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ABSTRACT

t,

This thesis is a mathematical investigation into the effects of different parameters on

the detailed flow of electrically conducting fluid with heat and mass transfer in the

presence of thermal radiation with convective boundary conditions. A literature

review is incorporated and the approximate consistency between different

investigations shown. The problems related to the flow, heat and mass transfer over a

flat plate in a stream of cold fluid in the presence of radiation and magnetic field have

been modeled. The governing boundary layer equations have been developed and

transformed into a self-similar form. The similarity equations were solved

numerically using the Newton Raphson shooting iteration method together with

Runge-Kutta Fourth-order integration scheme. The Effects of embedded parameters

such as Prandtl number, local Biot number, magnetic parameter, radiation parameter,

Brinkmann number, Schmidt number and the reaction rate parameter, on the fluid

velocity, temperature profile, concentration profile, local skin friction, local Nusselt

number and local Sherwood number in the flow regime are depicted both tabular and

graphical form and discussed quantitatively. It is concluded that for this particular

flow, the magnetic field strength is the only embedded parameter that helps control

the flow kinematics and enhances both the heat and mass transfer process. In the same

way, embedded parameters associated with thermal radiation, convective heating and

viscous dissipation controlled to enhance the heat transfer process when controlled.

Meanwhile, the Schmidt number and the reaction rate parameters contribute well to

enhancing mass transfer if carefully controlled.
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CHAPTER ONE

INTRODUCTION AND BACKGROUND OF THE STUDIES

1.1 Background of the Studies

The science of fluid dynamics encompasses the motion of gasses and liquids. It is a

study of the forces that are responsible for the motion of fluid and the interaction

between the fluid and solid boundaries. Fluid dynamics is central to almost all

sciences and engineering and touches almost every aspect of human daily life. Fluid

dynamics imparts one way or the other on defense, transportation, manufacturing,

environment, medicine, and energy among others. From predicting the aerodynamic

behavior of moving vehicles to the movement of biological fluids in human body,

weather predictions, cooling of electronic components, performance of micro-fluidic

devices, demand a detailed understanding of the subject of fluid dynamics and a

substantial research. Due to the complexity of the subject and a breadth of its

applications, fluid dynamics is proven to be a highly exciting and challenging subject

of modem sciences. The quest for deeper understanding of the subject has not only

inspired the development of the subject itself, but has also suggested the progress in

the supporting areas, like, applied mathematics, numerical computing and

experimental techniques.

The Navier Stokes equations generalized the governing equations for fluid dynamics.

It is sometimes coupled with the transport conservation equations for energy and

concentration. The Navier-Stoke equations are highly nonlinear and exact solutions

are only available for some very special cases. In most cases, approximate solutions
1
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are obtained using analytical and numerical computations. These methods enable the

study of the interaction between moving conducting fluids with electrical and

magnetic fields which is associated with electro-fluid-mechanical energy conversion

as observed in liquids, gases, two-phase mixtures, or plasma. Numerous scientific and

technical applications exist such as heating and flow control in metal processing,

power generation from two-phase mixtures or seeded high-temperature gases,

magnetic confinement of high-temperature plasmas; even dynamos that create

magnetic fields in planetary bodies. Different terms have been used in reference to the

broad field of electromagnetic effects in conducting fluids. Commonly used terms

include; Magneto-Fluid- Mechanics, Magneto-Gas-Dynamics, and Magneto-

Hydrodynamics (MHD). MHD devices have been in use since the early part of the

20th century. For instance, an MHD pump prototype was built as early as 1907

(Northrup, 1907). In more recent times, MHD devices have been used for stirring,

levitating, and otherwise controlling flows of liquid metals for metallurgical

processing and other applications (Kolesnichenko, 1990).

Gas-phase MHD is probably best known in MHD power generation. Since the 1950s

(Sporn and Kantrowitz, 1959; Steg and Sutton, 1960), major efforts have been made

to improve electric conversion efficiency, increase reliability by eliminating moving

parts, and reduce emissions from coal and gas plants. For example, research has

shown the possibility of seawater propulsion using MHD (Graneau, 1989) and control

of turbulent boundary layers to reduce drag (Tsinober, 1990). Extensive worldwide

research on magnetic confinement of plasmas has led to attainment of conditions

approaching those needed to sustain fusion reactions (Baker et al., 1998). In MHD

flow, interaction with a magnetic field can alter the velocity and pressure

2
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characteristics of the flow and can also significantly delay the onset of turbulent

fluctuations. These effects together or individually can dramatically alter the heat and

mass transfer characteristics and hence the fluid drags on the surface. Applications of

such phenomena include cooling systems for magnetic fusion reactors and reduced-

drag ship hulls and airplane fuselages. The MHD force can be applied in such a way

that useful work can be done.

Many researchers have analyzed hydromagnetic flows under varIOUS conditions.

Anderson (1992) examined the influence of uniform magnetic field on the motion of

an electrically conducting fluid past a flat and impermeable elastic sheet and obtained

closed form solutions of the momentum boundary layer equation. The unsteady MHD

convective heat transfer past a semi-infinite vertical porous moving plate with

variable suction has been reported by Kim (2000). Similarly, Chamkha and Khaled

(2001) investigated similarity solutions for hydromagnetic simultaneous heat and

mass transfer by natural convection from an inclined plate with internal heat

generation or absorption. Seddeek (2001) then analyzed the thermal radiation and

buoyancy effects on MHD free convection heat generation flow over an accelerating

permeable surface with temperature dependent viscosity. In all these works, it was

observed that the heat transfer on hydromagnetic flow depended on the orientation of

the surface on which the fluid was flowing.

Ouaf (2005) numerically analyzed the exact solution of thermal radiation on MHD

flow over a stretching porous sheet whilst Cortell (2006) studied the influence of

transverse magnetic field on the flow and heat transfer in an electrically conducting

second grade fluid over a stretching sheet subject to suction. Subhas et al.. (2007)

investigated the viscoelastic MHD flow and heat transfer over a stretching sheet with

3

---------------~------ -~- ----------------

www.udsspace.uds.edu.gh 

 

 

 

 



viscous and ohmic dissipation whilst Barletta and Celli (2007) investigated the effects

of joule heating and viscous dissipation of mixed convection MHD flow in vertical

channels. The influence of radiation on MHD free convection from a vertical flat plate

embedded in porous media with thermophoretic deposition of particles was analyzed

by Rashad (2007). Ahmed et al., (2007) theoretically investigated the steady MHD

free convective and mass transfer boundary layer of an electrically conducting fluid

through a porous medium. The study was an extension of earlier work by Raptis and

Kafousias (1982). It was realized that varying conditions of the surface of flow-like

stretching as encountered in polymer extrusion or porosity as in manufacturing of

textiles affect the rate at which heat and mass are transferred. Some researchers have

been led by this to include various physical aspects of the problem of combined heat

and mass transfer (Salem (2006); Ishak et al., (2008); and Makinde and Ogulu

(2008)). Furthermore, Tezer-Sezgin and Bozkaya (2008) studied the boundary

element of a Magnetohydrodynamic flow in an infinite region while Abass et al.,

(2008) presented solutions for hydromagnetic flow in a viscoelastic fluid due to an

oscillating stretching surface. Amkadni et al., (2008) provided exact solutions for

laminar MHD flow over a stretching flat plate.

The last three decades have seen an increase in the interest of MHD free or mixed

convection from a plate embedded in porous media. This is largely due to its

application in industry involving heat exchanger design, petroleum production,

filtration, chemical catalytic reactors, and MHD generators. Other applications of free

convection in engineering include heat rejection into the environment such as in water

bodies like lakes, rivers and the sea. Thermal energy storage systems such as solar

ponds and condenser of power plants are common examples. Makinde and Sibanda

4
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(2008) investigated the boundary layer problem of MHD mixed convective flow with

heat and mass transfer past a vertical plate in a porous medium with constant wall

suction while Abdelkhalek (2008) presehted numerical results on heat and mass

transfer in MHD free convection from a moving permeable vertical surface by a

perturbation technique. Ibrahim and Makinde (2010; 2011) reported interesting results

on MHD boundary layer flow involving chemical reaction and radiation effects on

stretching and porous surfaces. Heat and mass transfer by MHD mixed convection

stagnation point flow toward a vertical plate embedded in a highly porous medium

with radiation and internal heat generation was recently reported by Makinde (2012).

Singh and Makinde (2012) then presented a computational dynamics of MHD free

convection flow along an inclined plate with Newtonian heating in the presence of

volumetric heat generation whilst Makinde (2012) studied entropy analysis for MHD

boundary layer flow and heat transfer over a flat plate with convective surface

boundary conditions. Alam et al., (2013) analyzed the heat and mass transfer in MHD

free convection flow over an inclined plate with hall current whilst Alia et al., (2013)

presented numerical results of radiation effects on MHD free convection flow along

vertical flat plate in the presence of Joule heating and heat generation. Alireza et al.,

(2013) analytically studied the MHD stagnation point flow and heat transfer over a

permeable stretching sheet with chemical reaction. Ibrahim (2013) analyzed the heat

and mass transfer effects on steady MHD flow over an exponentially stretching

surface with viscous dissipation, heat generation and radiation. Seini and Makinde

(2013) then studied MHD boundary layer flow due to exponential stretching surface

with radiation and chemical reaction whilst Raja et al., (2013) presented results of

Magneto-convection over a semi- infinite porous plate with heat generation.

Moreover, Uddin et al., (2013) studied MHD forced convective laminar boundary
5
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layer flow from a convectively heated moving vertical plate with radiation and

transpiration effect. Arthur and Seini (2014) also investigated the MHD thermal

stagnation point flow towards a stretching porous surface. In this study, the combined

effect of Radiation and viscous dissipation in a hydromagnetic fluid flow with

convective boundary conditions are investigated.

1.2 Problem Statement

The need to control the cooling process in manufacturing processes led to a major

paradigm shift in many industrial and engineering activities such in chemical

engineering processes and electrical system design (Arthur and Seini, 2014). It has

been observed in literature that the fluid mechanical properties of the penultimate

product depend mainly on the cooling liquid used and the rate of stretching.

Conventional fluids such as water and air are the most widely used media in cooling

systems. The rate of heat and mass exchange achievable using these conventional

fluids is unsuitable for certain sheet materials. It has been proposed to alter flow

kinematics so that it would lead to a slower rate of solidification, as compared with

water. Among the many techniques of controlling flow kinematics, the idea of using

magnetic fields appears to be the most attractive. Using magnetic field is preferred

because of the ease of implementation and its non-intrusive nature. Many researchers

have been attracted to the computational dynamics of MHD fluid flow with heat and

mass transfer over surfaces of various orientations. It is worth noting that many

investigations into MHD flow have been reported in the literature. However, the

combined effect of radiation and viscous dissipation, which adds up to heat transfer,

with convective boundary condition as encountered in heat exchanger design

technology is very limited in the literature. This study aims to investigate the

6
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combined effects of radiation and viscous dissipation in a hydromagnetic flow with

convective boundary conditions in heat and mass transfer.

1.3 Research Objectives

This research aims at achieving two categories of objectives: the general and the

specific objectives.

1.3.1 General Objective

To investigate the combined effects of radiation and viscous dissipation on

hydromagnetic flow with convective boundary conditions

1.3.2 Specific Objectives

The specific objectives of the study are to:

1. Develop a mathematical model governing the combined effects of radiation

and viscous dissipation.

11. Employ the techniques of similarity analysis to solve the partial differential

equations modelling the problem.

iii. Analyse the effects of various controlling parameters on the problem.

1.4 Relevance of the Research

The study is relevant to the design of experiments both physically and numerically. It

could be used in reporting of experimental results in the field of MHD ship

propulsion, flow and flight control in aerospace engineering and solar energy fusion.

This will help solve problems arising from melts by electromagnetic forces caused in

conducting media by external electromagnetic fields. It will also help in enhancing

7
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technologies in various types of electromagnetic pumps and valves for transportation

batching, and stirring metals, which affect the convective heat and mass transfer in

crystallization process in metallurgy and in liquid metal cooling systems for nuclear

technology where radiative and viscous heating is inherent.

The study seeks to discover parameters of importance for building of power

engineering devices, metallurgical and electrical technologies in which MHD effects

play essential roles and determine the efficiency of operation when strong

electromagnetic fields are used.

The field of MHD technology comprising of various types of MHD relays,

communication switches, and units of automation with liquid working body would

benefit from parameters and the rigorous analysis from this research. The work will

also serve as reference material for future works in the areas of nuclear studies,

manufacturing, mining, petro-chemical, aerospace and automotive industries.

1.5 Properties of Fluids

1.5.1 Nonlinearity

Any physical systems can be modeled by a set of nonlinear equations. These

nonlinearities in dynamical systems make solutions of most problems difficult to

obtain. It is often necessary to approximate these non-linear equations to systems of

linear equations by making some appropriate assumptions to obtain direct solutions.

In fluid flow problems, nonlinearities are mostly due to the convective acceleration

associated with the change of velocity over position. Thus, any convective flow,

whether turbulent or not will involve nonlinearities.

8
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1.5.2 Density of a substance

Density (P) is defined as mass (m) per unit volume (V). That is,

m
p=-

V
(1.1 )

unit mass. The density of a substance, in general depends on temperature and

pressure. The density of most gases is proportional to pressure and inversely

proportional to temperature. Liquids and solids, on the other hand, are essentially

incompressible substances, and the variation of their density with pressure is usually

negligible. The density of liquids and solids depends more strongly on temperature

than it does on pressure.

1.5.3 Viscosity

Fluid tends to flow when acted upon by forces because they cannot resist the induced

shearing effects. Prandtl (1904) observed that when a fluid flows over a surface, its

particles directly in touch with the surface move with it, but with stationary surfaces,

particles of fluid have zero velocities. The velocities of particles increases as the

distance from the surface increase and reaches the maximum, called the free stream

value, at a region far away from the object. Thus, shearing stresses opposing the

relative motion of fluid develop with magnitude depending on the velocity gradient

from layer to layer. For fluids obeying Newton's law of viscosity, the x- coordinate is

taken to act along the direction of flow with velocity, u. The shear stress (1') in a fluid

at a distance, y from the surface is given by:

du
f' = j.l-

dy
(1.2)

9
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Where # is the co-efficient of dynamic viscosity defined as the shear force per unit

area required to drag one layer of fluid with unit velocity past another layer a unit

distance away from it in the fluid. The SI units for dynamic viscosity is the Newton-

Seconds per Meter Squared (Nsm")

1.5.4 Kinematic Viscosity

The kinematic viscosity is defined as the ratio of the dynamic viscosity (u) to the

mass density. It is measured in Squared Meters per Second (m2s-l) and

mathematically expressed as

V=IJ
P

(l.3)

1.5.5 Internal Energy

The energy stored in a system due to the molecular interaction and bonding is referred

to as the internal energy. A given mass of a viscous fluid may be viewed as a

thermodynamic system that stores various forms of energies. The internal energy of a

fluid includes the energy due to translation, rotation, vibration and the energy of

molecular dissociation as well as energy of electronic excitation of the molecules.

Internal energy has units of Jmol".

1.5.6 Thermal Conductivity

The thermal conductivity, K is a measure of a material's ability to conduct heat. It

relates the vector rate of heat transfer per unit area, q (also called the heat flux) to the

vector gradient of temperature, VT. For solids and liquids the Fourier's law of heat

conduction is given as:

10
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q=-!&T, (1.4)

where the negative sign indicates that heat flux IS positive In the direction of

decreasing temperature.

1.6 Modes of Heat Transfer
!

I

Basically, there are three modes of heat transfets. These are conduction, radiation,
!

and convection. Conduction is an exchange of erergy by direct interaction between

molecules of a substance having temperature differences. It occurs in gases, liquids,
I

i

or solids and has a strong basis in the molecular kinetic theory of Physics. Radiation is
!

a transfer of thermal energy in the form i of electromagnetic waves. Like
!

electromagnetic radiation (light, X-rays, microwares), thermal radiation travels at the

speed of light, passing most easily through a va~uum or a nearly transparent gasses.
I

Liquids containing gases, such as carbon dioxide and water vapor, and glasses
i

transmit only a portion of incident radiation, 'ihile most of solids are essentially

opaque to radiation. Convection remains the bastc mode of heat transfer among the

fluids.

1.6.1 Convection

Convection in general terms refers to the movement of molecules within fluid.
I

Convection is one of the major modes of heat an~ mass transfer in fluids. Convective

heat and mass transfer take place through both diffusion (the random Brownian

motion of individual particles in the fluid) and by *dvection, in which matter or heat is

transported by the larger-scale motion of currents in the fluid. In the context of heat

and mass transfer, the term "convection" is used t~ refer to the sum of advective and

diffusion.
11
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1.6.1.1 Convective Heat Transfer Coefficient

Convection is the transfer of energy by conduction and radiation in moving fluid

media. The motion of the fluid is an essential part of convective heat transfer. A key

step in calculating the rate of heat transfer by convection is the calculation of the heat-

transfer coefficient.

In many cases of industrial importance, heat is transferred from one fluid, through a

solid wall, to another fluid. The transfer occurs in a heat exchanger.

1.6.1.2 Heat Transfer Coefficient

The local rate of convective heat transfer between a surface and a fluid is given by

Newton's law of cooling

q = h. (1'., - T), (1.5)

where hs is the local heat transfer coefficient at the surface, T, is the temperature of

the surface, T is the bulk fluid temperature and q is the energy flux defined by

Fourier's law given in equation (1.4).

1.7 Computational Approach

Mathematically speaking, the differential equations describing the hydromagnetic

boundary layer flow interaction with heat transfer over a flat surface constitute a

nonlinear problem in an unbounded computational domain. The theory of nonlinear

differential equations is quite elaborate and their solutions remain an extremely

important problem of practical relevance in industrial and engineering systems.

Approximate solutions for the nonlinear systems of differential equations modeling

12
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the MHD flow over a flat surface will be constructed using the fourth order Runge-

Kutta integration scheme coupled with numerical shooting technique, Roche (1998).

Both numerical and graphical results will be presented and discussed quantitatively

with respect to various parameters embedded in the problem.

1.7.1 Runge-Kutta (RK)

Runge-Kutta (RK) methods are based on Taylor expansion formulae, but yield in

general better algorithms for solutions of an ODE (Hjorth-Jensen (2013). The basic

philosophy is that it provides an intermediate step in the computation of Y;+ I.

To see this, consider first the following definitions

(1.6)

y{t) = f f{t,y}it, (1.7)

r- ( \AYi+] = v, + Jt / t,y JUt.
I

(1.8)

To demonstrate the philosophy behind RK methods, let us consider the second-order

RK method, RK2. The first approximation consists in Taylor expandingj''(r, y) around

the centre of the integration interval t, to t;+I, i.e., at t, +hI2, h being the step. Using the

midpoint formula for an integral, defining yeti + h12) = Yi+I/2 and t; + hl2 = t;+1/2, we

obtain

(1.9)

13
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This means in tum that we have

(1.10)

However, we do not know the value OfYi+ll2. Here comes thus the next approximation,

namely, we use Euler's method to approximate Yi+1I2. We have then

(1.11 )

This means that we can define the following algorithm for the second-order Runge-

Kutta method, RK2 ..

(1.12)

0.13)

(1.14)

The difference between the previous one-step methods is that we now need an

intermediate step in our evaluation, namely t, +h12 = t(i+II2) where we evaluate the

derivative f. This involves more operations, but the gain is a better stability in the

solution. The fourth-order Runge-Kutta, RK4, which we will employ in the solution

of various differential equations below, is easily derived. The steps are as follows. We

start again with (1.7), but instead of approximating the integral with the midpoint rule,

we use now Simpson's rule at t, + h12, with h being the step. Using Simpson's

formula for an integral, defining y(r, + h12) = Yi+112and ti+hl2 = fi+1I2, we obtain

14
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This means in tum that we have

(1.16)

However, we do not know the values OfYi+1I2 and y..]. The fourth-order Runge-Kutta

method splits the midpoint evaluations in two steps, that is we have

(1.17)

since we want to approximate the slope at Yi+1/2 in two steps. The first two function

evaluations are as for the second order Runge-Kutta method. Thus, the algorithm

consists in first calculating kl with t.; YI and f as inputs. Thereafter, we increase the

step size by hl2 and calculate k2, then k3 and finally kc With this caveat, we can then

obtain the new value for the variable y. It results in four function evaluations, but the

accuracy is increased by two orders compared with the second-order Runge-Kutta

method. The fourth order Runge-Kutta method has a global truncation error which

goes like 0 (h4
).

1.7.2 Shooting method

In many physics applications we encounter differential equations like

(l.18)
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with boundary conditions

y{a} = a,y{b}= p. ( 1.19)

We can interpret F(x) as an inhomogeneous driving force while k(x) is a real function.

If it is positive the solutions y(x) will be oscillatory functions, and if negative they are

exponentionally growing or decaying functions (Hjorth-Jensen (2013). To solve this

equation we could start with for example the Runge-Kutta method or various

improvements to Euler's method, as discussed in the previous chapter. Then we

would need to transform this equation to a set of coupled first-order equations. We

could however start with the. discretized version for the second derivative. We

discretize our equation and introduce a step length h = (b-a)/N, with N being the

number of equally spaced mesh points. Our discretized second derivative reads at a

step Xi = a + ih with i = 0,1, ...

(1.20)

leading to a discretized differential equation:

(1.21)

Recall that the fourth-order Runge-Kutta method has a local error of O(h4
). Since we

want to integrate our equation from Xo = a to XN = b, we rewrite it as

(1.22)
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Starting at i = 1 we have after one step:

(1.23)

Irrespective of method to approximate the second derivative, this equation uncovers

our first problem. While Yo = y (a) = 0, our function value YI is unknown, unless we

have an analytic expression for y(x) at x = O. Knowing YI is equivalent to knowing y'

at x = 0 since the first derivative is given by

Y' R: Yi+) - Yi .
I h

(1.24)

1.8 Organisation of Report

This dissertation is organised into five chapters. Chapter one focuses on the general

introduction of the study which includes the background of the study. The problem is

stated and the research methodology outlined. In chapter two, the relevant

mathematical formulae have been derived. Chapter three applies these formulae to

solving a practical problem of relevance in industry whilst chapter four presents the

results and discussions. Chapter five includes summary of findings, conclusion and

recommendation for industry and future researchers.
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CHAPTER TWO

MODELS FORMULATION

2.1 Introduction

In this chapter, the differential equations governing fluid motion are derived. They

include the continuity, momentum, energy and concentration equations. The control

volume approach to fluid analysis is used in the form of rectangular coordinate.

2.2 The Continuity Equation

The partial differential equations modelling the motion of a parcel of fluid is obtained

by applying the conservation law of mass to a small volume of fluid flow. Consider

the mass flux through each face of the fixed infinitesimal control volume shown in

Fig 2.1. Let the net flux of mass entering the element be equal to the rate of change of

the mass of the element; that is,

. . a
min - m out = at m element (2.1)

To perform this mass balance, identify pu, pv and pw at the centre of the element and

then treat each of these quantities as a single variable.

18
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,Lx
l

(
(J(pw) dl).,IN+;ii 2 dxdy

(
()(PW)dl)11II-;;; 2' dxdy

~.-~,)1)dxd1

Figure 2. 1 Mass flux through each of the six faces of a control volume of fluid
(Cengel and Cimbala (2006»

From Figure2.1 which shows the mass flux through each of the six faces; Equation

(2.1) then takes the form

[
a(pw)dZ] [ a(pw)dZ] a ( )+ pw---- dxdy- pw+--- dxdy==- pdxdydz

az 2 az 2 at
(2.2)

Subtracting the appropriate terms and dividing by dxdydzgives,

80m) a&w) a(pw) ap
--+--+--==--ax ay az at

(2.3)
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Expanding and simplifying results in

(2.4)

In terms of substantial derivative we can write (2.4) as

Dp +p(8U + Ov + 8wJ=O
Dt ax ay 8z

(2.5)

This is the most general form of the differential continuity equation expressed in

rectangular coordinates. We can introduce the gradient operator, 'Vcalled "del",

which, in rectangular coordinates, is

(2.6)

The continuity equation can then be written in the form

Dp-+p'V·=O
Dt

(2.7)

Where V = U i + v J + w k and 'V. V is called the divergence of the velocity. This

form of the continuity equation does not refer to any particular coordinate system. It is

the form used to express the continuity equation using various coordinate systems.

2.3 The Momentum Equation

2.3.1 General formulation

The differential momentum equation is a vector equation and thus provides us with

three scalar equations. These component equations will help us in our attempt to
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determine the velocity and pressure fields. There are nine stress components of the

stress tensor 'r'J that act in a particular point in a fluid field. These stress tensors can be

related to the velocity and the vector fields with the appropriate equations.

( dazx dZ)
.
(lZX - -- - dx dy

dZ 2
dx

i)a dY)(Jyx + ~ - dx dz
dy 2

dtT xx dX) d. d!"'"-~ (Txx + - - Y L
dX 2

yJ-x
Z

Figure 2. 2 x-directional surface forces due to stress tensor component of a
control volume (Cengel and Cimbala (2006».

(
dll IX dZ) d d

(Jzx + - - X Y
dZ 2

The stress components that act at a point are displayed on a two- and three-

dimensional rectangular element in Figure 2.2. This element is considered to be an

exaggerated point, a cubical point; the stress components act in the positive direction

on a positive face (a normal vector point in the positive coordinate direction) and in

the negative direction on a negative face (a normal vector points in the negative

coordinate direction). The first subscript on a stress component denotes the face, upon

which the component acts, and the second subscript denotes the direction in which it

acts; the component 'l'xy acts in the positive y-direction on a positive x-face. A stress

component that acts perpendicular to a face is referred to as normal stress; the
21
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components t1xx. t1y'yand t1zz are normal stresses. A stress component that acts tangential

to a face is called a shear stress; the components t"X)'> t"yx t"xz t"zx Tyz and rzy are the shear

'. - t=r>:» ...t.... Tl;1Pl'P Rre, nine stress components that act at a particular point in a
fluid. To derive the differential momentum equauo», w •••.••__•• . _

infinitesimal fluid particle. Only forces acting on the faces are shown. The stress

components are assumed to be functions of x, y, z and t; and hence the values of the

stress components change from face to face since the location of each face is slightly

different. The body force is shown acting in an arbitrary direction. Newton's second

law applied to a fluid particle, for the x-component direction, "'LFx = max. For the

particle shown, it takes the form:

[a + aO'.O' dx]dvdZ + [r + ar y.r dy]dxdz +[r + ar zx dz]dxdv _ [a _ aO'xx dx]dlJdZxx ax 2 ;.r. yx By 2 zx az 2 ;.r xx ax 2 .r

[
aryX dY] [ arzx dZ] Du- r ---- dxdz= r --- dxdy+ pg dxdydz v o dx dy dz=-:yx By 2 zx az 2 '.I' x;.r .r Dr ' (2.8)

where the component of the gravity vector g in the x-direction is gx and Du is the x-
Dt

component acceleration of the fluid particle. Dividing by the volume dxdydz, (2.8)

simplifies to

Du aO'xx aryX ar zx
p-=--+--+--+pgx'

Dr ax By az
(2.9)
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Similarly, for y- and z-directions, we have

Dv aTxy au yy aToy
p-=--+--+--+pg

Dt ax By az y'
(2.10)

(2. 1 1)

We can show by taking moments about the axes passing through the centre of the

infinitesimal element, that

(2.12)

That is, from (2.12), we say the stress tensor is symmetric; so there are actually six

independent stress components. The stress tensor may be displayed in the usual way

as in (2.13)

The subscripts i and j take on numerical values 1, 2, or 3. Th~n 112 represents the

element Tx), in the first row, second column.

(2.13)

2.3.2 The Navier - Stokes Equations

Many fluids exhibit a linear relationship between the stress components and the

velocity gradients. Such fluids are called Newtonian fluids and include common fluids
•

such as water, oil, and air. If in addition to linearity, we require that the fluid be

isotropic, it is possible to relate the stress components and the velocity gradients using

only two fluid properties, the viscosity J1 and the second coefficient of viscosity A.The
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stress-velocity gradient relations, often referred to as the constitutive equations, are

stated as follows:

au (au av)
(J' =-p+211-+AV"V T =11 -+-,

xx rax 'XY ray ax

av (au Ow)
(J' = -p +211- +AV' . V T = II - +-Y.Y ray , xz r: aZ ax' (2.14)

For most gases and for monatomic gases exactly, the second coefficient of viscosity is

related to the viscosity by

(2.15)

a condition that is known as Stokes' hypothesis. With this relationship, the negative

average of the three normal stresses is equal to the pressure, that is,

(2.16)

Using (2.14), this can be shown to always be true for a liquid in which V'. V = 0, and

with stokes' hypothesis, it is also true for a gas. If the constitutive equations are

substituted into the differential momentum equations (2.9), (2.10), and (2.11), there

results, using Stokes' hypothesis,

(2.17)
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(2.18)

(2.19)

where a homogeneous fluid is assumed. That is, the fluid properties (for example, the

viscosity) are independent of position. For an incompressible flow, the continuity

equation allows the equations above to be reduced to

(2.20)

(2.21 )

(2.22)

These are the Navier-Stokes Equations, named after Louis M. H. Navier (1785-1836)

and George Stokes (1819-1903). The three differential equations together with the

continuity equation give four equations and four unknowns in u, v, wand p. The

viscosity and density are the fluid properties that can often be determined. With the

appropriate boundary and initial conditions, approximate solutions can be obtained.

Several relatively simple geometries allow for analytical solutions. Numerical

solutions have also been determined for many flows of interest. Since the equations
••

are nonlinear partial differential equations, it cannot be certain that the solution

obtained can exactly be realized in the laboratory. That is: the solutions are- not

unique. For example, a laminar flow and a turbulent flow may have the identical
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initial and boundary conditions, yet the two flows (the two solutions) are very

different.

We can express the Navier-Stokes equations in vector form by multiplying (2.20),

(2.21) and (2.22) by 1, J and k respectively, and adding recognizing that;

DV Du ~ Dv ~ Dw ~
-=-i+-j+-k,
Dt Dt Dt Dt

~A an~ anAVp=_VjJ i +_l"'j +_l"'k,
ax By az

(2.23)

where the Laplacian:

(2.24)

Combining the above, the Navier-Stokes equations in (2.20), (2.21) and (2.22) take

the vector form

DV 2
P - = -VP + pg + pV V

Dt
(2.25)

2.4 The Energy Equation

Most problems of interest in fluid mechanics do not involve temperature gradients.

They do however involve flows in which temperature everywhere is constant. For

such flows it is not necessary to introduce the differential energy equation. There are

situations, however, for both compressible and incompressible flows, in which

temperature gradients are important, and for such flows the differential energy
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equation may be needed. The differential energy equation is derived assuming

negligible viscous effects, an assumption that significantly simplifies the derivation.

Since the shear stresses that result from viscosity are quite small for many

applications, this assumption may be acceptable. These shear stresses do, however,

account for the high temperatures that burn up satellites on re-entry to the atmosphere;

if they are significant, they must be included in any analysis.

Consider the infinitesimal fluid element, shown in Figure 2.1. The heat transfer rate

Qthrough an area A is given by Fourier's law of heat transfer, named after Jean BJ.

Fourier (1768-1830):

Q.=-KA aT
an'

(2.26)

where n is the direction normal to the area, T is the temperature, and 1C is the thermal

conductivity, assumed to be constant. The rate of work done by a force is the

magnitude of the force multiplied by the velocity in the direction of the force, that is,

W=pAV, (2.27)

where V is the velocity in the direction of the pressure force pA. The first law of

thermodynamics applied to a fluid particle can be written as

.. DE
Q-W = Dt ' (2.28)

where DIDt is used since we are following a fluid particle at the instant shown.

For the particle occupying the infinitesimal element of Figure 2.1, the relationships

above allow us to write:
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(OTI OTI J a (aT er J asdydz - - - - - (pu}dxdydz+ sdxdz - - - - - (pv}dxdydz
Ox xwdx Ox x Ox By y+dy By y By

(OTI OTI J a (p \A~ D (u2
+ v

2
+ w

2 -J+sdxdy - -- -- wj'Mdydz=pdxdydz- +gz+u , (2.29)
OZ z+dz [jz z OZ Dt 2

where u is the internal energy, E has included kinetic, potential and internal energy,

and the z-axis is assumed vertical. Also, since the mass of a fluid particle is constant

pdxdydzis outside the DIDt-operator. Divide both sides by dxdydz.The result is

This can be rearranged as follows:

op Du Dv Dw Dz D'ii-w-=pu-+pv-+pw-+pg-+p-. (2.31)
oz Dt Dt Dt Dt DI

The Euler's equations are applicable for this inviscid flow. Hence, the last three terms

on the left equal the first four terms on the right if we recognize that

Dz oz oz OZ 8z-=-+u-+v-+w-=w
Dt at ox By 8z '

(2.32)

since x, y, z and t are all independent variables. The simplified energy equation then

takes the form

(2.33)
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In vector form, this is expressed as

D'ii 2
p-=iCV T-pV·V

Dt
(2.34)

Before simplifying this equation for incompressible gas flow, it could be written in

terms of enthalpy rather than internal energy. Using

u=h-P.
p

(2.35)

The energy equation now becomes

(2.36)

Two special cases can be considered. First, for a liquid flow, the continuity equation

requires that V . V = 0 and with it = cpT, cp being the specific heat capacity at constant

pressure. Equation (2.34) becomes

(2.37)

In (2.3 7) we have introduced the thermal diffusivity defined by

K
a=--

PCp
(2.38)

If viscous effects are not negligible, the derivation would include the work input due

to the shear stress components. This would add a term to the right-hand side of all the

differential energy equations above; this term is called the dissipation function <l>,

which, in rectangular coordinates, is
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(2.39)

Therefore, the energy equation for incompressible fluid flow becomes

DT 2-=a~ T+<l>
Dt

(2.40)

In equation (2.40), the left hand represents the convective term whilst the right hand

side are respectively, the rate of heat diffusion to the fluid particles and the rate of

viscous dissipation per unit volume.

2.5 The Concentration Equation

Similar to the energy equation derived on the principles of energy conservation, the

concentration equation is derived on the principles of species conservation in a

mixture. In addition to accounting for the convection and diffusion of each species,

we must allow the possibility that a species may be created or destroyed by chemical

reactions occurring in the bulk medium (homogeneous reactions). Reactions on

surfaces surrounding the medium (heterogeneous reactions) must be accounted for in

the boundary conditions. j.

product of unit
normal vectOr
InddS

A

t

Figure 2. 3 A Control volume in a fluid-flow and mass-diffusion field (Lienhard
IV and Lienhard (2008»
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Consider, in the usual way, an arbitrary control volume, R, with a boundary, S, as

shown in Fig 2.3. The control volume is fixed in space, with fluid moving through it.

Species i may accumulate in R, it may travel in and out of R by bulk convection or by

diffusion, and it may be created within R by homogeneous reactions. The rate of

creation species i is denoted by f; ; and, because chemical reaction conserve mass, the

net mass reaction is f = Lf; = O. The rate of change of the mass of species i in R is

then described by the following balance:

!!...r p.dR = _r n.dS + r fdR
dt JR I Js I JR I

(2.41 )

!!...r pdR=_r pv·dS- r J~.·dS+ r fdR
dt JR I Js I Js I JR I

(2.42)

The term on the left hand side of equation (2.42) is the rate of increase of the species

in the control volume and the terms on the right hand side depicts respectively, the

rate of convection of the species out of the control volume; the diffusion of the

species out of the control volume; and the rate of creation of the species in the control

volume.

This species conservation statement is identical to the energy conservation statement

except that the mass of the species has taken the place of energy and heat. The surface

integral may be converted to volume integrals using Gauss' theorem and rearranged to

appear as:

(2.43)
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Since the control volume is selected arbitrarily, the integrand must be identically zero.

Thus, the general form of the species conservation equation becomes:

api t7 (-) t7 -: •-+ v . p.v =-v 'J. +rat I I I
(2.44)

The mass conservation equation for the entire mixture can be obtained by summing

equation (2.44) over the species region and apply the requirement that there be no net

creation of mass:

(2.45)

So that

(2.46)

Equation (2.46) applies to any mixture, including those with varying density.

2.5.1 Incompressible Mixtures

For an incompressible mixture, V· v = 0 and the second term in equation (2.46) may

be written as

v .(,oV) = v . VPi + Pi . Vv = v . VPi (2.47)

Comparing the resulting incompressible species equation to the incompressible

energy equation:

api - t7 t7 -: •-+V· vp, =-v 'J. +rat I I I
(2.48)
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pc (aT + V. V'T) = -V'. ij + q
p at (2.49)

In equations (2.48) and (2.49), the reaction term, ~, is analogous to the heat

generation term, if; the diffusion flux, Z, is analogous to the heat flux, q, and dp, is

analogous to pc pdT .

2.5.2 Fick's Law

The Fick's Law states that during mass diffusion, the flux,], ofa dilute component, 1,

into a second fluid, 2, is proportional to the gradient of its mass concentration, mi.

Thus

(2.50)

where the constant DI2 is the binary diffusion coefficient.

We can use Equation (2.50) to eliminate Z in equation (2.48). The resulting equation

may be written in different forms depending on what is assumed about the variation of

the physical properties. If the product pDim is spatially uniform, then equation (2.48)

becomes:

D 2 i,-m, = D,mV' m,+-
Dt P

(2.51 )

If instead, p and Dim are both spatially uniform, then,

D D tl2 .
-Pi = imV Pi +rj
Dt

(2.52)
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We now state the equation of species conservation and its particular form in molar

variables instead of the mass variables as,

DC -Dn2C .-- v +r
Dt '

(2.53)

where C is the species concentration, D is the mass diffusivity and r is the rate of

generation of species.
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CHAPTER THREE

HYDROMAGNETIC FLOW OVER A FLAT PLATE WITH HEAT

AND MASS TRANSFER IN THE PRESENCE OF RADIATION

AND CONVECTIVE BOUNDARY CONDITIONS

3.1 Introduction

In this chapter, the mathematical governing equations in chapter two are employed for

a particular engineering problem frequently encountered in industry. Relevant

assumptions are made and a numerical procedure based on Runge-Kutta algorithm is

used to solve the problem. The model as indicated in chapter two is highly nonlinear

and a method based on similarity analysis shall be used.

3.2 Formulation of the Problem

The steady laminar two-dimensional hydrodynamic boundary layer flow with heat

and mass transfer over a flat plate in a stream of cold fluid at temperature Too in the

presence of radiation and magnetic field is considered. It is assumed that the fluid

property variations due to temperature and chemical species concentration are limited

to fluid density. It is also assumed that the lower surface of the plate is heated by

convection from a hot fluid at temperature T, which provides the heat transfer

coefficient h-. The cold fluid on the upper side of the plate is assumed to be

Newtonian, electrically conducting with constant fluid property. A uniform transverse •

magnetic field Bo is imposed normal to the x-axis, as shown in Figure 3.1. Both the

induced magnetic field due to the motion of the electrically conducting fluid and the

electric field due to the polarisation of charges are assumed to be negligible.
35
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y U'1;'

~-------------------------.x
T: c. u=v=O

Figure 3. 1 Schematic Diagram of Problem

T and C are the fluid x-component of velocity, y-component of velocity, temperature

Let the x-axis be taken along the direction of the plate and x-axis normal to it. If u, v,

and concentration respectively. With these assumptions, the governing equations for

the problem can be modeled as:

3.2.1 The Continuity Equation

Consider the substantial derivative

D a a a a-=-+-+-+-Dt at ax ay az (3.1 )

The problem under study is steady (flow properties do not change with time), two-

dimensional (no z-axis) so ~ = 0 and ~ = 0 . Hence (3.1) reduces toat az

D a a-=-+-Dt ax ay (3.2)
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This means the velocity field, V = u i + v J + w k and its divergence,

a A a A a Av =-i +-j'+-k now become:ax By az'

A A a A a A

V=ui+vj, V=-i+-jax By (3.3)

The continuity equation given in equation (2.7) now simplifies to:

au av
-+-=0ax By

(3.4)

3.2.2 The Momentum Equation

It is to be noted that once the flow is horizontal, gravity effects do not exist. The flow

is free stream and hence pressure is atmospheric and can be ignored since atmospheric

pressure is negligible. This is a parallel flow (the y-component of velocity, v, is zero)

so we the y-component of momentum goes to zero. Thus, the x-component velocity,

u, is the only velocity. From the Navier-Stokes equation (2.25), the momentum

equation becomes:

(3.5)

A field of magnetic induction Bo is applied transverse to the motion of an electrically

conducting fluid flowing on a flat plate with velocity field, V. Charged particles

moving with the fluid will experience an induced electric field, V x Bo which will tend

to drive an electric current in the direction perpendicular to both V and Bn: Neglecting

the Hall Effect, the magnitude of the current density for a weakly ionized fluid is

given by the generalized Ohm's law as;
37
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(3.6)

For the purposes of this study, both V and a are assumed to be uniform. In terms of

the two dimensional coordinate system:

(3.7)

Any movement of a conducting material in a magnetic field generates electric currents

j, which in tum induces a magnetic field. Each unit volume of liquid having j and Bo

experiences MHD force -j x Bo, known as the "Lorentz force" which retards the

motion of the flow:

(3.8)

Therefore, including a magnetic force into the flow field reduces the momentum of

the flow as given equation in (3.5) to:

(3.9)

Equation (3.9) is the modelled momentum equation for the problem under study.

Applying the stated assumptions to the energy equation (2.40) we get:

(3.10)

Now, consider the radiation effect with a radiative heat flux, q.. and assume that qr is

a function of y only. In other words, the radiative heat decays exponentially with
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respect to the y-axis. The contribution of this radiative heat flux and the magnetic

force to the energy equation makes equation (3.10):

(3.11 )

Equation (3.11) is the modelled energy equation to the study.

3.2.3 The Concentration Equation

Continuing in same fashion, from (2.53), the species concentration equation

governing the problem is:

ec ec e-cu-+v-=D--y(C-C)ax ay ay2 eo
(3.12)

In equation (3.12), the rate of generation of species y(C-C..,}is considered

destructive hence the negative, where y is the reaction rate.

3.2.4 Associated Boundary Conditions

The associated boundary conditions for the problem are required to enable a complete

solution. Due to the no-slip and convective boundary conditions, the boundary

conditions are specified as follows:

aT
Y = 0 . u = v = 0 - J( - = h (T - T) C = C. 'ay ss , s

(3.13)

y ~ 00: u(x,y) = 0, T = Too, C = Coo, (3.14)
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3.3 Self-Similar Solutions

The similarity solution is based on the idea that the velocity, temperature and species

concentration distributions at any position along the plate surface, x, will collapse if

they are plotted in dimensionless form as a function of an appropriately defined

similarity variable. The similarity variable is defined as the ratio of the distance from

the plate surface (y) to the approximate thickness of the momentum boundary layer

(3.15)

Therefore, the partial differential equations that describe the problem in terms of x and

y will collapse to ordinary differential equations in 1] for dimensionless velocity,

dimensionless temperature and dimensionless species concentration.

3.3.1 The Similarity Variable

The growth of the velocity, thermal and concentration boundary layers in a laminar

flow occur primarily due to the molecular diffusion of momentum and energy.

Therefore, the momentum boundary layer thickness (om) will grow approximately

according to:

(3.16)

where v is the kinematic viscosity and t is time, which is related to the distance from

the leading edge (x) and the characteristic velocity (uchar) according to:

x
t=--

Uchar
(3.17)
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For this study, the length is the total length of the plate (which is taken along the x-

axis) while the characteristic velocity is the constant free-stream velocity far from the

plate ( U00 ).

Substituting (3.16) into (3.17) leads to:

(3.18)

Substituting (3.18) into (3.15) gives:

(3.19)

Following the presentation of Ostrach (1953), the constant used to define the

similarity parameter is adjusted slightly, thus (3.19) becomes,

(3.20)

Hence (3.20) defines the similarity variable for this particular problem under

investigation.

The dimensionless velocity, temperature and concentration are obtained from:

(3.21)

(3.22)
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¢= c-c",
C, =C;

(3.23)

At any position, x will collapse when expressed in terms of (3.20). Therefore,

I' = I'(x,y)= 1'(17) (3.24)

B = B(x, y) = B(17) (3.25)

(3.26)

3.3.2 The Stream Function

The stream function is defined such that the continuity equation, (3.4), is

automatically satisfied. That is,

(3.27)

The stream function is related to the volumetric flow Q, between the surface of the

plate and any position y according to,

Q=WII/, (3.28)

where W is the width of the plate . The volumetric flow rate is calculated from the

velocity according to:

(3.29)

Equation (3.29) can be expressed in terms of the dimensionless variables (I' and '1)

using Equations (3.20) and (3.21) as,
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(3.30)

Substituting Eq. (3.30) into Eq. (3.28) leads to:

(3.31)

The integral f f'(")d,, = /(,,) in Equation (3.31) can be thought of as the

dimensionless form of the stream function and it must be a function of only the

similarity variable (,,). Simplifying Eq. (3.31) leads to:

(3.32)

Equation (3.32) can be rewritten as:

(3.33)

Equation (3.33) is the stream function of the study.

3.3.3 Transformation of the Problem

The similarity variables are substituted into the governing x-momentum, thermal

energy conservation and species concentration equations as well as the boundary

conditions for velocity, temperature and concentration in order to transform the three

coupled partial differential equations into three coupled ordinary differential

equations that can be solved more easily. The continuity equation is automatically

satisfied using the stream function as defined. The transformation process involves

taking the problem in terms of x and y and re-stating it in terms of".
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The similarity variable (3.20) is differentiated w.r.t x andy to get;

(3.34)

From (2.29), we express the x- velocity (u) in terms of the similarity variables as:

(3.35)

From (2.29), we can also express the y - velocity (v) in terms of the similarity t

variables as:

Simplifying and rearranging (3.36) gives:

(3.37)

The partial derivatives of u in (3.35) w.r.t x and y are as follows:

,;

3au _ I -M ~ri )----x y - "Ox 2 v
(3.38)

(3.39)

2 u2
a u _ ~ -I/",()---x "ay2 V

(3.40)
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The partial derivative ofv in (3.37) w.r.ty gives:

Ov 1 _3/ P;3-=-x 72Y -"' /"{1])
Oy 2 u

(3.41)

The Continuity Equation

The continuity equation (3.4) is satisfied using (3.38) and (3.41).

3.3.3.1 The Dimensionless Momentum Equation

For the momentum equation, substituting (3.35), (3.37), (3.38), (3.39) and (3.40) in

(3.9) gives,

(3.42)

Expanding brackets, dividing through by 4 and grouping like-terms (3.44) yields,

1 _3/ P;S 1 _3/ P;S 1- - X 72Y -"' 1'{1] )/"{1] ) + - X /2Y -"' 1'{1] )/"{1] ) - - U 2X -I /(1] )/"{1] ) =
2 v 2 u 2 .,

(3.43)

Simplifying and dividing through by u~X-I (3.43) gives,

- ~ /(1] )/"{1])= /"'{1])- uB: x (j'{1] )-1)
2 pU",

(3.44)
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But the coefficient UB.2X in (3.44) is the local Magnetic field parameter (Hax)'

pU(%J

Rearranging (3.44) gives,

1
/"'(" ) + - /(" )/"(" ) - Hax (/'(" ) -1) = 0

2
(3.45)

Equation (3.45) represents the dimensionless Momentum Equation which is a Third-

Order Non-Linear Ordinary Differential Equation.

3.3.3.2 Dimensionless Energy Equation

From (3.24) we can write,

(3.46)

Finding the partial derivatives of (3.46) w.r.t x and y yields,

(3.47)

(3.48)

(3.49)

For simplicity and comparison, the radiative heat flux term in the energy equation in

(3.11) is analyzed by utilizing the Rosseland diffusion approximation (Sparrow and

Cess 1961) for an optically thick boundary layer as follows:
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(3.50)

where K' and cr* are the mean absorption coefficient and the Stefan-Boltzmann

constant respectively. This approximation is valid at points optically far from the

bounding surface, and it is good only for intensive absorption, that is, for an optically

thick boundary layer (Hossain et al. 2001).

We assume that the temperature differences within the flow such as the term r may

be expressed as a linear function of temperature. Hence, expanding r in a Taylor

series about Too and neglecting higher order terms, we get;

(3.51 )

Multiplying through (3.51) by ~ gives,Oy

(3.52)

Equation (3.52) simplifies (3.50):

(3.53)

Differentiating (3.53) with respect to y gives,

(3.54)
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For the energy equation, substitute equations (3.35), (3.37), and (3.46)-(3.48) into

(3.11) to get,

(3.55)

Expanding and grouping like-terms in (3.55) give,

Dividing through by a * UooX -I (J:: - Too) and simplifying in (3.56) yield,
u

(3.57)
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We rearrange and simplify further in (3.57) to get,

(3.58)

Here the dimensionless Parameters of the flow are: Pr = ~ is the Prandtl number;
a

Ra = 40;:;,3 QO is the thermal radiation parameter; Ha, = aBg x is the local magnetic
pUoo

pU2

field parameter; and Br = ( 00) is the Brinkmann number. Equation (3.58)
K t;-t;

finally gives,

This can be rewritten as:

Equation (3.60) is the dimensionless thermal boundary layer equation. This is a

second order nonlinear ordinary differential equation.

3.3.3.3Dimensionless Concentration Equation

From (3.25) we can write:

(3.61 )
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Finding the partial derivatives of (3.62) w.r.t. x andy yields,

Substituting Equations (3.61)-(3.64) into (3.12) gives,

U'/'(1I\ - ~x -y,Y~~·(e, -c. J;'(1/»)+

G U.x-'Y!'(1I)-~x -y,.JVU'/(1I)}x -y,~~. (e, -e.J;·(1I)~
U -I

D* ",x (Cs -CJ¢"(77)-r(Cs-C",}P(77)
u

Expanding and grouping like terms in (3.65) give,

Simplifying and dividing through by DU ",X-I (Cs - e",) in (3.66) gives,
u

50
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The dimensionless parameters are: Sc = .!!.- is the Schmidt number, and f3x = r x IS
D u;

the local reaction rate parameter.

Simplifying further and rearranging in (3.67) yield,

(3.68)

Equation (3.68) is our dimensionless species concentration boundary layer equation.

This is a second order nonlinear ordinary differential equation.

3.3.3.4 Dimensionless Boundary Conditions

The corresponding dimensionless boundary conditions are obtained by substituting

equations (3.22), (3.25), (3.35), (3.37) and (3.47) into equation (3.16).

For the convective boundary condition, substitute the dimensionless temperature

gradient (3.47) in - K aT = h, (1'. - T).
By

That is,

(3.69)

Simplifying further by substituting (3.24) for T gives,

(3.70)
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Rearranging for the dimensionless temperature gradient in (3.70) yields,

o'(o)=_ll ~ U< [-0(0)+1]
K Ua>

(3.71)

The dimensionless number in (3.71) is: m, ~ h, ~ ut represents the local Biot
K Ua>

number.

Hence, the convective boundary condition in dimensionless form is expressed as:

0'(0)= BiJO(O)-l] (3.72)

Continuing in same fashion will lead to all the dimensionless conditions at no-slip and

free stream.

We organize the self-similar solution of our governing equations to the problem with

the associated boundary conditions:
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The corresponding boundary conditions in (3) now become

[(0) = 0, ['(0)=0, O'(O} = Bix[o(0}-11 ¢(O) = 1,

['(00)=1, 0(00}=0, ¢(oo}=O. (3.74)

In the above equations, primes denote the order of differentiation with respect to the

similarity variable. Obviously the local parameters Ha., Bi, and /lx in (3.73) and

(3.74) are functions of x. In order to have a similarity solution, all the parameters must

be constants and we therefore assume thaths = ax-~ a = bx" r = ex-I, where a, band

c are constants.

3.3.4 Dimensionless Fluxes

3.3.4.1 The Skin Friction Coefficient

The fact that the function[(ll) gives all information about the flow in the boundary

layer must be emphasized. The shear stress can be obtained from it, using Newton's

law of viscous shear:

(3.75)

From (3.34) we can rewrite (3.75) as,

(3.76)
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We rewrite (3.76):

(3.77)

The local skin friction coefficient or local skin drag coefficient is defined as,

c = 2Ts
f pu~

(3.78)

Substituting Equation (3.77) into (3.78) we get,

(3.79)

We simplify (3.79) to get,

(3.80)

The constant in (3.80) is adjusted to get the local skin friction as,

(3.81)

3.3.4.2 The Rate of Heat Transfer Coefficient

The rate of conduction of heat transfer coefficients are usually expressed in terms of

the Nusselt number: .

(3.82)
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where qs is the heat flux at the surface of the plate. In the context of our problem, we

define it to be the sum of the convective heat flux and radiative heat flux:

et 40-· aT4

q =-/C- ---
s Oy y=o 3K' Oy y=o

(3.83)

From (3.51) we can rewrite (3.83) as,

aT 40-· 3 aT
qs = -/C ~. - 3K' ·4Tao ~.

VJV y=o VJV y=o
(3.84)

By factorization, (3.84) becomes,

et ( 40-·T~ 4J
qs = -/C Oy y=o 1+ IdC ."3 (3.85)

We put (3.47) into (3.85) to get,

We rearrange (3.86) to get,

We simplify (3.87) to get,

(3.88)
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Now (3.88) in (3.82) gives,

Simplifying (3.89) gives,

(3.90)

Rearranging (3.90) gives,

(3.91)

3.3.4.3 The Rate 0/Mass Transfer Coefficient

The coefficient of mass transfer is generally specified by the Sherwood number:

(3.92)

where qm is the mass diffusion flux.

In the context of this problem, the Fick's law is defined as:

(3.93)
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From (3.62), we can write (3.93) as:

(3.94)

We simplify (3.94) to get:

(3.95)

We simplify (3.95) further to get,

(3.96)

We then put (3.96) into (3.92):

Sh= -x·Dx-1 .Re~(Cs -C .•,),'(O)
D(Cs -C",)

(3.97)

We simplify (3.97) to get,

Sh = -Re~ ,'(0) (3.98)

We rearrange (3.98):

Re:K Sh = -"(0) (3.99)
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CHAPTER FOUR

RESULTS AND DISCUSSIONS

4.1 Introduction

This chapter explores various findings obtained through the mathematical analysis of

the dimensionless coupled governing equations in (3.73) and the associated boundary

conditions (3.74). We develop most effective numerical shooting technique with

fourth-order Runge-Kutta integration algorithm. To select a representative value for

the infinity the similarity value can assume (1'/00,), we begin with some initial guess

value and solve the problem with some particular set of parameters to obtain f"(O),

9'(0) and <1>'(0).The solution process is repeated with another larger value of 1'/00 until

two successive values of/"(O), 9'(0) and <1>'(0)differ only after desired digit signifying

the limit of the boundary along 11. The last value of 1'/00 is chosen as appropriate value

for that particular simultaneous equation of first order for seven unknowns following

the method of superposition. To solve this system we require seven initial conditions

whilst we have only two initial conditions/'(O) and/(O) onf, and one initial condition

each on 9 and <1>.This means that there are three initial conditions, / "(0), 9'(0) and

<1>'(0)which are not prescribed. Now, we employ numerical shooting technique where

these two ending boundary conditions are utilized to produce two unknown initial

conditions at 11= O. In this calculation, the step size /11'/ = 0.001 was used while

obtaining the numerical solution with 1'/max=lO and six-decimal (10-6) accuracy as the

criterion for convergence. The numerical procedure was carried out using a Maple 16

software package. A representative set of numerical results are displayed graphically

and discussed quantitatively to show some interesting aspects of some pertinent
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controlling parameters of the flow on the dimensionless axial velocity profiles,

temperature profiles, concentration profiles, local skin friction coefficient, rate of heat

4.2 Numerical Results

The results of the study were compared to that of Aziz (2009) and Makinde (2012) in

Table 4.1 to justify the accuracy of the method used. In the absence of chemical

species concentration effects, our work reduces to the work reported by Makinde

(2012) and in the absence of magnetic field, viscous dissipation and chemical species

concentration our work reduces to that of Aziz (2009). From the comparison, the

results were observed to be consistent with published results in literature and thus,

validate the accuracy of the numerical procedure.

Table 4.1 Comparison with Aziz (2009) and Makinde (2012) for Hax=O, Dr =0,
Pr=0.72

Aziz (2009) Makinde (2012) Present Study

Bix -8'(0) 8(0) -8'(0) 8(0) -8'(0) 8(0)

0.05 0.0428 0.1447 0.04276 0.14466 0.042767 0.144661

0.60 0.1981 0.6699 0.19805 0.66991 0.198051 0.669916

1.00 0.2282 0.7718 0.22817 0.77182 0.228178 0.771822

5.00 0.2791 0.9441 0.27913 0.94417 0.279131 0.944174

20.00 0.2913 0.9854 0.29132 0.98543 0.291329 0.985434

Effects of Parameters on Skin Friction and the Rate of Heat and Mass Transfer

In Table 4.2, it is observed that the rate of heat transfer -8'(0) increases with

increasing Prandtl number and the local Biot number. This is due to the fact that high

Prandtl and Biot numbers contribute to enhancing the convective heat exchange at the
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surface of the plate, thus, increasing the rate at which heat is transferred at the surface

of the plate. At the same time, the Lorenz force induced by increasing the magnetic

field intensity increased the skin friction at the surface. Though this force is a

retarding one, it enhances the rate at which the chemical species rp' (0) is transported.

Meanwhile this retarding force was distractive to the rate of heat transfer, -8'(0). Just

as the magnetic field parameter, increasing the thermal radiation parameter and the

Brinkmann numbers reduced the rate of heat transfer due to viscous dissipation.

Furthermore, increasing the Schmidt number and the reaction rate parameter increases

the rate of mass transfer for obvious reasons.

Table 4.2 Results of skin friction coefficient, Nusselt and Sherwood numbers for
various values of controlling parameters

Pr Sc Hax Ra Br flx Bix /"(0) -61'(0) -¢'(O)

0.71 0.24 0.1 0.1 0.1 0.1 0.1 0.451835 0.068283 0.248586
4.0 0.24 0.1 0.1 0.1 0.1 0.1 0.451835 0.081449 0.248586
7.1 0.24 0.1 0.1 0.1 0.1 0.1 0.451835 0.084597 0.248586
0.72 1.24 0.1 0.1 0.1 0.1 0.1 0.451835 0.068415 0.494321
0.72 1.78 0.1 0.1 0.1 0.1 0.1 0.451835 0.068415 0.575143
0.72 2.64 0.1 0.1 0.1 0.1 0.1 0.451835 0.068415 0.679036
0.72 0.24 0.5 0.1 0.1 0.1 0.1 0.770792 0.064224 0.261862
0.72 0.24 1.0 0.1 0.1 0.1 0.1 1.044009 0.060326 0.269658
0.72 0.24 1.5 0.1 0.1 0.1 0.1 1.260190 0.057136 0.274372
0.72 0.24 0.1 0.5 0.1 0.1 0.1 0.451835 0.066984 0.248586
0.72 0.24 0.1 1.0 0.1 0.1 0.1 0.451835 0.065314 0.248586
0.72 0.24 0.1 1.5 0.1 0.1 0.1 0.451835 0.063856 0.248586
0.72 0.24 0.1 0.1 0.5 0.1 0.1 0.451835 0.042658 0.248586
0.72 0.24 0.1 0.1 1.0 0.1 0.1 0.451835 0.010461 0.248586
0.72 0.24 0.1 0.1 1.5 0.1 0.1 0.451835 -0.021753 0.248586
0.72 0.24 0.1 0.1 0.1 0.5 0.1 0.451835 0.068415 0.384277
0.72 0.24 0.1 0.1 0.1 1.0 0.1 0.451835 0.068415 0.511822
0.72 0.24 0.1 0.1 0.1 1.5 0.1 0.451835 0.068415 0.615465
0.72 0.24 0.1 0.1 0.1 0.1 1 0.451835 0.209665 0.248586
0.72 0.24 0.1 0.1 0.1 0.1 2 0.451835 0.236829 0.248586
0.72 0.24 0.1 0.1 0.1 0.1 3 0.451835 0.247518 0.248586
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4.3 Graphical Results

4.3.1 Effects of Parameter Variation on the Velocity Profiles

The effect of varying the controlling parameters on the velocity boundary layer is

depicted in Figure 4.1. Generally, the fluid velocity is lowest at the plate surface and

increases to the free stream value satisfying the far field boundary condition. A

consistent decrease in the longitudinal velocity informed by increasing magnetic field

intensity with all profiles tending asymptotically to the free stream value away from

the plate is observed. In practice, this phenomenon is due to the fact that increasing

the magnetic field strength increases the Lorenz force which causes a greater

opposition to fluid transport.

1 ++~~T++~~~~e ••••••
+, • 0°

+ 0;;-
o

+. 0

o0.8
o

- Ha. s=D
000 Ha, = 1
..... Ha, = 5
+++ Ha, = 10

+
o

0.6 o

e :(TJ) + Q

0.4 Pr = 0.72, Sc=0.24, ~x = 0.1,
Bix = 0.1, Br = 0.1, Ra=O.1

0.2

o~--~----~--~----~--~--------~----~--~--~
o 2 4 6 8 10

11
Figure 4.1 Velocity profiles for varying values of magnetic parameter (Hax)
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4.3.2 Effects of Parameter Variation of Temperature Profiles

Figures 4.2 - 4.6 show the effects of the magnetic field parameter, Biot number,

radiation parameter, Brinkmann number and Prandtl number respectively on the

temperature profiles. It is observed that increasing the magnetic field intensity

increases the fluid temperature which in turn, increases the thermal boundary layer

(Figure 4.2). This can be attributed to the effect of Ohmic heating on the flow system.

An increase in the Biot number is observed to increase the increase the temperature of

the fluid due to the convective heat exchange between the hot fluid at the lower

surface of the plate and the cold fluid at the upper surface of the plate (Figure 4.3).

Increasing the thermal radiation parameter causes an increase in the fluid temperature

within the boundary layer which in turn, increases the thermal boundary layer (Figure

4.4). In Figure 4.5, it was observed that the same trend occurs for the Brinkmann

number due to viscous dissipation. Meanwhile, increasing the Prandtl number

decreases the fluid temperature within the boundary layer (Figure 4.6). When the

Prandtl number is high, the fluid velocity decreases, which implies lower thermal

diffusivity and hence, decrease in fluid temperature (Figure 4.6).
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4.3.3 Effects of Parameter Variation on the Concentration Profiles

Figures 4.7 - 4.9 show the effects of the Magnetic field parameter, reaction rate

parameter and the Schmidt number respectively on the concentration boundary layer.

It is observed that increasing the magnetic parameter reduces the species

concentration boundary layer thickness (Figure 4.7). The same is true for increasing

reaction rate parameter (Figure 4.8) and the Schmidt number (Figure 4.9) since

increasing the Schmidt number in particular implies momentum diffusivity dominates

mass species diffusivity. Though increasing the reaction rate parameter implies

increasing rate of reaction over momentum, it is interesting to note that, the

concentration boundary layer reduces. This can be due to the fact that the reaction rate

in this study is destructive and hence has adverse effect on the concentration boundary

layer thickness.
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CHAPTER FIVE

CONCLUSIONS AND RECOMMENDATIONS

5.1 Introduction

This chapter presents the summary, conclusion and recommendation from the study.

5.2 Summary of Findings

The research primarily investigated the combined effects of radiation and viscous

dissipation on MHD flow over a flat surface with heat and mass transfer and

convective boundary conditions. The effects of controlling parameters on the skin

friction, the rate of heat and mass transfers, and velocity, temperature, and

concentration profiles were examined.

The equations governing fluid flow in general was derived and based on some

assumptions, a mathematical model was developed for the problem under study and

the associated boundary conditions. These models included the momentum, energy

and species concentration equations which were nonlinear partial differential

equations of higher order whose solution was not readily available. To make these

coupled partial differential equations solvable numerically, similarity analysis was

employed which reduced the problem to a set of nonlinear ordinary differential

equations. These nonlinear ordinary differential equations which revealed the

dimensionless parameters were solved by the Runge-Kutta integration along with the

Newton Raphson algorithm using Maple 16 software.
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With respect to thermal boundary layer; increasing viscous dissipation, convective

heating and radiation was observed to increase the temperature profile but when the

momentum diffusivity dominated, thermal diffusivity reduces. Meanwhile the induced

Lorenz force reduces the velocity as well as the thickness of the species concentration.

Increasing the concentration parameters also reduced the concentration boundary

layer due to dominant momentum diffusion over mass species diffusion.

The findings also indicate that increasing viscous dissipation and radiation have

adverse effect on the rate of heat transfer whereas increasing convective heat transfer

makes the heat transfer process enhanced. On the other hand, the rate of mass transfer

is enhanced by an increase in the Lorenz force and the species diffusion parameters.

The results pointed to the high increase in the skin friction as a result of intensifying

the magnetic field strength.

5.3 Conclusion

Chemically reacting MHD flow over a flat surface in the presence of radiation and

viscous dissipation with convective boundary conditions has been studied. Numerical

results have been compared to earlier results published in the literature and

consistency was achieved. Our results revealed that:

1. A consistent decrease in the longitudinal velocity within the boundary

layer accompanies a rise in the magnetic field intensity with all profiles

tending asymptotically to the free stream value away from the plate.
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The thermal boundary layer increases with increasing values of the

magnetic field parameter, Biot number, radiation parameter and

Brinkmann number. Meanwhile, increasing the Prandtl number reduces it.

The concentration boundary layer decreases with increasing Magnetic

field parameter, reaction rate parameter and the Schmidt number.

The skin friction at the surface increases for the increase in the magnetic

field parameter.

v. The rate of heat transfer at the surface increases with increasing values of

the Prandtl number and the Biot number; whereas a decrease is observed

11.

iii.

iv.

for increasing the magnetic field parameter, the radiation parameter and

the Brinkmann number

Vl. The rate of mass transfer at the surface increases with increasing values of

the magnetic field parameter, the reaction rate parameter and the Schmidt

number

5.4 Recommendations

1. Investigation of the effects of cooling and heating on MHD heat transfer

revealed that for the convective heat flux boundary condition, heat transfer

(and associated enhancement) is higher when flow temperature is higher.

When it comes to the convective surface temperature boundary condition, the

dominant parameter that affects the heat transfer is the surface temperature,

radiation and viscous dissipation. As the surface temperature increases, the

heat transfer and the associated enhancement increases. These facts should be

taken into account for the practical application of MHD in heat transfer

device.
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ii. Textile manufacturing involves a crucial energy-intensive drying stage at the

end of the process to remove moisture left from dye setting. It is recommended

that, in the process of optimising heat and mass transfer in the drying process,

thermal radiation should be controlled.

iii. In the design of plate fin Exchangers, it is recommended that convective heat

transfer parameter among other parameters, must be given considerate

attention, since it enhances the heat transfer process.

iv. It is recommended that, in the process of heat transfer, viscous dissipation

parameters must be controlled as it increases temperature.

5.5 Suggestion for further study

1. The contemporary trend in the field of fluid flow, heat and mass transfer

design is the second law of thermodynamics and its related concept of

entropy generation minimisation (Sahin, 1998). It is therefore

recommended to future researchers to include entropy analysis to provide

better analysis.

ii. It has been found that energy flux can be generated not only by

temperature gradients but also by concentration gradients. The heat

transfer caused by a concentration gradient is termed as diffusion thermo

(Dufour) effect. On the other hand, mass transfer created by temperature

gradients is called thermal - diffusion (Soret) effect. Generally, in heat and

mass transfer process, the Soret and Dufour effects are neglected because

they are smaller order of magnitude than the effects described by Fourier's

and Fick's laws. The Soret effect has been utilized for isotope separation
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lll.

and in mixture between gases of very light molecular weight and of

medium molecular weight. Further research is recommended to include

Soret and Dufour effects in the present study for a better analysis.

It is also recommended that further research is done to investigate into this

problem by varying the orientation of the flat' plate. Particularly, an

inclined plate will make this work more general.
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APPENDIX II

MAPLE CODE FOR NUMERICAL RESULTS

> Pr:= O.72:M:= O.l:SC:= 0.24:P:= O.l :Ra:= O.l :Br:= O.l:
Bi := 0.1 :

fens := {F(y}, S(y), <I>(Y)}:

sysl := d!ff(F(y),y$3) + ~. F(y) 'd!ff(F(y),y$2) - M

. (d!ff(F(y),y) - 1) = 0, ( 1 + ;. (Ra»)' d!ff( S(y),y$2)

+ ~ . Pr·F(y)·diff(8(y),y) + Br'(diff(F(y),y$2»2 + Br

·M·(diff(F(y),y) -1)2=0,d!ff(cp(y),y$2) + ~ ·Sc·F(y)

·diff( cI>(y ),y) - Sc- P'<I>(Y)= 0, O(F)(O) = 0, F(O) = 0,
O( 6) (0) = Bi· (6(0) - 1), $(0) = 1, O(F) (10) = 1, 6( 10) = 0,
<1>(10)=0:

d
3

3 F(y) + ~ F(y) ( d
2

2 F(Y») - 0.1 (: F(Y») + 0.1 = 0,
dy dy !Y

1.l33333333( :;2 S(y») + 0.360000000OF(y) ( !6(Y»)

+ 0.1 ( :' F(y) r + om (!F(y) - I)' ~o, :' .(y)

+ O.l20000000OF(y) ( !<I>(Y»)- 0.024<1>(y)=0, O(F) (0)

=O,F(O) =0,0(6)(0) =0.1 6(0) - 0.1,<1>(0)= I,O(F)(IO)

= l,e(lO) =0,<1>(10) =0

p := dsolve( {sysl, O(F)(O) =O,F(O) = 0, O( e)(O) =Bi- (6(0)
- l}, cI>(O) = 1, O(F)( 10) = I, S( 10) = 0, <1>(10)= 0 },fens, type
= numeric, method = bvp, abserr = 1e - 6)

proc(x_bvp) ... end proc

dsoll := dsolve ( {sysl}, numeric, output = operator)
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[y=proc(y) ... endproc,F=proc(y) ... end proc,O(F)=
proc(y)

end proc, 0 (2) (F) = proc(y) .., end proc, <I>= proc(y)

end proc, 0(<1» =proc(y) '" end proc, 8 =proc(y) .., endproc,
O( 8) = proc(y) ... end proc]

dsoll (0);

[y = 0, F(O) = 0., O(F) (0) = 0., 0(2) (F) (0)

= 0.45183509124099902,01>(0)= 0.9999999999999995,6)( <1»(0)

= -0.24858613612211488,00(0) = 0.31584661550448467,4

0(8)(0) = -0.068415338449551499}l
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APPENDIX III

MAPLE CODE FOR GRAPHICAL RESULTS

> with (plots) :
Pr:= O.72:M:= 0.1 :Sc:= 0.24:P:= 0.1 :Ra:= 0.1 :Br:= 0.1:

Bi:= 0.1 :

[ens := {F(y), SlY)' <J>(y)}:

sys := difJ(F(y),y$3) + ~ . F(y) ·dijJ(F(y),y$2) - M

. (difJ(F(y),y) - 1) =0, (1 + ~ .(Ra))- dijJ(9(y),y$2)

+ t· Pr·F(y)·di!1(9(y),y) + Br·(dijJ(F(y),y$2))2 + Br

·M·(diff(F(y),y) - 1)2=0,difr(<J>(y),y$2) + t·Sc.F(y)

·difr(<J>(y),y) - Sc·p·<J>(y) =0:

pI := dsolve( {sys,O(F)(O) =O,F(O) =0,0(9)(0) =Bi·(9(0)
- 1), <J>(O)= 1, O(F) (10) = 1, S( 10) = 0, <J>(10) = O},fcns, type
= numeric, method = bvp , abserr = l e - 6)

proc(x_bvp) ... end proc

p lf i= odeplut (pI, [y, F'(y)], 0 .. 10, numpoints = 50, labels = ["y'~
"velocity'], style =patch, symbol = asterisk, color = black) :

pIt := odeplot (pJ , [y, 9 (y)], 0 .. 10, numpoints = 50, labels = ["y'~ ,
"Temperature"], style = patch, symbol = asterisk, color = black) :

pIc := odeplot i p l , [Y,<J>(y)],0 .. 10,numpoints = 50, labels = ["y'~
"concentration'], style = patch, symbol = asterisk, color = black) :

with (plots) :
Pr := I :M := 0.1 : Sc := 0.24: p := 0.1 :Ra := 0.1 :Br := 0.1 :Bi

:= 0.1:

fens := {F(y), sty), <J>(y)}:

sys := difJ(F(y),y$3) + t· F(y)·dijJ(F(y),y$2) - M

. (dif/(F(y),y) - 1) =0, (1 + ~ .(Ra))- dV{(9(y),y$2)

+ t· P,.·F(y) .difJ ( 8(y),y) + Br· (difJ(F(y),y$2))2 + Br

·M·(difJ(F(y),y) -1)2=0,difJ(<J>(y),y$2) + t·SC.F(y)

·dijJ(<J>(y),y) - Sc·p·<J>(y) =0:

p2 := dsulve ( {sys, O(F)(O) = 0, F(O) = 0, O( 9) (0) = Bi· (8(0)
- 1),<J>(0) = 1,0(F)(10) = 1,8(10) =0, <J>(1 0) = O},fcns, type
= numeric, method = bvp, abserr = 1e - 6)
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proc(x_bvp) .., end proc

p2f := odeplot (p2, [y, F' (y )], °..10, numpoints = 50, labels = ["y'~
"velocity], style =point, symbol = circle, color = black) :

p2t := odeplot (p2, [y, 8(Y) ], 0 .. 10, numpoints = 50, labels = ["y",
"Temperature"], style = point, symbol = circle, color = black) :

p2c := odeplot (p2, [y, cp (y ) ],°..10, numpoints = 50, labels = ["y'~
"concentration'], style = point, symbol = circle, color = black) :

with (plots) :
Pr := 4 : M := 0.1 : Sc := 0.24: ~ := 0.1 : Ra := 0.1 :Br := 0.1 :Hi

:= 0.1:

fens := {F(y), sty), <\I(Y)} :

sys := difJ(F{y),y$3) + ~ . F(y) 'difJ(F(y},y$2} - M

. (difJ(F(y},y) -1) =0, (1 + ~ '(Ra))' difJ(8(y),y$2)

+ ~ . Pr·F(y}·difJ(8(y),y) + Br- (difJ(F(y},y$2))2 + Br

·M·(difJ(F(y),y) _l)2=0,difJ(cp(y),y$2) + t·SC.F(y)

.difJ (<I>(y),y) - Sc·~.cp(y) = 0:

p3 := dsolve ( {sys, D(F)(O) = 0, F(O) = 0, D( 8 )(0) = Bi- (8(0)
- I), <1>(0) = I, D(F) (10) = I, 8( 10) = 0, <1>( 10) = O},fcns, type
= numeric, method = bvp, abserr = le-6)

proc(x_bvp) .., end proc

p3f := odeplot (p3, [y, F' (y) ], °..10, numpoints = 50, labels = ["y'~
"velocity'], style =point, symbol = point, color = black) :

p lt i= odeplot(p3, [y,8(y)],0 .. IO,numpoints =50,labels = ["y'~
"Temperature"], style =point, symbol = point, color = black) :

p3c := odeplot (p3, [y, <I>(Y)],0 .. 10, numpoints = 50, labels = ["y'~
"concentration'], style = point, symbol = point, color = black) :

with (plots ) :
Pr := 7.1 :M := 0.1 : Sc := 0.24: ~ := 0.1 : Ra := 0.1 :Br := 0.1 :

Hi := 0.1:

fens := {F(y),S(Y),<I>(Y)}:

sys := difJ(F(y),y$3) + ~. F(Y)'difJ(F(y),y$2) - M

. (difJ(F(y),y) - 1) = 0, (I + ~ .(Ra))' difJ(8(y),y$2)

+ ~ . Pr·F(y) ·difJ( 8(y),y) + Br- (difJ(F(y),y$2))2 + Br

·M·(dijJ(F(y),y) - I)2=0,dijJ(<I>(y),y$2) + ; ·Sc·F(y)

·dijf(<I>(y),y) - Sc'~'<I>(Y) =0:- 84
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"

p4 := dsolve({sys,.O(F)(O) = 0, F(O) = 0, O( 9) (0) = Bi- (9(0)
- 1), ~(O) = 1, O(F)( 10) = 1, 9( 10) = 0, ~(IO) = °},fcns, type
= numeric, method = bvp, abserr = 1e - 6)

proc(x_bvp) .., end proc

p4f := odeplot (P4, [y, F' (y) ], 0 .. 10, numpoints = 50, labels = ["y':
"velocity], style =point, symbol = cross, color = black) :

p4t := odeplot (p4, [y, 9(y) ],°..10, numpoints = 50, labels = ["y':
"Temperature"], style =point, symbol = cross, color = black) :

> pec i= odeplot (p4, [y, ~(y) ],°..10, numpoints = 50, labels = ["y':
"concentration'], style =point, symbol = cross, color = black) :

~I
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