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ABSTRACT 

This study investigates the effect of chemical reaction and viscous dissipation on heat and 

mass transfer with convective boundary conditions. A system of partial differential 

equations describing the problem has been modelled and the technique of similarity 

analysis employed to transform the model into ordinary differential equations. The 

reduced system was solved using the Newton-Raphson shooting method alongside with 

the Forth-order Runge-Kutta algorithm. The results are presented graphically and in 

tabular form for various controlling parameters. Among others, the results obtained 

revealed that: The velocity increases with the increase in Eckert, thermal and 

concentration Grashof numbers. It also decreases with an increase in Schmidt number. 

The temperature reduces with increasing Prandlt and increases with Eckert, convective 

heat transfer parameter, thermal and concentration Grashof numbers. The concentration 

boundary layer decreases with increase in reaction rate parameter, Schmidt, convective 

heat transfer parameter and thermal and solutal Grashof numbers; and increases slightly 

with increasing order of chemical reaction. 
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CHAPTER ONE 

INTRODUCTION AND BACKGROUND OF THE STUDIES 

: 

1.0 Introduction 

Engineers all over the world are largely concerned with fashioning the material world 

through physical, chemical and biological changes to achieve desired predetermined 

results. Most of these changes require the transfer of energy, momentum or chemical 

species from one substance, phase or location to another. The design of the processes 

effecting these changes calls for efficient transfer of these quantities (Vijay, 2008). Heat 

and mass transfer continue to receive considerable attention because of their numerous 

industrial applications in many fields of engineering such as mechanical, civil, chemical 

and process engineering. 

In thermal power plants, boilers and condensers are designed in such a way that the 

desired rate of heat transfer is achieved. A Bessemer converter for making steel from pig 

iron must be designed so that it provides sufficient opportunity for the carbon to be 

oxidized quickly enough for the process to be economical. An artificial kidney must have 

sufficient capacity to remove toxins from the blood. Similarly, knowledge of transfer 

processes is required in the design of smoke-stacks to keep the concentration of 

pollutants at ground level within acceptable limits (Vijay, 2008). Due to its diverse 

applications in Thermodynamics, Material Science, Diffusion Theory, Fluid Mechanics, 

and Radiation Theory, Heat Transfer is considered the "heart" of Thermal Science. 

Heat transfer is energy in transit, and occurs as a result of temperature differences. 

Temperature difference is thought of as a driving force that causes heat to flow. The three 

basic modes of heat transfer are convection, conduction and radiation, which may occur 
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separately, or simultaneously. The subject matter of this research is solely based on the 

individual mechanism of convection. The number of heat transfer applications in which 

convection is a dominant phenomenon is large and better understanding of this 

phenomenon has even increased the number of applications and has led to a number of 

sophisticated industrial and environmental designs. 

1.1 Modes of Heat Transfer 

There are three basic modes by which heat can be transferred. These include conduction, 

radiation, and convection. 

l. Conduction is an exchange of energy by direct interaction between molecules 

of a substance having temperature differences. It mostly occurs in solids and 

has a strong basis in the molecular kinetic theory of Physics. 

ii. Radiation is the transfer of thermal energy in the form of electromagnetic 

waves. Like electromagnetic radiation (light, X- rays, microwaves), thermal 

radiation travels at the speed of light, passing most easily through a vacuum or 

a nearly transparent gasses. Liquids containing gases, such as carbon dioxide, 

water vapour, and glasses transmit only a portion of incident radiation, while 

most of solids are essentially opaque to radiation. 

Ill. Convection is the transfer of heat between a solid surface and fluid due to 

combined mechanisms of diffusion at the surface and bulk fluid flow within 

boundary layer and it remains the basic mode of heat transfer among fluids. 

1.1.1 Heat and Mass Transfer by Convection 

Convection refers to the movement of molecules within fluid and it is one of the major 

modes of heat and mass transfer in fluids. A fluid flow that transports heat may also 
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transport a chemical species. In fluids, convective heat and mass transfer takes place 

through diffusion: the random motion of individual particles in the fluid and advection: 

matter or heat transported by the larger-scale motion of currents in fluid. In the context of 

heat and mass transfer, the term "convection" is used to refer to the sum of advective and 

diffusive transfers. Mass diffusion is analogous to heat conduction and occurs whenever 

there is a gradient in the concentration of a species. Mass convection is essentially 

identical to heat convection. 

Fluid flows from high pressure location to points of low pressure. A moving fluid carries 

energy and the faster a fluid moves, the greater the convective heat and mass transfer. In 

the absence of any bulk fluid motion, heat transfer between a solid surface and the 

adjacent fluid is by pure conduction. The presence of bulk motion of fluid enhances the 

heat transfer between a solid surface and the fluid. 

Convection is called natural or free convection if the fluid motion is caused by buoyancy 

force that is induced by density difference due to the variation of temperature or 

concentration in the fluid. In contrast, convection is called forced convection if the fluid 

is forced to flow over the surface by external means such as by a fan, pump, or the wind. 

Basically, any forced convection heat transfer process comprises natural convection heat 

transfer since temperature difference results in density difference. However, due to its 

small contribution, compared to forced convection, natural convection is sometimes 

neglected. Natural convection on a surface depends on the geometry of the surface and its 

orientation. It also depends on the variation of temperature on the surface and the 

thermophysical properties of the fluid. 

In convective heat transfer, the heat flux is given by: 

3 
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(1.2) 

q{w) = h{Tw - T~) (1.1) 

where q is the heat flux, h is the heat transfer coefficient, Tw and T~ are the wall and far 

stream temperature respectively. 

1.2 Newton's Law of Viscosity and Newtonian Fluids 

According to Newton's law of viscosity for laminar flow, the shear stress is directly 

proportional to the strain rate or the velocity gradient. 

dT 
q =-k dx' (1.3) 

where r xy is the shear stress, 11 is the constant of proportionality representing the dynamic 

viscosity of the fluid and au is the velocity gradient. The shear stress is maximum at the 
By 

surface of the plate in direct contact with the fluid, due to no slip condition. Fluids 

obeying the Newton's law of viscosity are termed as Newtonian fluids. 

1.2.1 Fourier's Law 

The Fourier's law of heat conduction relates heat flow with temperature difference and 

conductivity of the medium. Assuming that, the temperature T varies in the x direction, it 

can be written mathematically as: 

where q is the heat energy through unit area in unit time, k is the material transport 

property, called the conductivity of the medium. It is valid for all common solids, liquids 

and gases. The minus sign is to ensure that heat flow is positive in the direction of 

decreasing temperature. 

4 
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1.2.2 Fick's Law 

Consider a mixture of two fluid species, A and B with respective densities P A and P B • 

Suppose that PA varies with PB in the x direction. Then, there will be a diffusion mass 

transfer of species A in the direction of its decreasing density defined through the 

following relation 

dPA JAX =-DAB-- 
dx 

(1.4) 

where] AX is the mass flux of species A in the direction x and DAB is called the molecular 

diffusion coefficient, which varies with temperature, pressure and the mixture 

composition. 

1.3 Dimensionless Numbers in Convective Heat and Mass Transfer 

These dimensionless numbers are the measure of relative importance of different forces 

or the transport phenomenon involving fluid flow. In these dimensionless numbers, 

different properties of the flow are lumped together to represent their cumulative effect. 

1.3.1 The Eckert Number (Ec) 

The Eckert number (Ec) is a dimensionless quantity useful in fluid mechanic. It is the 

ratio of the kinetic energy to the enthalpy (or the dynamic temperature to the temperature) 

driving force for heat transfer. 

u 
Ec=- 

C p!1T 
(1.5) 

where u is the fluid velocity, C p is the specific heat at constant pressure and !1 T is the 

driving force for heat transfer (e.g. wall temperature minus free stream temperature). The 

5 
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Pr = f.1C p 
k 

(1.7) 

Eckert number is a key parameter in determining the viscous dissipation of energy in a 

low speed flow. 

1.3.2 The Grashof Number (Gr) 

The Grashof number is a dimensionless quantity used in analysing the velocity 

distribution in free convection systems. It is defined as the ratio of the buoyancy force to 

the viscous force. The Grashof number is analogous to the Reynolds number in forced 

convection. 

(1.6) 

where fJ is the volumetric expansion coefficient, p is the density evaluated at the mean 

temperature, g is the gravitational constant, !:l T is the temperature difference, L is the 

distance between regions of high temperature and low temperature and Jl is the viscosity 

of the convecting fluid. 

1.3.3 The Prandtl Number (pr) 

The Prandtl number is defined as a measure of the ratio of the viscous diffusivity to the 

thermal diffusivity 

where Pr is the Prandtl number, C p is the specific heat at constant pressure, Jl is the 

coefficient of viscosity and k is the thermal conductivity. 

In heat transfer problems, the Prandtl number controls the relative thickness of the 

momentum and thermal boundary layers. When Pr is small, it means that heat diffuses 

very quickly compared to the velocity (momentum). When both the thermal and viscous 

6 

www.udsspace.uds.edu.gh 

 

 

 

 



(1.9) 

diffusivities are equal, the Prandtl number is unity. The momentum and thermal boundary 

layers are equal in that case. 

1.3.4 The Schmidt Number (Sc) 

The Schmidt number is defined as the ratio of the kinematic viscosity to the molecular 

diffusivity. 

u 
Sc= 

D 
(1.8) 

where D is the molecular or chemical diffusivity and v is the kinematic viscosity or 

viscous diffusivity. 

1.3.5 Skin Friction Coefficient ( C f) 

The dimensionless shear stress at the surface is defined as the skin friction, given by 

where t w is the shear stress, p is the density and Jl is the coefficient of viscosity. The 

overall skin friction coefficient, Cf is based on the average of the shear stress Tw over the 

length L of the plate. 

1.3.6 The Nusselt Number (Nu) 

The Nusselt Number is the measure of the ratio of magnitude of the convective heat 

transfer rate to the magnitude of heat transfer rate that would exist when there was pure 

conduction. 

Nu = _h.:.._! (_T_w _-_T_) 
ui; -T)/l (1.10) 
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(1.12) 

The convective heat transfer from the surface will depend upon the magnitude of 

h f tT; - T) , where hf is the heat transfer coefficient and T wand T are the temperatures 

of wall and fluid respectively. Also, if there is no flow, the heat transfer will purely be 

due to conduction. The Fourier's law states that the quantity k(Tw - T)ll is the measure 

of the heat transfer rate, where k is the thermal conductivity and I is the characteristic 

length. 

1.3.7 The Biot Number (B) 

The Biot number is defined as the ratio of temperature gradient inside the body to the 

overall temperature gradient in the fluid. It is similar to the nusselt number and given by 

the expression; 

B= hL 
k' 

(1.11) 

where L is the characteristic length, h is the heat transfer coefficient and k is the thermal 

conductivity. This number comes into play when a solid body is cooled. If the biot 

number is much less than 1, the temperature of the body is uniforn at any given instant. 

1.3.8 Sherwood Number (Sh) 

The Sherwood number is defined as the dimensionless mass flux at the surface 

where mw is the mass flux at the surface and D is the diffusion coefficient, and T wand 

T", are the temperatures of wall and fluid respectively. 

8 
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1.4 Background of the Study 

Convective heat transfer is a common phenomenon in engineering systems due to its 

diverse applications in electronic cooling, heat exchanger designs and thermal systems. It 

has wide applications in mechanical, geothermal, and chemical sciences. Many industrial 

and technological setups such as nuclear reactors, food processing, and polymer 

production experience not only temperature difference but concentration. The chemical 

concentration variation ultimately affects the rate of heat and mass transfer. Natural 

convection still remains the most common method used in industrial cooling. Numerous 

research results on heat and mass transfer have been reported in the literature. This 

section shall elucidate some previous findings on the subject of heat and mass transfer. 

1.4.1 Convective Heat and Mass Transfer 

The problem of convective heat and mass transfer has been investigated by many 

researchers in recent times. For instance, Aziz, (2009) analysed the thermal boundary 

layer flow over a flat plate in a uniform free stream with a convective surface boundary 

conditions. This problem was an extension of the works of Bataller, (2008) who 

investigated the Blasius and Sakiadis flows, both under convective surface boundary 

conditions and in the presence of thermal radiation. Makinde, (2011) reported similarity 

solutions for natural convection from a moving vertical plate with internal heat 

generation and convective boundary conditions and observed that internal heat generation 

prevented the flow of heat from one surface to the other unless the local Grashof number 

was strong enough to convert the internally generated heat in the fluid. 

Ishak, (2010) obtained similarity solutions for steady laminar boundary layer flow over a 

permeable plate with convective boundary conditions. Recently, Nor et al., (2012) 
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analysed the boundary layer flow over a stretching sheet with convective boundary 

conditions with slip effects. Fazlina and Anuar, (2012) investigated the mixed convection 

boundary layer flow towards a vertical plate with convective surface boundary 

conditions. Olanrewaju et al.,(2011) investigated the effects of internal heat generation, 

thermal radiation and buoyancy forces on the boundary layer over a vertical plate with 

convective surface boundary conditions and concluded that the combined effect of 

increasing the Prandtl number and the Grashof number tend to reduce the thermal 

boundary layer thickness along the plate whilst increasing the Biot number, the internal 

heat generation parameter and the radiation absorption parameter enhances thermal 

diffusion. Sadia and Hossain, (2012) further investigated the problem of mixed 

convection boundary layer flow over a vertical flat plate with radiative heat transfer. 

Aiyesimi et al., (2013) then performed a computational analysis of the effect of mass and 

radiative heat transfer on free convective boundary layer flow over vertical surfaces and 

made some interesting observations which have direct implications to industrial practice. 

1.4.2 Free and Forced Convection Flow 

Mohammad et al. ,(20 13) analysed the heat and mass transfer in MHD free convection 

flow over an inclined plate with hall current. Chamkha, (2004) investigated unsteady 

MHD convective heat and mass transfer past a semi-infinite vertical permeable moving 

plate with heat absorption. Makinde, (2010) produced Similarity solution of 

hydromagnetic heat and mass transfer over a vertical plate with convective surface 

boundary conditions. Gangadhar et aI., (2012) discussed similarity solution of 

hydromagnetic heat and mass transfer over a vertical plate with convective surface 

boundary condition and chemical reaction. Ibrahim and Makinde, (2010) analysed the 
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MHD boundary layer flow of heat and mass transfer over a moving plate with suction 

and in the presence of chemical reaction. 

Ibrahim and Makinde,(2010a, b; 2011a, b) and Seini and Makinde, (2013) have made 

significant contributions to the subject of heat and mass transfer by investigating 

Hydromagnetic flow with Dufour and Soret effects past a vertical plate in porous medium 

and obtain very interesting results. Seini, (2013) also presented Flow over unsteady 

stretching surface with chemical reaction and non-uniform heat source. Arthur and Seini, 

(2014) analyzed the MHD thermal stagnation point flow towards a stretching porous 

surface. AbdeIKhalek,(2009) examined MHD free convection with mass transfer from a 

moving permeable vertical surface and produced interesting results using the perturbation 

techniques. Makinde, (2010) studied similarity solution of MHD heat and mass transfer 

over a moving vertical plate and convective surface boundary conditions. He concluded 

that an increase in magnetic field intensity causes a decrease in the momentum boundary 

layer thickness whiles both thermal and concentration boundary layer thicknesses 

increase. The local Nusselt number and the local Sherwood number increases while the 

magnitude of the local Skin friction coefficient decreases with an increase in the 

convective heat exchange at both sides of the plate. 

1.4.3 Viscous Dissipation in Transport Processes 

Deformation and flow of materials require energy. This mechanical energy is dissipated 

during the flow and converted to internal energy (heat) of the material. The increase in 

internal energy expresses itself in temperature rise. In a viscous fluid flow, the viscosity 

of the fluid takes energy from the motion of the fluid and transforms it to internal energy 

of the fluid thereby changing the temperature distribution by playing a role like an energy 
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source. This process is partially irreversible and is referred to as dissipation, or viscous 

dissipation. Viscous dissipation plays an important role in natural convection in various 

devices which are subjected to large deceleration in geological processes, polymer 

processing and in oil products transportation through ducts. lena et al., (2014) recently 

studied numerical solution of boundary layer MHD flow with viscous dissipation and 

concluded that the dimensionless temperature profile as well as the thermal boundary 

layer thickness quickly reduces whilst the rate of heat transfer increases as the Prandtl 

number increased. Jai, (2012) examined the viscous dissipation and chemical reaction 

effects on flow past a stretching porous surface in a porous medium. 

Singh, (2012) analysed the effects of variable fluid properties and viscous dissipation on 

mixed convection flow past a vertical plate in porous medium. Kazi et al., (2013) studied 

the problem of viscous dissipation on MHD natural convection flow along a vertical 

wavy surface. Pantokratoras, (2004) investigated the effect of viscous dissipation in 

natural convection along a heated vertical plate and observed that viscous dissipation 

assisted the upward flow and opposes the downward flow. Abdullah et al., (2007) later 

examined the combined effect of conduction and VISCOUS dissipation on 

magnetohydrodynamic free convection flow along a vertical flat plate and concluded that 

the velocity of the fluid within the boundary layer decreases with increasing magnetic 

parameter, Prandtl number and conjugate conduction parameter while it increases slightly 

for the increasing viscous dissipation parameter. 

Gangadhar, (2012) presented a similarity solution for natural convection over a moving 

vertical plate with internal heat generation and viscous dissipation. He found among 

others that the internal heat generation prevented the flow of heat from the left surface to 

12 
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the right surface of the plate unless the local Grashof number was strong enough to 

convert the internally generated heat in the fluid as observed by Makinde, (2011). 

Ibrahim and Bhashar, (2013) produced similarity solution of heat and mass transfer for 

natural convection over a moving vertical plate with internal heat generation and 

convective boundary conditions in the presence of thermal radiation, viscous dissipation 

and chemical reaction and their results agreed with the results obtained by Gangadhar, 

(2012). 

Prasanna et al., (2012) solved numerically MHD boundary layer flow of heat and mass 

transfer over a moving vertical plate in a porous medium with suction and viscous 

dissipation using the fourth order Runge-Kutta method along with shooting techniques 

and observed that the momentum boundary layer thickness decreased, while both thermal 

and concentration boundary layer thicknesses increased with increase in the magnetic 

field intensity. Kishan et al., (2010) also studied the effects of viscous dissipation on 

MHD flow with heat and mass transfer over a stretching surface with heat source, 

thermal stratification and chemical reaction. 

1.4.4 Heat and Mass Transfer with Chemical Reaction 

A chemically reacting flow is a fluid flow in which a chemical reaction is also occurring. 

Such flows occur in a wide range of fields including combustion, chemical engineering, 

biological processes and pollution abatement. In many industrial processes involving 

flow and mass transfer over a flat surface such as, manufacturing of ceramics, polymer 

production, drying, evaporation at the surface of a water body and electric power 

industry, the diffusing species can be generated or absorbed due to some kind of chemical 

reaction with the ambient fluid, which can greatly affect the flow and hence the 
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properties and quality of the final product (Makinde, 2011). The effect of a chemical 

reaction depends on its order and whether the reaction is heterogeneous or homogeneous. 

A reaction is said to be of nth order, if the rate of reaction is proportional to the nth power 

of the concentration itself. A homogeneous reaction is one in which all the reactants are 

in the same phase and occurs uniformly throughout the given phase, whereas a 

heterogeneous reaction takes place in a restricted region or within the boundary of a 

phase. 

Das et al., (1994) studied the effect of homogeneous first-order chemical reaction on the 

flow past an impulsively started infinite vertical plate with uniform heat flux and mass 

transfer. Muthucumaraswamy and Ganesan, (2001) investigated the Effect of chemical 

reaction and injection on flow characteristics in an unsteady upward motion of an 

isothermal plate. Prasad et al., (2003) studied the influence of reaction rate on the transfer 

of chemically reactive species in a laminar, non-Newtonian fluid immersed in porous 

medium over a stretching sheet. They concluded that the effect of chemical reaction was 

more effective for zero and first-order reactions than second and third order reactions. 

The MHD flow of uniformly stretching vertical permeable surface in the presence of heat 

generation/absorption and chemical reaction was reported by Chamkha, (2003). Chamkha 

et al., (2012) studied mass transfer with chemical reaction in MHD mixed convective 

flow along a vertical stretching sheet. Mahdy, (2010) also investigated the effect of 

chemical reaction and heat generation or absorption on double-diffusive convection from 

a vertical truncated cone in porous media with variable viscosity. Rushi et al., (2013) 

studied the chemically reacting dusty viscoelastic fluid flow in an irregular channel with 

convective boundary condition while Prakash et al., (2011) examined the influence of 

14 
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chemical reaction on unsteady MHD mixed convective flow over a moving vertical 

porous plate. Jai et al., (2009) investigated the chemical reaction effects on the heat and 

mass transfer flow over a vertical stretching surface in a porous medium with constant 

suction and variable permeability. 

Cortel, (2007) examined the flow and mass diffusion of chemical species with first and 

higher order reactions of two electrically conducting viscoelastic fluids over porous 

stretching sheets with magnetic fields. He observed that increasing the order of the 

chemical reaction decreases the concentration boundary layer when the reaction rate was 

negative and the opposite trend was true for the case of a positive reaction rate. Makinde, 

(2011) examined the MHD mixed-convection interaction with thermal radiation and nth 

order chemical reaction past a vertical porous plate embedded in a porous medium and 

observed among others that the chemical species concentration increases with the 

reaction order and decreases with the Schmidt number and chemical reaction parameter. 

Ibrahim and Makinde, (2010) analyzed chemically reacting MHD boundary layer flow of 

heat and mass transfer over a moving vertical plate with suction. Gangadhar et al., (2012) 

discussed similarity solutions of hydromagnetic heat and mass transfer over a vertical 

plate with convective surface boundary conditions and chemical reaction and concluded 

that the local skin-friction coefficient, the local heat and mass transfer rates at the plate 

surface increased with increasing intensity of magnetic field, buoyancy force, convective 

heat exchange parameter and the chemical reaction rate parameter. 

1.5 Statement of the Problem 

Heat and mass transfer is a common phenomenon in many engineering systems. It forms 

an integral part of every human activity and occurs in respiration, blood circulation, 
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metabolic processes, etc. The application of heat and mass transfer processes extend 

beyond human activities to include modern day applications such as in the cooling of 

nuclear reactors and electronic equipment and heating or sterilization in food industry. 

The effects of excessive heating can be destructive and can cause irreversible damage to 

human cells and to electronic equipment if proper control measures are not observed. 

Manufacturing industries dealing with the production of mobile phones, laptops etc are 

faced with the challenge of cooling their products efficiently whilst maintaining the 

desired properties. The combined effect of heat and mass transfer with convective 

boundary conditions is of great relevance in achieving the desired product characteristics. 

This study therefore investigates the problem of heat and mass transfer with viscous 

dissipation and nth order chemical reaction. 

1.6 Objectives of the Study 

The general. objective of this research is to analyse the heat and mass transfer over a 

vertical surface with convective boundary conditions. In particular, the specific objectives 

of this work include to: 

i. model the governing equations for heat and mass transfer over a vertical 

surface with convective boundary conditions. 

ii. transform the partial differential equations modelling the problem of heat 

and mass transfer to ordinary differential equations using similarity 

analysis. 

analyse the effect of chemical reaction on heat and mass transfer 

parameters as the order increases. 

Ill. 
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1.8 Organisation of the Thesis 

This thesis is organized into five chapters. The chronological development of the topic is 

outlined briefly in Chapter one with appropriate references from literature. Chapter two 

presents the derivation of differential equations governing fluid motion. In Chapter three, 

heat and mass transfer over a vertical surface with convective boundary conditions is 

discussed in the presence of viscous dissipation and nth order chemical reaction. 

Appropriate equations for the dimensionless velocity, temperature and concentration are 

also derived. Chapter four presents the results obtained and subsequently discussed. 

Chapter five also presents the conclusion and recommendations made. 

iv. examine the effect of viscous dissipation parameter on heat and mass 

transfer. 

1. 7 Significance of the Study 

This study would be of interest to many professionals including: 

i. engineers in the design of effective and efficient heat exchanger components. 

11. biomedical engineers who produce lasers for medical applications in which the 

cooling rate is properly controlled to avoid irreversible damages to cells. 

Ill. manufacturing industries to cool their finished products efficiently. 

IV. Add up to existing literature and serve as a reference material for future 

researchers. 

17 
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CHAPTER TWO 

DERIVATION OF THE MATHEMATICAL MODELS AND 

NUMERICAL METHODS 

2.0 Introduction 

This chapter presents the derivation of the equations necessary to study all fluid flow 

problems. The subject of computational fluid dynamics is best described in the form of 

partial differential equations as the characteristics of a moving fluid will depend on 

multiple flow quantities. The basic equations of continuity, momentum, energy and 

concentration shall be derived based on some fundamental laws of physics: 

2.1 The Continuity Equation 

The principle of mass conservation stipulates that the mass of a system remains constant. 

The mass contained within a control volume (V) though may not be constant, since the 

fluid moves across the bounding surface known as the control surface (S) as illustrated in 

Figure 2.1. To simplify the problem, a steady, two-dimensional flow in the x and y 

directions of a Cartesian coordinate system is assumed. A unit depth is therefore assigned 

to the z direction, thereby providing a differential control volume of extent (8x8y.l) 

Figure 2. 1 Finite control volume fixed in space 
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Consider an infinitesimal control volume in two dimensions at p(x,y) within a 

y 

chemically homogeneous fluid as shown in Figure 2.2. The side parallel to the x and y- 

axes are respectively ox and oy in length. If the density is denoted by p and the velocity 

by t::, the mass contained in the control volume is p(&.&.l) . The law of conservation of 

mass for the control volume states that the rate of change of mass contained in the control 

volume plus the net efflux of mass (diffusive as well as convective) across the control 

surface should be zero provided that there are no sources of mass present in the control 

volume. The rate of change of mass contained in the control volume is (ap / at )(&.&.1). 

(7'-::> __ ---iR ~ 

oy 

i 
P S 

x 

Figure 2. 2 An infinitesimal control-volume 

Mass entering the face PQ is given by pu(&.l) where u is the x component of the 

velocity. Mass leaving the face RS is by Taylor expansion, pu(&.l)+[a(pu)/axl&(&.l). 

In evaluating the net efflux, the first quantity is considered as negative and the second as 

positive, so that the net efflux in the x- direction is [a(pu)/ ax 1(&&.). Similarly, the net 

efflux in the y - direction is [a(pv)/ By 1(&&). This is the convective component of efflux. 

The diffusive component is zero because of the uniform chemical composition. 

19 
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au av aw Y'.v =-+-+-=0 ax ay az (2.6) 

Thus the net efflux from the control volume is 

( 
a(pu) + a(pv )].ax8Y 
ax By (2.1) 

The mass conservation equation then becomes 

(2.2) 

Equation (2.2) is the general statement for the continuity of flow and is valid for all flow 

categories whether steady or non-steady, compressible or incompressible. The last two 

terms can be expanded into; 

u(ap/ax)+ v(ap/ay)+ p(au/ax + av/8y) (2.3) 

The first two terms of equation (2.3) combine with ap/at to give Dp/ Dt and equation 

(2.2) becomes; 

Dp/ Dt + p(au/8x + av/8y) = 0 (2.4) 

For three dimensions, this can be generalized to 

Dp/Dt+ pY'E = 0 (2.5) 

For incompressible fluid, Dp/ Dt = 0, and the continuity equation becomes 

For two dimensional steady flows, the continuity equation becomes 

20 
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(2.7) 

2.2 The Momentum Equation 

The second fundamental law that is pertinent to the flow of a viscous fluid-'is Newton's 

second law of motion. For a differential control volume in the fluid, this requirement 

states that the sum of all forces acting on the control volume must equal the net rate at 

which momentum leaves the control volume, Figure 2.3. 

v 
y 

u 

Velocity 
components 

(p + :~ dX) dy dz 

( 
8TXx ) TXx +ax dx dy dz P dydz 

'lXx dy dz --+----1 

( 
8'llx ) 

'llx +az dz dx dy 

a b 

z 

Figure 2. 3 Infinitesimal Fluid Element with x direction forces 

Consider only the x-components of forces as shown in Figure 2.3. The Newton's 2nd law 

requires two kinds of forces to act on the fluid: body forces, which are proportional to the 

volume, and surface forces, which are proportional to area. Gravitational, centrifugal, 

magnetic, and/or electric fields may contribute to the total body force. The x components 

of these forces per unit volume of fluid are designated as X. The surface forces, Fs, are 

21 
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due to the fluid static pressure as well as to viscous stresses. At any point in the fluid, the 

viscous stress (a force per unit area) may be resolved into two perpendicular components, 

which include a normal stress Tii and a shear stress T ij • 

The surface forces in the x-direction exerted on the fluid element are sketched in Figure 

2.3. On face abed, the only force in the x-direction is that due to shear stress, TxyOx. Face 

efgh is a distance ay above face abed; hence the shear force in the x-direction on face 

efgh is lr yx + (ar yx jOy}3y}3x. On face adhe, the only forces in the x-direction are the 

pressure force pby, which always acts in the direction into the fluid element, and TxxOy, 

which is in the negative x-direction. In contrast, on face beg[, the pressure force 

[p + (ap / ax)ax:Jay presses inward on the fluid element (in the negative x-direction) with a 

shear force equal to [T xx + (aT xx / Ox)ax}3y . The net surface force in the x-direction is; 

Simplifying, the net surface force for the x- direction becomes: 

F = (ar xx _ ap + aT yx ]Ox::n, 
s,x ax Ox Oy vr (2.9) 

The net force for the x-direction become 

(2.10) 

To use Newton's second law, the fluid momentum fluxes for the control volume must 

also be evaluated. For example, the mass flux through the x surface (in the y-z plane) is 

(pu) , the corresponding x-momentum flux is (pu)u . Similarly, the x-momentum flux due 
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each of the coordinate directions, and the net rate at which x momentum leaves the 

to mass flow through the y surface (in the x-z plane) is (pv)u . These fluxes may change in 

(
au au) a ( ) a, yx p u-+v- =- 'xx - P +--+x ax 8y ax 8y (2.13) 

control volume is: 

a[(pu)u] ax(ay) + a[(pv)u] ay(ax) 
ax 8y (2.11 ) 

Equating the rate of change in the x momentum of the fluid to the sum of the forces in the 

x direction, gives: 

a[(pu)u] + a[(pv)u] = a, xx _ ap + a, yx + x 
ax 8y ax ax 8y (2.12) 

This expression may be put in a more convenient form by expanding the derivatives on 

the left-hand side: 

The two terms on the left-hand side of equation (2.13) represent the net rate of 

momentum flow from the control volume. The terms on the right-hand side account for 

the net viscous, pressure and body forces. These equations must be satisfied at each point 

in the fluid. The stresses are associated with the deformation of the fluid and are a 

function of the fluid viscosity and velocity gradients. Moreover, the magnitude of a stress 

is proportional to the rate at which the deformation occurs. The deformation rate is, in 

turn, related to the fluid viscosity and to the velocity gradients in the flow. For a 

Newtonian fluid, the stresses are proportional to the velocity gradients, where the 

proportionality constant is the fluid viscosity. For two dimensional flows, Stokes 

viscosity law gives the following results: 
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p(u au + v au) = _ ap + _g__ {1-"[2 au _ ~ (au + 8v )]} + _g__ [I-"( au + 8v)] + x ax ay ax ax ax 3 ax ay ay ay ax (2.15) 

t: = 211 au _3. l1[au + 8v] t: = l1[au + 8v] t: = 211 8v _3.I1(au + 8v] 
xr rax 3rax ay 'xy ray ax'»' ray 3rax ay (2.14) 

Substituting equations (2.13) and (2.14) into equations (2.12), the x-momentum equation 
becomes; 

Rearranging the right-hand side of each expression and substituting from the continuity 

equation, the x- momentum equation becomes 

(2.16a) 

In a similar fashion the y- momentum and z- momentum components are obtained 

respectively as; (2.16b) 

( aw aw) ap [a2w a2w] p u-+w- =--+1-" --2 +-2- +z ax az az ax az (2.16c) 

2.3 The Energy Equation 

Consider the element of control volume shown in Figure 2.4. The energy associated with 

mass is in the form of kinetic energy and internal energy. If e represents the internal 

energy per unit mass, then the total energy contained within the control volume is 

p( e + ~ [2 )axay.l) and its rate of change with time is :t (pe + ~ [2 )axay with 
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(2.19) 

Energy efflux consists of two parts, one convective and the other diffusive. Consider first 

the convective efflux. The rate at which mass crosses the surface PS is pu(ay.l) . 

Therefore, the rate of energy converted across PS is (e + ~ [:2 )puay . By Taylor 

expansion, the energy converted out across RQ is; 

(2.l7) 

.-----------------,R 

Figure 2. 4 Stress on an infinitesimal volume 

Therefore, the net convective efflux of energy across this pair of faces is 

(2.18) 

Similarly the efflux across the other pair of faces PQ and RS can be obtained. 

The total convective efflux, therefore, is 
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conduction. Conduction flux across PS into the control volume is given by - k aT .(ay.1). 
ax 

Consider next the diffusive flux of energy. This is determined from Fourier's law of heat 

Again, by Taylor's expansion, the flux across RQ out of the control volume is given by 

[
ar arx] ___E_ u + --Y V axay 
ax ax (2.25) 

[ aT a { aT} ] - k-+- k- ax ay.1 ax ax ax (2.20) 

For a constant k, the net efflux across this pair of faces is, - k a2~ axay and across the ax 

whole control volume is 

(2.21) 

which in two-dimensional vector notation becomes 

(2.22) 

The rate at which the body force bf does work is given by 

(2.23) 

The rate at which the surface forces do work can be calculated. Work done by forces on 

the surface PS of the control volume is -{rxx.ay).u-{rxy.ay}v and the work done by the 

[ 
arxxu arxyv ] forces on the surface RQ is r xx.u + -- ax + r xy v + -- ax ay ax ax (2.24) 

Therefore, the net work done by the forces acting on these two surfaces IS 
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[ ae ae ae] (a2T a2T) [au av] p -+u-+v- =k -+-- -p -+- +,u<l> at ax ay ax2 ay2 ax ay (2.30) 

The work done by the forces on the other two surfaces is similarly determined and adding 

the results of the current to the previous, the total work done on the control volume is 

[
aT aTx aT aT 1 . ~ v + --y v + ___E_ U + __!'!_ U axay ay ax ax ay (2.26) 

The total energy becomes: 

(2.27) 

The thermal energy equation is obtained by subtracting the mechanical energy equation 

obtained by multiplying the momentum equation by the velocity, thus multiplying the x 

momentum equation by u, and the y component by v. 

( au au au) (av av av) [ ] pu -+u-+v- + pv -+u-+v- = p fxU+ fyv + at ax ay at ax ay 

[ aT xx aT yx 1 [aT xy aT Y.Y 1 u --+-- + v --+-- ax ay ax ay 
(2.28) 

Subtracting equation (2.28) from the total energy equation (2.27), the thermal energy 

equation becomes: 

(2.29) 

Substituting Stokes Viscosity law equation 2.14 into equation 2.29 which yields; 
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(2.33) 

where <I> is the viscous dissipative term. 

Substituti au avo u strtuting - + - = ax ay 

(2.31) 

where ae = CvaT and C; = C p for an incompressible fluid. 

The generalised thermal energy equation may then be expressed as 

(2.32) 

Collectively, the terms on the right-hand side of equation (2.33) account for the rate at 

which mechanical work is irreversibly converted to thermal energy due to viscous effects 

in the fluid. 

2.4 The Concentration Equation 

If the viscous fluid consists of a binary mixture in which there are species concentration 

gradients (Figure 2.5), there will be relative transport of the species, and species 

conservation must be satisfied at each point in the fluid. The pertinent form of the 

conservation equation may be obtained by identifying the processes that affect the 

transport and generation of the species for a differential control volume in the fluid. 
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M A ,advy + ay M A,dij,y+iJy 

1 i 
M A,adv,x __ •..• 

---.M A,diJf,x+ax ~-------~ 

ay M A,adv,x+ax 
-- •...•• 1Jo 

M A,dij,x 

l- x, y M A,adv,y 

ax 

M A,dij,y 

Figure 2. 5 Species conservation in two-dimensional flow of a viscous fluid with 

mass transfer 

Figure 2.5 describes the flow of species by advection and diffusion in a two dimensional 

flow of a viscous fluid. Consider the control volume of Figure 2.5. Species A may be 

transported by advection (with the mean velocity of the mixture) and by diffusion 

(relative to the mean motion) in each of the coordinate directions. The concentration may 

also be affected by chemical reactions, and the rate at which the mass of species A is 

. 
generated per unit volume due to such reactions is designated as n , .The net rate at which 

species A enters the control volume due to advection in the x-direction is; 

(2.34) 
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Similarly, multiplying both sides of Fick's law (1.4) by the molecular weight MA 

(kglkmol) of species A to evaluate the diffusion flux, the net rate at which species A 

enters the control volume due to diffusion in the x-direction is determined as: 

= ~(D apA Jax::h' ax AB ax vy 
(2.35) 

Expressions similar to equations 2.34 and 2.35 may be formulated for the y-direction. 

Referring to Figure 2.5, the species conservation requirement is 

M A,adv,x - M A,advx+at + M A,adv,y - M A,advy+8y + M A,dij,x - M A,dij,x+at + M A,dij,y - M A,dij,x+8y - M A,d = 0 

Substituting from equations (2.34) and (2.35), as well as from similar forms for the y- 

direction, it follows that, 

(2.36) 

A more useful form of this equation may be obtained by expanding the terms on the left- 

hand side and substituting from the overall continuity equation for an incompressible 

fluid. Equation 2.36 then reduces to 

(2.37) 

or in Molar form, to 

(2.38) 
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x = x = x _ j{XI) 
2 I j'{XI) (2.42) 

2.5 Newton-Raphson Method 

The Newton-Raphson method or simply the Newton method is a well-known and most 

powerful method used for finding the root of the equation j{x) = 0 (Singerisu, 2002). 

The Newton method can be derived by considering the Taylor's series expansion of the 

function j{x) about an arbitrary point XI as: 

(2.39) 

Where the function, j and it's derivatives, j', j", ... on the right-hand side of equation 

(3.83) are evaluated at XI' By considering only the first two terms in the expansion, we 

have; 

j{X)::::: j{xl)+ (x - XI )j'{xl) (2.40) 

In order to find the root of j{x) = 0, we set j{x) equal to zero in (3.84) to obtain 

j{XI) + (x - XI )j'{xl). = 0 (2.41) 

Since the higher order derivative terms were neglected in the approximation of j(x) in 

(2.39), the solution of equation (2.41) yields a next approximation to the root (instead of 

the exact root) as: 

Where X2 denotes an improved approximation to the root. This iterative procedure can be 

_ j(x;}. 
generated as Xi+1 - Xi - -----;--{ )' i = 1, 2, .... 

j Xi 
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solving differential equations because it is quite accurate, stable and easy to program. 

The problem now becomes fairly straightforward. We begin with an initial guess of'x.. 

, Then solve for f(x;) and f'(x;) . From these values X;+I is calculated. The process is 

repeated until convergence is obtained in x. 

An advantage of using the Newton's method is that it converges very fast in most cases 

and also requires one initial guess (XI). However, in some problems, such as those 

involving transcendental functions, the differentiation of the function f(x) may not be 

available in explicit form. Transcendental functions are not involved in this research 

work hence the Newton method is an efficient method for this present study. 

2.6 Runge-Kutta Method 

The Runge-Kutta methods are iterative ways to calculate the solution of a differential 

equation. Starting from an initial condition, the solution is calculated forward step by 

step. The most common method is the fourth-order Runge-Kutta method, often simply 

referred to as the Runge-Kutta method. The Runge-Kutta method is a good choice for 

There are several versions of the fourth-order Runge-Kutta Method (RK4). The method is 

based on computing Yk+l as follows: 

(2.43) 

Where 

(2.44) 
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Thus, we begin the algorithm by first calculating Ji with tk, and Yk as the initial inputs. 

Thereafter, the step size is increased by hl2 and 12, hand 14 are subsequently calculated. 

With these values, the new value for the variable Y can be obtained. 

The advantage of the RK4 method is obvious; no formulas for the higher derivatives need 

to be computed nor do they have to be in the program. 

Equations (2.7), (2.26), (2.33) and (2.38) are the generalised continuity, momentum, 

energy and concentration equations respectively. These equations shall be revisited in the 

next chapter and will be applied to solving a practical problem of relevance by 

incorporating into these equations the assumptions for the development of the model. 
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CHAPTER THREE 

HEAT AND MASS TRANSFER OVER A VERTICAL SURFACE 

WITH CONVECTIVE BOUNDARY CONDITIONS IN THE 

PRESENCE OF VISCOUS DISSIPATION AND nTH ORDER 

CHEMICAL REACTION 

3.0 Introduction 

In this chapter, the incompressible flow of a viscous fluid over a vertical surface is 

considered. The effect of viscous dissipation and nth order chemical reaction is imbedded 

in the heat and mass transfer problem. Boundary layer approximations are employed to 

represent the problem in the form of continuity, momentum, energy and concentration 

equations. Since thermal buoyancy force and buoyancy force due to concentration 

difference is considered, the flow affect the velocity, temperature and concentration 

distributions. The quantities of physical interest like the skin-friction coefficient, and the 

rate of heat and mass transfers are computed for different values of the physical 

parameters. The Newton -Raphson shooting method alongside the fourth order Runge 

Kutta method is used to solve the resulting coupled differential equation. 

3.1 Developing the Mathematical Model 

Consider a steady, laminar, incompressible, convection flow with heat and mass transfer 

over a vertical plate in a stream of cold fluid at temperature Too' The left surface of the 

plate is assumed to be heated by convection from a hot fluid at temperature Tj' which 

provides a heat transfer coefficient, h r : The cold fluid at the right side of the plate is 

assumed to be Newtonian, and its property variations due to temperature and chemical 
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species concentration are limited to fluid density. It is also assumed that it is a viscous 

dissipative and chemically homogeneous fluid. The concentration of diffusing species is 

very small in comparison to other chemical species. The concentration of species far from 

the surface, C~ is infinitesimally very small and hence the Soret and Dufour effects are 

neglected. An nth order homogeneous chemical reaction occurs in the flow and all 

physical properties are assumed to be constant. The density variation and the effects of 

buoyancy are taken into account in the momentum equation. In addition, there is no 

applied electric field. 

Too 
Tf 

Tw Coo 
T • Cw Voo 
C g 

Uw U 

Figure 3. 1 Flow Configurations and Coordinate System 

Let the x-axis be taken along the direction of the plate (which is oriented vertically) and 

y-axis normal to it. If u, V, T and C are the fluid x-component velocity, y-component 

velocity, temperature and concentration respectively, then under the Boussinesq and 

boundary-layer approximations, and based on the above assumptions the continuity, 

momentum, energy and mass transfer equations for the problem under consideration can 

be derived. 
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3.1.1 The Continuity Equation 

For incompressible and steady fluid flow, the continuity equation for a 2-dimensional 

flow situation is obtained as denoted by equation (2.7). 

3.1.2 The Momentum Equation 

The generalised X- momentum equation is as derived in equation (2.16a) and restated as; 

It is assumed that the only body force acting on the fluid is the gravitational force, hence 

the body force hi per unit volume, X is pg and the net force on the x-direction becomes 

(3.1 ) 

The density of a mixture is a function of its temperature and mass fractions of its species. 

It can be expanded using a Taylor's series near the vicinity of a reference point (Too, Coo) 

of a single chemically reacting element given by: 

P = P + ap (T _ T ) + ap (c - c ) 
cc aT co ac ec , 

(3.2) 

where p"" is the density at the reference point. By definition, the coefficient of thermal 

expansion, Pr and composition coefficient of volume expansion, Pc are respectively: , 

P I (ap) 
r - p"" aT p 

P I (ap) 
c - p"" ac p 

and (3.3) 

and neglecting the higher order terms in the Taylor's expansion, one obtains: 
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Which is valid only if flT (T - Too) and Pc (C - Coo) « 1 

Substituting equation (3.4) into the momentum equation results in: 

Dividing equation (3.5) by p reduces it to: 

Given that; 

Substituting equation (3.7) into (3.6) yields: 

F h . b d 1 .. a2u a2u urt ermore, m a oun ary ayer approximation, -2 «-2 ' 
ax 8y 

Therefore the Momentum equation for this present work becomes: 

au au a2u ( ) ( ) u-+V-=V-2 +gflT T-Too +gflc C-Coo , 
ax 8y 8y 

where v is the kinematic viscosity and g is gravitational acceleration. 

3.1.3 The Energy Equation 

(3.4) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

The generalised energy equation was derived as given by equation (2.32) and restated 

here for emphasis. 
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[ aT et aT] (a2T a2T) pC -+u-+v- =k --+-- +,u<l> 
P at ax By ax2 ay2 

aT For a steady flow, - = 0 hence, equation (2.32) reduces to: at 

[ aT aT] (a2T a2T) pC u-+v- = k -+-- +,u<l> 
P ax ay ax2 By2 

Equation 2.33 has a number of boundary layer approximations, that is: 

au . au 
• - IS generally « - ax ay 

• v is generally «u hence av ;::::: av ;::::: 0 ax By 

a2T a2T 
• Furthermore, --2 «--2 ,so the boundary layer form is ax By 

Therefore, equation 3.10 becomes: 

[ aT aT] a2T (au)2 pC u-+v- =k-+,u- 
P ax By By2 By 

Thus, the energy equation describing the problem is: 
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· N A = _'}'Cn where C = C -Coo, (3.14) 

(3.12) 

where 1:' is the free stream temperature, a is the thermal diffusivity and C p is the 

specific heat at constant pressure. 

3 .1.4 The Concentration Equation 

The generalised concentration equation was derived in equation (2.38) given by: 

uaCA +vaCA =~(D aCA)+~(D aCA)+NA ax ay ax AB ax ay AB ay , 

e'c e'c In boundary layer approximation, --2 «--2 ,so the boundary layer form becomes ax ay 

(3.13) 

Assuming that the chemical reaction leads to the destruction of species A , then the molar 

destruction rate can be defined as 

The index n represents the order of the reaction, y is the plate surface rate of chemical 

reaction. 

Substituting (3.14) into (3.13) gives the Concentration equation below; 

ac ac e'c n u-+v-=D--y(C-C ) (3.15) ax ay ay2 00 
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u(x,oo)=U, T(x,oo)=T"" C(x,oo)=C", (3.17) 

3 .2 Boundary and Initial Conditions 

The governing equations discussed above generally require initial and boundary 

conditions. The boundary of the calculation domain may be either solid or fluid and the 

computation domain comprises usually only a part of the whole flow field. At present no 

adequate mathematical theory is available to ensure a correct boundary condition for the 

full Navier-Stokes equations in general. For mass and momentum equations all velocity 

components are specified, for the energy and concentration equations, the values of the 

dependent variables such as the temperature and the concentration at the wall and 

upstream are also specified. Because it is a solid wall, it is assumed that the fluid cannot 

flow across the surface and a no-slip condition is specified on the boundary. 

The vertical component of velocity and the horizontal velocity are set to zero. The 

concentration at the wall is set to be C w' It is also assumed that the left surface of the 

plate is heated by convection from a hot fluid at temperature Tj which provides a heat 

transfer coefficient, h j . Hence the wall surface temperature, concentration and velocity 

is 

(3.16) 

The free stream velocity, temperature and concentration are as follows 

where h j is the plate heat transfer coefficient, C; is the species concentration at the plate 

surface and k is the thermal conductivity coefficient. 
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x 
t=- 

V chr 
(3.20) 

3.3 Similarity Solution 

The idea of similarity solution is based on the fact that the solution of a problem u{x, y) 

will collapse on the same curve if defined by a function U if u{x, y) = U{y / j{x)). The 

function j{x) may be found by substitution in the partial differential equation to obtain 

an ordinary differential equation for U. The similarity variable 7] is defined as the ratio of 

the distance from the plate surface (y) to the approximate thickness of the momentum 

boundary layer 5m 

(3.18) 

3.4 Boundary Layer 

Fluids flowing past solid bodies adhere to them. So a region of variable velocity must be 

built up between the body and the free fluid stream. This region is called the boundary 

layer. The growth of the velocity, thermal and concentration boundary layer in a laminar 

flow is due to the molecular diffusion of momentum and energy. The momentum 

boundary layer thickness 5m will grow according to: 

(3.19) 

where v is the kinematic viscosity and t is the time, which is related to the distance from 

the leading edge x and the characteristic velocity V char according to; 
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· . , _!!_ B( ) = T - T~ "'(1]) = C - Coo f - u' 1] T -T ' 'f/ o w 00 Cw - Coo 
(3.24) 

The length of the plate is taking along the x-axis whilst the characteristic velocity is the 

free stream velocity far from the plate denoted by U 0 

Substituting (3.20) into (3.19) leads to: 

8 =2~ m U 
o 

(3.21) 

Substituting 3.21 into 3.18 gives 

(3.22) 

From Ostrach (1953) equation (3.19) is modified slightly to become: 

1]=Y~ (3.23) 

Equation (3.23) defines the similarity variable for this research work. 

The dimensionless velocity, temperature and concentration are thus given by: 

3.5 Stream Function 

In analyzing fluid flow, the idea of a streamline which is an imaginary curve in the fluid 

across which at a given instant, there is no flow must be considered. Thus the velocity of 

every particle of fluid along the streamline is tangential to it at that moment. The concept 

of the streamline is very useful, especially in ideal flow, because it enables the fluid flow 

to be conceived as occurring in patterns of streamlines (John et ai, 2001). These patterns 

may be described mathematically so that the whole system of analysis may be based on 

it. It requires a mathematical definition of a streamline. Consider a two dimensional case, 
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dlf = udy - vdx (3.25) 

the velocity and displacement vectors of a fluid at a point together with their orthogonal 

components are as shown. 

cis 

dx 

Figure 3. 2 Velocity and displacement Vectors 

By definition of a stream line, ds II V, it follows that dy II v and dx II u 

Thus the velocity triangle and the displacement triangle are similar and therefore 

-=- 
dx dy 
u v 

This constitutes the equation of a streamline. The flow per unit depth between streamlines 

a and b is given by: 

Qa = If a and similarly Qb = If b 

So that 

and If which is called the stream function is given by: 

If = f udy - f vdx 
Thus the stream functions depends upon position coordinates If = /(x, y) and hence, the 

total derivative; 
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dlf/ dlf/ 
U=- andv=-- 

dy dx 
(3.27) 

(3.26) 

Comparing equation 3.26 and 3.25, the relationship between the stream function and the 

velocity components are obtained as: 

The stream function is related to the volumetric flow Q, between the surface of the plate 

and any position y according to: 

(3.31) 

Q = WIf/ (3.28) 

where W is the width of the plate. The volumetric flow rate is obtained from the velocity 

as: 

y 

Q=WJudy 
o 

(3.29) 

Equation (3.29) can be expressed in terms of the dimensionless variables using equation 

(3.23) and (3.24) as: 

Q = WUo ~J f dn ~U;o (3.30) 

Substitute (3.30) into (3.28) yields: 

1] 

The integral J /'(1])d1] = /(1]) and it is thought of as the dimensionless form of the 
o 

stream function and must be a function of the similarity variable 1] 

Simplifying further yields: 
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(3.32) 

3.6 Procedure of the Analysis of the Model 

The stream function, lfI, satisfies the continuity equation (2.7) automatically if defined as 

alf/ u=-, and 
ay 

alf/ 
V=-- ax' 

The system of governing equations are second order partial differential equations and can 

be transformed to ordinary differential equation if equation 3.23 and 3.32 are substituted 

1 

and : =(~y (3.34) 

into equations (2.7), (3.9), (3.12) and (3.15). 

For continuity of flow, 

From Chain rule (3.33) 

1 

Therefore, u = alfl. a1] =(vxUo)~ /1(1]).(Uo)"2 
a1] ay vx 

au 1 -~ (u )~ 1 -~ (u)~ :. - = --x 2 Y _0 • Uo/"(1]) = --x 2 yU 0 _0 /"(1]) 
ax 2 v 2 v 

(3.37) 

u = UO/'(1]) (3.35) 

by the chain rule, 
au au a1] 
ax = a1]' ax 

a1] _ h -% (UO)~ --- x y- 
ax 2 v 

and au = Uo/"(1]) 
a1] 

(3.36) 
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Similarly, alf is obtained in the same manner using If = ~v.xUo J(1]) ax 

alf 
V=-- hence ax' 

(3.38) 

Applying the product rule on v and simplifying, av is obtained as 
By 

(3.39) 

Substituting (3.37) and (3.39) into (2.7) 

au av Oh h .... isfied .'. - + - = ence t e continuity equation IS sans Ie 
ax By 

Since the continuity equation is satisfied, the momentum equation can be obtained by 

substituting in the dimensionless quantities into the governing equation (3.9) therefore: 

au au a2u 
u- + v- = v-2 + g/3r(T - Too) + g/3c(C - Coo) 
ax By By 

(3.40) 
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au . I d . he relati au au a1] - IS eva uate usmg t e re anon; - = - - 
ay ay a1]· ay 

Recall au = Uo/"(1]) as in (3.29) and 
a1] 

a -)'i(U )'i ~ = x 2 VO as in (3.22) 

au (3.41) 

v au ,is obtained by multiplying (3.38) by (3.41), 
ay 

(3.43) 

(3.42) 

a2u. btai db diff .. au . h hi h i . -2 IS 0 tame y I terennatmg - Wit respect to y W IC IS given as 
ay ay 

Multiplying equation (3.43) by v results in: 

(3.44) 
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Using the similarity variable B(TJ) = T - TeL) ,T - TeL) is made the subject which is given 
T; -TeL) 

(3.45) MUltiplying (3.45) by g[JT results in: 

(3.46) 

Similarly, using the similarity variable ¢(TJ) = C - CeL) , C - CeL) is made the subject 
CW-CeL) 

(3.49) 

which is given as 

(3.4 7) Multiplying (3.40) by g[Jc gives; 

(3.48) 

Substituting (3.40) ,(3.42), (3.44), (3.46) and (3.48) into (3.9) 

~X-"'YUo'(U: r r(~Jf'(ry) -Ii x-'U,' r(~)f(~)~( U; , )r(ry) 

+ g[JTB(TJXTw -TeL») + g[Jc¢(TJXCw -CJ 

~ ~ x -i u:r(ry )f(ry) + (U; , )r(~) + gp,lJ(n Xr. - r.) + gfJ/p(ry XC. - C.) 

-I"'{) lly g[JTB(TJXTw-TJx g[Jc¢(TJXCw-CJx - TJ + - + + _____:----'--'--'--'----------'- 
2 U2 U 2 o 0 
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From the dimensionless quantity B(T]) = T - Too ,T is made the subject yielding: 
T; - Too 

Differentiating (3.39) with respect to x using the product rule gives; 

To find u aT , recall that u = Uo!'(T]) ax 

Similarly differentiating T with respect to y gives, 

Multiplying (3.55) by (3.38) gives, 

Differentiating aT with respect to y and multiplying the results by a gives; ay 
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(3.51 ) 

(3.52) 

(3.53) 

(3.54) 

(3.55) 

(3.56) 

(3.57) 
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( )

1/2 

Recall au = X-1I2UO' Uo fll(,,}as in (3.41), Squaring au and multiplying the results cy v cy 

(3.58) 

Substituting (3.54) , (3.56) , (3.57) and (3.58) into (3.12) and simplifying gives: 

(3.59) 

Therefore the Energy equation is transformed into a dimensionless form as: 

()"+ 11 Pji()'+PE f,,2=0 12 r r c (3.60) 

v (u 2 ) where r, =-and Ec = (0 ) 
a Cp t; -t; (3.61) 

h d · . I . A.() C - Coo . d h b' From t e imension ess quantity '1''' = C IS rna e t e su ject as: 
C; - Coo 

(3.62) 

Differentiating (3.62) with respect to x using the product rule gives: 

(3.63) 
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u ac is also evaluated by multiplying (3.63) by (3.35) yielding ax 

tc 1 (U )1/2 Hence u-= _-x-3/2yUo _0 (cw -Coo}./' ¢' ax 2 v 
(3.64) 

In the same manner C is differentiated with respect to y to obtain, 

( )

1/2 

~ = X-1/2 ~o (c, - Coo) ¢' (3.65) 

v ac , is obtained by multiplying (3.65) by (3.38), thus: ay 

Hence: 

Differentiating ac with respect to y and multiplying the results by D gives ay 

(3.67) 

Using the dimensionless quantity ¢(1J) = c - C'" , (C - coo) is made the subject for a c; -c; 

generalised order of reaction n to obtain; 

(3.68) 

Given a reaction rate parameter, r , results in 

51 

www.udsspace.uds.edu.gh 

 

 

 

 



(3.69) 

Substituting equation (3.64), (3.66), (3.67) (3.69) into (3.15) 

Furthermore simplifying (3.70) result in; 

Hence the Concentration equation (3.15) is transformed into a dimensionless form as: 

(3.71) 

where; 

(3.72) 

3.7 Transformed Boundary Conditions 

The boundary conditions (3.16) and (3.17) are also in partial differential form and hence 

the need to transform them into ordinary differential equation by using the similarity 

variables in (3.23) and (3.24) 

Given u(x,O) = 0 as the first boundary condition, 
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Referring to equation (3.35), u = UoI'(17) and ru: 17 = y~~ . when y = 0, 1] = 0, 

This implies UoI'( 0) = 0, 

Hence ['(0) = 0 (3.73) 

In solving the second boundary condition which is given as v(x,O) = ° , recall that 
1 -I U f'() 1 -112( U )1/2f( ) v="2x Y 0 17 -"2x U 0 1] 

as in (3.38). When y = 0,1] = 0 and v = 0, Substituting yields, 

Hence f(O) = 0 (3.74) 

Proceeding to the third boundary condition given as 

Referring to equation (3.55) 

Multiply both sides of (3.55) by - k and equating the results to hf lTf - T(x,O)J 
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• 

()'(ry) = hkf • (~ r · Tf -T(x,O) 
1 1 2 t; -T", 

X- _0 

V 

and 

¢(O)= 1 (3.77) 

1 

. hi (VXJ2 Bi =-- 
x k Uo 

(3.75) 

Hence: 
I 

()'(O) = B;x[()(O)-l] (3.76) 

Giving, C; (x,O) = C; as the fourth boundary condition 

When y = 0, tl = 0 and substituting into ¢(ry) = C - C'" 
Cw-C", 

Therefore, 

Evaluating the fifth boundary condition, u(x,oo)=u, 

as y -)00,7]-)00 and u = Uoo!'(oo) = u 

54 

www.udsspace.uds.edu.gh 

 

 

 

 



Therefore 1'(00) = 1 (3.78) 

Solving for the sixth boundary condition, ( ) T-T T X,oo = Too using e(ry) = oo 
T; -Too 

Hence, 

e(oo) = 0 (3.79) 

¢(oo) = 0 (3.80) 

Solving for the seventh boundary condition, C(x, 00) = Coo using ¢(ry) = C - Coo 
C; -Coo 

asy ~oo,1J ~oo and C ~ Coo ,therefore ¢(oo) = Coo - Coo = 0 
C; -Coo 

It is noticed that the local parameters B;x,Grx,Gcx and B, in equation (3.75), (3.50) and 

(3.72) respectively are functions of x. However in order to have similarity solution all 

parameters must be constant and we therefore assume hi = ax -li BT = bx-1 Be = cx-1 

and r = dx-1 where a, b, c and d are constants. 

In the next section, the numerical solution and the software package used in the analysis 

of the coupled ordinary differential equations are outlined. 

3.8 Numerical Solution 

Many of the problems facing applied mathematicians and physicist is the difficulties 

faced in solving nonlinear equations with variable coefficients and nonlinear boundary 

conditions. Consequently, solutions are approximated using numerical techniques, 

analytical techniques or a combination of both. The task of this process is to discretize the 

55 

www.udsspace.uds.edu.gh 

 

 

 

 



model equations and approximate them by sets of linear algebraic ones, which are solved 

by suitable algorithms. 

The numerical technique chosen for the solution of the coupled ordinary differential 

equations (3.35), (3.47) and (3.58) together with the associated transformed boundary 

conditions (3.60) to (3.66), is the standard Newton-Raphson shooting method alongside 

with the fourth-order Runge-Kutta as outlined in chapter two of equation (2.42), (2.43) 

and (2.44) integration algorithm. Yfoo is selected to represent the similarity variable at 

infinity. We then begin with some initial guess value and solve the problem with some 

particular set of parameters to obtain/"(O), 8'(0) and <1>'(0). This process is repeated with 

another larger value of Yfoo until two successive values of /"(0), 8'(0) and <1>'(0) differ only 

with the desired digit and this signifies the limit of the boundary along 11. The method of 

superposition is used to choose the last value of 1'{00 and this serves as the appropriate 

value for that particular simultaneous equation of first order for seven unknowns. 

To solve this system we require seven initial conditions whilst we have only two initial 

conditions / '(a) and / (0) on f; and one initial condition each on 8 and <1>. This means 

that there are three unknown initial conditions, / "(0), 8'(0) and <1>'(0) which are not 

prescribed. Next, the Newton Raphson shooting technique is employed to produce two 

unknown initial conditions at 11 = a using the two ending boundary conditions. In this 
calculation, the step size !!.1'{ = 0.00 1 was used while obtaining the numerical solution 

with Yfmax = 10 and six-decimal (10-6) accuracy as the criterion for convergence. The 

numerical procedure was carried out using a Maple 16 software package. From the 

process of numerical computation, the plate surface temperature, the local skin-friction 

coefficient, the local Nusselt number and the local Sherwood number, which are 
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respectively proportional to /"(0), - 8'(0), and - ¢'(O) are also sorted out and their 

numerical values presented in a tabular form. 
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

4.0 Introduction 

This chapter presents the results of the solution of the problem analyzed in chapter three. 

Both numerical and graphical results are presented and discussed for various control 

parameters. The results are also compared with previously published data to validate the 

numerical procedure. 
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4.1 Validation of Results 

In order to benchmark the numerical results, the plate surface temperature 9(0) and the 

local heat transfer rate at the plate surface - 9'(0) in the absence of internal heat 

generation, viscous dissipation and nth order chemical reaction was compared with the 

works of Makinde and Olanrewaju (2010; 2012) for varying parameters of convective 

heat transfer parameter (Bi), thermal Grashof number (Grx) and Prandtl number (Pr). It 

is clear from the results that the present study is consistent with those reported by these 

authors. 

Table 4. 1 Comparison of results with Makinde and Olanrewaju (2010, 2012) 

Controlling Makinde and Makinde and Present Study 
parameters Olanrewaju(2010) Olanrewaju (2012) 
Bix Grx Pr - B'(O) B(O) - B'(O) B(O) - B'(O) B(O) 
0.1 0.1 0.72 0.075077 0.249228 0.075077 0.249228 0.075077 0.249228 
1.0 0.1 0.72 0.237506 0.762494 0.237506 0.762494 0.237506 0.762494 
10 0.1 0.72 0.305596 0.969440 0.305596 0.969440 0.305596 0.969440 
0.1 0.5 0.72 0.076138 0.238623 0.076138 0.238623 0.076138 0.238623 
0.1 1.0 0.72 0.077045 0.229552 0.077045 0.229552 0.077045 0.2295515 
0.1 0.1 3.00 0.083046 0.169540 0.0830460 0.169540 0.0830460 0.169540 
0.1 0.1 7.10 0.086721 0.132788 0.0867212 0.132788 0.0867212 0.132788 
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The results of varying parameter values on the local Skin friction coefficient, the local 

Nusselt number and the local Sherwood number are shown in Table 4.2. The Prandtl 

parameter was taken to be 0.71(air), 4.0 and 7. 1 (water), which correspond to the common 

fluids used in industries; the values of Schmidt parameter (Sc) were chosen to be 0.24, 

0.60, 0.78, and 2.62 representing the diffusing chemical species of most common interest 

in air that is; H2, H20, NH3, and Propyl benzene respectively. Attention was focused on 

positive values of the buoyancy parameters that is, Grashof number Grx > 0 (which 

corresponds to the cooling problem) and solutal Grashof number Gcx > 0 (which 

indicates that the concentration of the chemical species in the free stream region is less 

than the concentration at the boundary surface). The values for the Convective heat 

transfer parameter as well as the chemical reaction parameter were also chosen to be 

greater than zero. It is observed that increasing the Prandtl number (Pr) reduces the local 

Skin friction coefficient together with the Sherwood number and the Nusselt number. 

The Skin friction coefficient and the Nusselt number are reduced whilst the Sherwood 

number increases with increasing Schmidt number (Sc). Increasing the buoyancy forces 

(Gr, Gc) increases the local Skin friction coefficient and the Sherwood number and 

reduces the Nusselt number. The Skin friction coefficient and the Nusselt number as well 

as the Sherwood number increases for increasing values of the convective heat transfer 

parameter (Bi). 

Furthermore, the Nusselt number and the Sherwood number are increased whilst the 

Skin friction coefficient is reduced for increasing values of the order of chemical reaction 

(n). The Eckert number (Ec) increases the Skin friction and the Sherwood number whilst 

the Nusselt number is reduced. Increasing the reaction rate parameter reduces the Skin 
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friction coefficient and the Nusselt number whilst increasing the Sherwood number. The 

Eckert number (Ec) increases the Skin friction and the Sherwood number whilst the 

Nusselt number is reduced. 

Table 4. 2 Numerical results of skin friction coefficient, Nusselt number and the 

Sherwood number 

Pr Sc Gr Gc Ec f3 n Bi - /"(0) - B'(O) - ¢'(O) 
0.71 0.24 0.1 0.1 0.1 0.1 1 0.1 0.539343 0.071929 0.255722 
4.0 0.24 0.1 0.1 0.1 0.1 1 0.1 0.527355 0.073771 0.254717 
7.1 0.24 0.1 0.1 0.1 0.1 1 0.1 0.526772 0.071826 0.254605 
0.71 0.60 0.1 0.1 0.1 0.1 1 0.1 0.507188 0.071935 0.371435 
0.71 0.78 0.1 0.1 0.1 0.1 1 0.1 0.498585 0.071929 0.413099 
0.71 2.62 0.1 0.1 0.1 0.1 1 0.1 0.463067 0.071868 0.463067 
0.71 0.24 0.5 0.1 0.1 0.1 1 0.1 0.681540 0.071760 0.263087 
0.71 0.24 1.0 0.1 0.1 0.1 1 0.1 0.851384 0.071218 0.270995 
0.71 0.24 1.4 0.1 0.1 0.1 1 0.1 0.986547 0.070574 0.276758 
0.71 0.24 0.1 0.5 0.1 0.1 1 0.1 1.079843 0.069706 0.284628 
0.71 0.24 0.1 1.0 0.1 0.1 1 0.1 1.643945 0.064596 0.307937 
0.71 0.24 0.1 1.5 0.1 0.1 1 0.1 2.147562 0.058561 0.325423 
0.71 0.24 0.1 0.1 0.5 0.1 1 0.1 0.569874 0.052712 0.257477 
0.71 0.24 0.1 0.1 1.0 0.1 1 0.1 0.610857 0.025826 0.259745 
0.71 0.24 0.1 0.1 1.5 0.1 1 0.1 0.655511 0.004786 0.262116 
0.71 0.24 0.1 0.1 0.1 0.5 1 0.1 0.516806 0.071935 0.387433 
0.71 0.24 0.1 0.1 0.1 1.0 1 0.1 0.499240 0.071926 0.513307 
0.71 0.24 0.1 0.1 0.1 0.1 2 0.1 0.543097 0.071925 0.243557 
0.71 0.24 0.1 0.1 0.1 0.1 3 0.1 0.544584 0.071924 0.237357 
0.71 0.24 0.1 0.1 0.1 0.1 1 0.5 0.582216 0.186420 0.257990 
0.71 0.24 0.1 0.1 0.1 0.1 1 1.0 0.599122 0.233423 0.258863 
0.71 0.1 0.1 0.1 0.1 0.1 1 1.5 0.606753 0.254978 0.259254 

4.2 Graphical Results 

4.2.1 Effects of Parameter Variation on Velocity Profiles 

The effects of parameter variation on the velocity boundary layer are shown in Figures 

4.1 to 4.4. It is observed in Figure 4.1 that increasing values of the Schmidt number tend 
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to reduce the velocity profile slightly. In Figures 4.1 and 4.3, the velocity profiles for 

increasing thermal and solutal Grashof numbers increases just as that of increasing the 

Eckert number in Figure 4.4. This happens because increases in these parameters cause 

an increase in buoyancy forces and hence increase in velocity. Adding, the higher fluid 

velocity ensures better convection and distribution of temperature and concentration, 

respectively which is seen as lowering of fluid temperature and species concentration. It 

is therefore noted that, increasing buoyancy forces will lead to a better flow kinematics. 
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Figure 4. 1 Velocity profiles for varying values of Schmidt number (Sc) 
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Figure 4.4 Velocity profiles for varying values of Eckert number (Be) 

4.2.2 Effects of Parameter Variation on Temperature Profiles 

The effects of parameter variation on temperature profiles are shown in Figures 4.5 to 

4.9. In Figure 4.5, increasing values of the Prandtl number causes a decrease in the fluid 
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temperature leading to a decaying thermal boundary layer. The reason is that smaller 

values of Prandtl number are equivalent to increasing thermal conductivity and therefore 

heat is able to diffuse away from the heated surface more rapidly than for higher values 

of Prandtl number. In Figure 4.8 and 4.9, it is also observed that increasing both the 

Eckert number and the convective heat transfer parameter increases the thickness of the 

temperature boundary layer. Eckert number is the ratio of the kinetic energy of the flow 

to the boundary layer enthalpy difference. The effect of viscous dissipation on the flow 

field is to increase the energy, yielding a greater fluid temperature and as a consequence 
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greater buoyancy force. It is observed in Figure 4.6 and 4.7 that with the increase in 

buoyancy parameters, the surface temperature increases but slightly decreases towards 

the free stream the increase is due to the increase in the dissipation parameter and hence it 

enhances the temperature. 
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Figure 4. 5 Temperature profiles for varying values of Prandtl number (Pr) 
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4.2.3 Effects of Parameter Variation on Concentration Profiles 

Figures 4.10 to 4.15 depict the effects of varying parameters on the thickness of the 

concentration boundary layer. It is observed in Figure 4.1 0 to 4.15 that, increasing the 

buoyancy forces, the convective heat transfer parameter and the reaction rate parameter 

have adverse effect of decaying the concentration boundary layer thickness. Also, a small 

Schmidt number implies that the fluid has high diffusion coefficient for the species and 

hence in steady state the concentration of the species is higher in the fluid which thereby 

reduces the concentration gradient at the surface, hence the concentration decreases with 

increasing Schmidt number. Moreover, the boundary layer thickness increases slightly 

when the order of reaction increases. Its effect on fluid velocity and temperature is 

negligible and hence those figures have not been included. Therefore it is concluded that 

effect of parameter n on species consumption is not significant. 
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Figure 4. 10 Concentration profiles for varying values of Schmidt number (Sc) 
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Figure 4. 15 Concentration profiles for varying values of order of 

chemical reaction (n) 

4.3 Boundary conditions 

• It is observed from Figures 4.1 to .4.4 that the velocity starts from a zero value at the 

plate surface and increases to a peak value and then decreases slightly towards the free 

stream value far away from the plate surface satisfying the far field velocity boundary 

condition for all parameter values. Generally, the fluid temperature attains its maximum 

value at the plate surface and decreases exponentially to the free stream zero value away 

from the plate satisfying the thermal boundary condition and this is observed in Figures 

4.5 to 4.9. Figures 4.10 to 5.15 depict concentration profiles of species against spanwise 
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coordinate (7]) for varying values of physical parameters in the boundary layer. The 

concentration of the species is highest at the plate surface and decreases to zero far away 

from the plate satisfying the concentration boundary condition. 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

! 

5.1 Conclusion 

Heat and mass transfer over a vertical surface with convective boundary conditions in the 

presence of viscous dissipation and nth order chemical reaction has been studied. 

Numerical results have been compared to earlier results published in literature and a 

perfect agreement was achieved. Among others, the results reveal that: 

i. The velocity of the fluid increases with the increase in Eckert, thermal and 

concentration Grashof numbers. It also decreases with an increase in Schmidt 

number. This implies proper control of the Eckert, thermal and concentration 

Grashop numbers will enchance the efficient flow of fluids whilst high 

Schmidt numbers will impede easy flow. 

ii. The temperature of the vertical surface reduces with increasing Prandlt number 

and increases with increasing Eckert, convective heat transfer parameter, 

thermal and concentration Grashof numbers. So a major improvement in 

efficiency of lasers for the treatment of cancer will be obtained if high Prandtl 

numbers are used. 

iii. The concentration boundary layer of the fluid decreases with increase in 

reaction rate parameter, Schmidt, convective heat transfer parameter, thermal 

and solutal Grashof numbers; and increases slightly with increasing order of 

chemical reaction. These facts should be taken into account for the practical 

application in mass transfer processes. 
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iv. The Skin friction at the surface increases with the increase in the convective 

heat transfer parameter, order of chemical reaction, Eckert, thermal and 

solutal Grashof numbers; and decreases for increasing Prandtl, reaction rate 

parameter and Schmidt numbers. High skin friction has the potential to impair 

easy movement of fluid thereby increasing the temperature of surfaces hence 

should be controlled. 

v. The Nusselt number increases with an increase in the convective heat transfer 

parameter and decreases with increasing: reaction rate parameter, order of 

chemical reaction, Schmidt, Eckert, Prandtl, thermal and solutal Grashof 

numbers. An increase in Nusselt number means heat will be lost easily from 

the system hence an increase in convective heat transfer will be an advantage 

in efficient cooling. 

The Sherwood number increases with an increase in reaction rate parameter, VI. 

Schmidt, convective heat transfer parameter, Eckert, thermal and solutal 

Grashof numbers; and decreases with increasing Prandtl and order of chemical 

reaction. High Sherwood number implies high rate of mass transfer and this 

can adversely affect the quality of the final product ifnot properly controlled. 

5.2 Recommendations 

In conclusion, the following recommendations are made: 

I. The chemical reaction parameters of the fluid such as the Schmidt number should 

be well controlled to achieve desired product characteristics. 

ii. In the transportation of oil products through ducts, the effect of viscous 

dissipation is enormous so it is recommended that the VISCOUS dissipation 
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parameter ( that is the Eckert number) should be well controlled to enhance the 

transportation process to avoid overheating, 

iii. This study was conducted on a vertical plate; it is therefore recommended that it 

should be extended to different geometries such as vertical cylinder or vertical 

infinite channel. 

IV. The research can serve as a reference material to future researchers. 
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APPENDIXTI 

MAPLE CODE FOR NUMERICAL RESULTS 

Pr:= 0.71:Sc:= 0.24:Gr:= 0.1 :Gc:= 0.1 .Ec i= 0.1 :Bi 
:= 0.10: ~ := 0.1 : n := 1 : 

fens := {F(y},8(y),<»(y)}: 

sysl := dijf(F(y},y$3) + ~. F(y) . dijf(F(y},y$2) + Gr·8(y) 

+ Gc·<»(y) =0,dijf(8(y),y$2) + ~ . Pr·F(y)·dijf(8(y),y) 

+ Pr·Ec·dijf(F(y),y$2)2 = 0, dijf( <»(y),y$2) + ~ . Sc·F(y) 

·dijf( <»(y),y) - Sc'~' (<»(y) t = 0, D(F) (0) = 0, F(O) = 0, 
<»(0) = 1, D( 8) (0) =-Bi· (1 - 8(0)), D(F)( 10) = 1, <»( 10) = 0, 
8(10) =0: 

p i= dsolve( {sysl,D(F) (0) =O,F(O) =0,<»(0) = I,D(8)(0) =-Bi 
. (1 - 8 ( 0) ), D (F)( 10) = 1, <» ( 1 0) = 0, 8 ( 10) = 0 } ,fcns , type 
= numeric, method = bvp, abserr = 1 e - 6) 

proc(x_bvp) ... end proc 

dsoll := dsolve ( {sysl}, numeric, output = operator) 
[y=proc(y) ... endproc,F=proc(y) ... endproc,D(F) = 

proc(y) 
iii 

end proc, D(2)(F) =proc(y) ... end proc.o v procf y] 

end proc, D( <») = proc(y) ... end proc, 8 = proc(y) ... end proc, 
D( 8) = proc(y) ... end proc] 

dsoll (0); 
[y = 0, F(O) = 0., D(F) (0) = 0., D(2) (F) (0) 

= 0.53934271892340779,&1>( 0) = 0.9999999999999996,(D( <») (0) 

= - 0.2557224680990674Q,J3 (0) = 0.28071123194201919,0 

D( 8) (0) = -0.071928876805798042¥ 

a· 
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.{ APPENDIXll 
•..... 

MAPLE CODE FOR GRAPHICAL RESULTS 

> 
with (plots ) : 
Pr := 0.71: Sc := 0.24: Gr := 0.1 : Gc := 0.10 :Ec := 0.1 : Bi 

:= 0.10: ~ := 0.1 : n := 1 : 
fens := {F(y), 8(y), 4>(Y)} : 

sys := dif.T(F(y),y$3) + ~ . F(y)·dif.T(F(y),y$2) + Gr'8(y) 

+ Gc' 4>(y) = 0, diff (8(y ),y$2) + ~ . Pro F(y)· dif.T( 8(y ),y) 

+ Pro Ec· (dif.T (F(y ),y$2))2 = 0, dif.T (4)(y ),y$2) + ~ . Sc 
·F(y)·dif.T(4>(y),y) - SC'~'(4)(y))n =0: 

pI := dsolve ( {sys, D(F)(O) = 0, F(O) = 0, 4>(0) = 1, D( 8) (0) =-Bi 
. (I - 8(0)), D(F)( 10) = 1,4>( 10) = 0, 8(10) = O},Jcns, type 
= numeric, method = bvp, abserr = 1 e-IO] : pIt := ode plot (p I, 
[y, 8(y)], 0 .. 10, numpoints = 50, labels = [''ll'', "8(11)"], style 
= point, symbol = circle, color = black) : 

pI f := odeplot (p I, [y, F' (y ) ], ° .. 10, numpoints = 50, labels = [''ll ", 
"f (11)"], style = point, symbol = circle, color = black) : pIc 
:= odeplot (pI, [y, 4>(y)], 0 .. 10, numpoints = 50, labels = [''ll'', 

"4>(11)"], style = point, symbol = circle, color = black) : 

with (plots) : 
Pr := 0.71 : Sc := 0.24: Gr := 0.1 : Gc := 0.1 : Ec := 0.1 : Bi 

:= 0.1:13:= O.I:n:= 2: 
fens := {F(y), 9(y), <1>(Y)} : 

sys := dijf(F(y),y$3) + ~. F(y) ·dijf(F(y),y$2) + Gr·9(y) 
+ GC'<1>(y) =0,dijf(9(y),y$2) + ~ . Pr·F(y)·dijf(9(y),y) 

+ Pr·Ec·(dijf(F(y),y$2))2=0,dijf(<1>(y),y$2) + ~. Sc 
. F (y) . dijf ( <1> (y), y) - Sc· 13· ( <1> (y) ) n = 0 : 

p2 := dsolve ( {sys, D(F) (0) = 0, F(O) = 0, <1>(0) = 1, D( 9) (0) =-B 
. (1 - 9(0)), D(F) (10) = I, <1>( 10) = 0, 9( 10) = 0 },fcns, type 
= numeric, method = bvp, abserr = 1 e-I 0) : p2t := odeplot (p2, 
[y, 9 (y) ], 0 .. 10, numpoints = 50, labels = ["11", "9('11)"], style 
= point, symbol = point, color = black) : 

p2f := odeplot (p2, [y, F' (y) ], 0 .. 10, numpoints = 50, labels 
= ["11", "f' ('11)"]. style = point, symbol = point, color = black) : 

p2c := odeplot(p2, [y,4>(y)],O .. IO,numpoints =50, labels = ['11", 
"4>(11)"], style = point, symbol = point, color = black) : 
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with (plots) : 
Pr := 0.71: Sc := 0.24: Gr := 0.1 : Gc := 0.1 : Ec := 0.1 : Bi 

:= 0.1 : ~ := 0.1 : n := 3 : 
fcns := {F(y),8(Y)'4>(Y)}: 

sys := d!ff(F(y),y$3) + ~. F(y)·d!ff(F(y),y$2) + Gr·8(y) 

+ GC'4>(y) =0,d!ff(8(y),y$2) + ~ . Pr·F(y)·d!ff(8(y),y) 

+Pr·Ec·(d!ff(F(y),y$2))2=0,d!ff(<I>(y),y$2) + ~. Sc 
. F(y) . diff ( <I>(y),y) - Sc'~' (<I>(y))n = 0 : 

p3 := dsolve ( {sys, D(F)(O) = 0, F(O) = 0, <1>(0) = 1, D( 8) (0) =-B 
. (1 - 8(0)), D(F)( 10) = 1, <1>(10) = 0, 8( 10) = 0 },fcns, type 
= numeric, method = bvp, abserr = 1 e-l 0) : p3t := odeplot (p3, 
[y, 8 (y) ], 0 .. 10, numpoints = 50, labels = [''r1'', "8(11)"], style 
= point, symbol = cross, color = black) : 

p3f := ode plot (p3, [y, F' (y)], 0 .. 10, numpoints = 50, labels = ["y'~ 
"f (11)"], style = point, symbol = cross, color = black) : 

..... 

p3c := ode plot (p3, [y, 4>(y)], 0 .. 10, numpoints = 50, labels = ["y'~ 
"4>(11)"], style = point, symbol = cross, color = black) : 

with (plots) : 
Pr := 0.71: Sc := 0.24: Gr := 0.1 : Gc := 0.1 : Ec := 0.1 : Bi 

:= 0.1 : ~ := 0.1 : n := 4 : 
fens := {F(y),8(y),4>(y)}: 

sys := d!ff(F(y),y$3) + ~. F(y) ·d!ff(F(y),y$2) + Gr·8(y) 

+ GC'4>(y) =0,d!ff(8(y),y$2) + ~ . Pr·F(y)·d!ff(8(y),y) 

+ Pr·Ec· (d!ff(F(y),y$2))2 = 0, d!ff( 4>(y),y$2) + ~ . Sc 
·F(y) . diff ( <I>(y),y) - Sc'~' (<I>(y) t = 0: 

p4 := dsolve ( {sys, D(F) (0) = 0, F(O) = 0, <1>(0) = 1, D( 8) (0) =-B 
. (1 - 8 ( 0) ), D (F) ( 10) = 1, 4> ( 10) = 0, 8 ( 10) = 0 } ,fcns , type 
= numeric, method = bvp, abserr = le-lO) :p4t := odeplot (p4, 
[y, 8(y)], 0 .. 10, numpoints = 50, labels = [''r1'', "8(11)"], style 
= point, symbol = asterisk, color = black) : 

p4f := odeplot (p4, [y, F'(y)], 0 .. 10, numpoints = 50, labels 
= [''r1'', "f (11)"], style = point, symbol = asterisk, color = black) : 

p4c := odeplot (p4, [y, 4> (y) ], 0 .. 10, numpoints = 50, labels = [''r1'', 
"4>(11)"], style = point, symbol = asterisk, color = black) : 

> plots [display ]( {pic,p2c,p3c,p4c}); 
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