme is better than (Askarzadeh et 01.,

2009) in terms of the area complexities even though the delay is almost the same, but the

proposed scheme has a correction component. Also, the proposed scheme performs better

than the scheme by (Mohan, 2008) for higher values ofn, in both area and delay. A detailed

analysis is presented in Table 4.2 taking some values of n, thus it gives a clearer picture of

the results presented in Table 4.1 for some values ofn.

Table 4.2: Area, Delay analysis for various values of n for scheme3

AREA DELAY
n Mohan, Askarzadeh et Proposed Mohan, Askarzadeh et Proposed

(2008) aL, (2009) (2008) aL, (2009)
1 42.5 69 44 41 31 27
2 78 117 78 59 47 43
4 164 213 146 95 79 75
8 396 405 282 167 143 139

16 1100 789 554 311 271 267
32 3468 1557 1098 599 527 523
64 12044 3093 2186 1175 1039 1035

128 44556 6165 4362 2327 2063 2059
256 171020 12309 8714 4631 4111 4107
512 669708 24597 17418 9239 8207 8203

Total 902577 49314 34882 18644 16518 16478

Table 4.2 shows detailed analysis of the area and delay comparison ofscheme3 for

various values ofn with similar-state of the art schemes. The results from Table 4.2 are

used to plot the graphs in Figure 4.4 and Figure 4.5; Figure 4.4 is a graph of area

comparison of the various schemes. It shows that the proposed scheme requires the lesser

area than the other schemes. Figure 4.5 also presents the graph of the delay comparison

of the compared schemes which shows however that the proposed scheme and the

scheme by (Askarzadeh et al., 2009) have almost the same speed but performs better than

the scheme by (Mohan, 2008).
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Figure 4.4: Graph of area analysis of proposed scheme3 with other schemes
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4.5 Conclusion

In this chapter, an additive overflow detection and correction scheme for the moduli set

{22n+1 - 1, 2n + 1,2n - 1} was presented. The scheme used a redundant modulus 2 by

extending the dynamic range of the moduli set. This redundant modulus was then used to

detect overflow during addition whenever it occurred by XORing the sum of the residues

corresponding to the redundant modulus and the LSB of the result of summing the residues

corresponding to two numbers in the original moduli set. The proposed scheme has been

demonstrated theoretically to be an efficient scheme by comparing it to previous similar

works.
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CHAPTER FIVE

SUMMARY AND FUTURE RESEARCH

5.0 Introduction

In the last two previous chapters, the proposed schemes were presented with their

performance evaluation. This chapter concludes the thesis by presenting a summary of

the thesis as well as projections into the future of possible research areas of the

researcher.

5.1 Summary

Overflow detection is one of the fundamental challenges that hinders the widespread usage

of the RNS. If the RNS is used in applications that require fast computations such as DSPs

and Transforms, then there should be a guarantee that values (numbers) used for such

computations are always accurate. The occurrence of overflow will result in wrong

representation of numbers as if they are correct in the RNS system. This makes the issue

of overflow detection one of great importance. Detecting overflow in RNS representation

is necessary but not sufficient if RNS is to have that universal usage in computing as a

general purpose processor. There is the need to be able to correct the overflow in the system

whenever it occurs, thus overflow correction is very crucial. The goal of this thesis was to

devise techniques of detecting and correcting overflow in RNS arithmetic computations

and by so doing three techniques were developed: Two efficient schemes (schemel and

scheme2) for RNS overflow detection and correction for a generalised moduli set

{2an - 1,2an, 2an + I}, a = 1,2,... was proposed. Then by taking a = 1, the

algorithms were applied to the popular moduli set {2n - 1,2n, 2n + I} for
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implementation and comparison but a can be increased for higher dynamic ranges. The

first was a novel technique based on the CRT, which did not require full RNS-binary

conversion. This proposed scheme prevented the representation of illegitimate numbers in

the RNS system as if they were legitimate numbers thus correcting overflow. The second

technique was based on the MRC method by evaluating the magnitude of numbers and

then using that to detect and correct overflow if it occurred. This technique did not also

require full reverse conversion but used the MRDs to evaluate the sign of a number to

detect the occurrence of overflow. With this technique, the correct value ofthe sum of two

numbers is guaranteed whether overflow occurred or not. Both schemes were

demonstrated theoretically to be very efficient than similar state-of-the art schemes. These

were presented in chapter three.

The other scheme (scheme3) though based on the MRC for the reverse conversion was

applied on the moduli set {22n+1 - l,2n + l,2n - 1} with a redundant modulus 2. The

redundant modulus was used to devise a simple way of detecting overflow in an RNS

system during addition by XORing the LSB of the sum of the addition with the residue

corresponding to the redundant modulus. The reverse conversion process of the sum will

yield the correct result whether overflow occurred or not. This technique has also been

demonstrated theoretically to be competing favourably with similar previous works. This

scheme was presented in chapter four. Chapter one introduced the concept of number

systems: weighted and non-weighted, and the RNS capitalising on the speed limitation

imposed on the weighted number systems to gain prominence in research due to its

inherent futures desirable in applications requiring faster computations with addition and

multiplication being dominant. A bit of history of the RNS is presented in chapter two with
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the review of some previous works on overflow detection. The motivation of the thesis

came from the review of such literature.

5.2 RecommendationslFuture Research Works

Currently the widely used RNS arithmetic computations are addition and multiplication

since subtraction and to some extend division are the reverse process (variants) of either

addition or multiplication. The goal of this work was to develop schemes to detect and

correct overflow during RNS arithmetic computations, but the schemes presented are for

detecting and correcting overflow during RNS addition leaving out multiplication. It is the

hope of the researcher to in future look at ways of developing schemes to handle

multiplication by designing algorithms that when implemented will not require a lot of

hardware complexities and will also be fast.

The schemes that are presented are also implemented theoretically due to the unavailability

of laboratories and lack of Field Programmable Gate Array (FPGA) boards. It will be

interesting to practically implement the proposed schemes to see their efficiency. In this

regard, the researcher would in future works, tries to implement the proposed schemes and

any other schemes practically subject to the availability of laboratories or in their absence

funds to be able to procure the FPGA boards to do the implementation.

Lastly, the RNS processor would only become a general purpose processor if some of the

challenges such as overflow detection and correction, reverse conversion, sign and

magnitude comparison and some difficult arithmetic operations such division, scaling and

root function are well addressed. In future, the researcher would continue to address some
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of these challenges of the RNS system by working on other efficient schemes to handle

such challenges as done in this thesis for overflow detection and correction.
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