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ABSTRACT

This study investigates the effect of chemical reaction and viscous dissipation on heat and
mass transfer with convective boundary conditions. A system of partial differential
equations describing the problem has been modelled and the technique of similarity
analysis employed to transform the model into ordinary differential equations. The
reduced system was solved using the Newton-Raphson shooting method alongside with
the Forth-order Runge-Kutta algorithm. The results are presented graphically and in
tabular form for various controlling parameters. Among others, the results obtained
revealed that: The velocity increases with the increase in Eckert, thermal and
concentration Grashof numbers. It also decreases with an increase in Schmidt number.
The temperature reduces with increasing Prandlt and increases with Eckert, convective
heat transfer parameter, thermal and concentration Grashof numbers.The concentration
boundary layer decreases with increase in reaction rate parameter, Schmidt, convective
heat transfer parameter and thermal and solutal Grashof numbers; and increases slightly

with increasing order of chemical reaction.
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CHAPTER ONE

INTRODUCTION AND BACKGROUND OF THE STUDIES

1.0 Introduction

Engineers all over the world are largely concerned with fashioning the material world
through physical, chemical and biological changes to achieve desired predetermined
results. Most of these changes require the transfer of energy, momentum or chemical
species from one substance, phase or location to another. The design of the processes
effecting these changes calls for efficient transfer of these quantities (Vijay, 2008). Heat
and mass transfer continue to receive considerable attention because of their numerous
industrial applications in many fields of engineering such as mechanical, civil, chemical
and process engineering.

In thermal power plants, boilers and condensers are designed in such a way that the
desired rate of heat transfer is achieved. A Bessemer converter for making steel from pig
iron must be designed so that it provides sufficient opportunity for the carbon to be
oxidized quickly enough for the process to be economical. An artificial kidney must have
sufficient capacity to remove toxins from the blood. Similarly, knowledge of transfer
processes is required in the design of smoke-stacks to keep the concentration of
pollutants at ground level within acceptable limits (Vijay, 2008). Due to its diverse
applications in Thermodynamics, Material Science, Diffusion Theory, Fluid Mechanics,
and Radiation Theory, Heat Transfer is considered the “heart” of Thermal Science.

Heat transfer is energy in transit, and occurs as a result of temperature differences.
Temperature difference is thought of as a driving force that causes heat to flow. The three

basic modes of heat transfer are convection, conduction and radiation, which may occur
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separately, or simultaneously. The subject matter of this research is solely based on the

individual mechanism of convection. The number of heat transfer applications in which

convection is a dominant phenomenon is large and better understanding of this

phenomenon has even increased the number of applications and has led to a number of

sophisticated industrial and environmental designs.

1.1 Modes of Heat Transfer

There are three basic modes by which heat can be transferred. These include conduction,

radiation, and convection.

iii.

Conduction is an exchange of energy by direct interaction between molecules
of a substance having temperature differences. It mostly occurs in solids and
has a strong basis in the molecular kinetic theory of Physics.

Radiation is the transfer of thermal energy in the form of electromagnetic
waves. Like electromagnetic radiation (light, X- rays, microwaves), thermal
radiation travels at the speed of light, passing most easily through a vacuum or
a nearly transparent gasses. Liquids containing gases, such as carbon dioxide,
water vapour, and glasses transmit only a portion of incident radiation, while
most of solids are essentially opaque to radiation.

Convection is the transfer of heat between a solid surface and fluid due to
combined mechanisms of diffusion at the surface and bulk fluid flow within

boundary layer and it remains the basic mode of heat transfer among fluids.

1.1.1 Heat and Mass Transfer by Convection

Convection refers to the movement of molecules within fluid and it is one of the major

modes of heat and mass transfer in fluids. A fluid flow that transports heat may also
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transport a chemical species. In fluids, convective heat and mass transfer takes place
through diffusion: the random motion of individual particles in the fluid and advection:
matter or heat transported by the larger-scale motion of currents in fluid. In the context of
heat and mass transfer, the term "convection" is used to refer to the sum of advective and
diffusive transfers. Mass diffusion is analogous to heat conduction and occurs whenever
there is a gradient in the concentration of a species. Mass convection is essentially
identical to heat convection.

Fluid flows from high pressure location to points of low pressure. A moving fluid carries
energy and the faster a fluid moves, the greater the convective heat and mass transfer. In
the absence of any bulk fluid motion, heat transfer between a solid surface and the
adjacent fluid is by pure conduction. The presence of bulk motion of fluid enhances the
heat transfer between a solid surface and the fluid.

Convection is called natural or free convection if the fluid motion is caused by buoyancy
force that is induced by density difference due to the variation of temperature or
concentration in the fluid. In contrast, convection is called forced convection if the fluid
is forced to flow over the surface by external means such as by a fan, pump, or the wind.
Basically, any forced convection heat transfer process comprises natural convection heat
transfer since temperature difference results in density difference. However, due to its
small contribution, compared to forced convection, natural convection is sometimes
neglected. Natural convection on a surface depends on the geometry of the surface and its
orientation. It also depends on the variation of temperature on the surface and the
thermophysical properties of the fluid.

In convective heat transfer, the heat flux is given by:
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q(w)=h(T, -T.) (1.1)
where q is the heat flux, # is the heat transfer coefficient, 7, and 7 are the wall and far

stream temperature respectively.

1.2 Newton’s Law of Viscosity and Newtonian Fluids

According to Newton’s law of viscosity for laminar flow, the shear stress is directly
proportional to the strain rate or the velocity gradient.

ou
o g, 12
%o yay (1.2)

where 7, is the shear stress, u is the constant of proportionality representing the dynamic
—_— ; ou : X ; "
viscosity of the fluid and — is the velocity gradient. The shear stress is maximum at the

surface of the plate in direct contact with the fluid, due to no slip condition. Fluids

obeying the Newton’s law of viscosity are termed as Newtonian fluids.

1.2.1 Fourier’s Law
The Fourier’s law of heat conduction relates heat flow with temperature difference and
conductivity of the medium. Assuming that, the temperature 7 varies in the x direction, it

can be written mathematically as:

g=-+L, (13)

where g is the heat energy through unit area in unit time, & is the material transport
property, called the conductivity of the medium. It is valid for all common solids, liquids
and gases. The minus sign is to ensure that heat flow is positive in the direction of

decreasing temperature.
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1.2.2 Fick's Law
Consider a mixture of two fluid species, 4 and B with respective densities p, and p, .
Suppose that p, varies with p, in the x direction. Then, there will be a diffusion mass

transfer of species 4 in the direction of its decreasing density defined through the

following relation
d,
Jy=-D ;24 (1.4)

where ],y is the mass flux of species 4 in the direction x and D, is called the molecular
diffusion coefficient, which varies with temperature, pressure and the mixture
composition.

1.3 Dimensionless Numbers in Convective Heat and Mass Transfer

These dimensionless numbers are the measure of relative importance of different forces
or the transport phenomenon involving fluid flow. In these dimensionless numbers,
different properties of the flow are lumped together to represent their cumulative effect.
1.3.1 The Eckert Number (Ec)

The Eckert number (Ec) is a dimensionless quantity useful in fluid mechanic. It is the
ratio of the kinetic energy to the enthalpy (or the dynamic temperature to the temperature)

driving force for heat transfer.

P 15
“TC,ar W)

where u is the fluid velocity ,C, is the specific heat at constant pressure and AT is the

driving force for heat transfer (e.g. wall temperature minus free stream temperature). The
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Eckert number is a key parameter in determining the viscous dissipation of energy in a
low speed flow.

1.3.2 The Grashof Number (Gr)

The Grashof number is a dimensionless quantity used in analysing the velocity
distribution in free convection systems. It is defined as the ratio of the buoyancy force to
the viscous force. The Grashof number is analogous to the Reynolds number in forced

convection.

3 a2
Gr = ﬂATgf P (1.6)
u

where f is the volumetric expansion coefficient, p is the density evaluated at the mean
temperature, g is the gravitational constant, AT is the temperature difference, L is the

distance between regions of high temperature and low temperature and p is the viscosity
of the convecting fluid.
1.3.3 The Prandtl Number (Pr)

The Prandtl number is defined as a measure of the ratio of the viscous diffusivity to the

thermal diffusivity
e

Pr=—=~ LI

p (1.7)

where Pr is the Prandtl number, C, is the specific heat at constant pressure, u is the

coefficient of viscosity and k is the thermal conductivity.
In heat transfer problems, the Prandtl number controls the relative thickness of the
momentum and thermal boundary layers. When Pr is small, it means that heat diffuses

very quickly compared to the velocity (momentum). When both the thermal and viscous
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diffusivities are equal, the Prandtl number is unity. The momentum and thermal boundary

layers are equal in that case.

1.3.4 The Schmidt Number (Sc)
The Schmidt number is defined as the ratio of the kinematic viscosity to the molecular
diffusivity.

v
Sc=— 1.8
¢ D G4

where D is the molecular or chemical diffusivity and v is the kinematic viscosity or
viscous diffusivity.

1.3.5 Skin Friction Coefficient (C )

The dimensionless shear stress at the surface is defined as the skin friction, given by

C,=—x (1.9)

where 7, is the shear stress, p is the density and u is the coefficient of viscosity. The

overall skin friction coefﬁcient,Tf is based on the average of the shear stress 7, over the

length L of the plate.

1.3.6 The Nusselt Number (Nu)

The Nusselt Number is the measure of the ratio of magnitude of the convective heat
transfer rate to the magnitude of heat transfer rate that would exist when there was pure
conduction.

_ h(T,-T)
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The convective heat transfer from the surface will depend upon the magnitude of

h, (T, —T), where hy is the heat transfer coefficient and T, and T are the temperatures

of wall and fluid respectively. Also, if there is no flow, the heat transfer will purely be
due to conduction. The Fourier’s law states that the quantity k(T,, — T)/! is the measure

of the heat transfer rate, where & is the thermal conductivity and / is the characteristic

length.

1.3.7 The Biot Number (B)
The Biot number is defined as the ratio of temperature gradient inside the body to the
overall temperature gradient in the fluid. It is similar to the nusselt number and given by

the expression;
B=— (1.11)

where L is the characteristic length, / is the heat transfer coefficient and k is the thermal
conductivity. This number comes into play when a solid body is cooled. If the biot

number is much less than 1, the temperature of the body is uniforn at any given instant.

1.3.8 Sherwood Number (Sh)

The Sherwood number is defined as the dimensionless mass flux at the surface

m,x

Sh=——"——,
DT, -T,)

(1.12)

where m,, is the mass flux at the surface and D is the diffusion coefficient, and T, and

T, are the temperatures of wall and fluid respectively.
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1.4 Background of the Study

Convective heat transfer is a common phenomenon in engineering systems due to its
diverse applications in electronic cooling, heat exchanger designs and thermal systems. It
has wide applications in mechanical, geothermal, and chemical sciences. Many industrial
and technological setups such as nuclear reactors, food processing, and polymer
production experience not only temperature difference but concentration. The chemical
concentration variation ultimately affects the rate of heat and mass transfer. Natural
convection still remains the most common method used in industrial cooling. Numerous
research results on heat and mass transfer have been reported in the literature. This

section shall elucidate some previous findings on the subject of heat and mass transfer.

1.4.1 Convective Heat and Mass Transfer

The problem of convective heat and mass transfer has been investigated by many
researchers in recent times. For instance, Aziz, (2009) analysed the thermal boundary
layer flow over a flat plate in a uniform free stream with a convective surface boundary
conditions. This problem was an extension of the works of Bataller, (2008) who
investigated the Blasius and Sakiadis flows, both under convective surface boundary
conditions and in the presence of thermal radiation. Makinde, (2011) reported similarity
solutions for natural convection from a moving vertical plate with internal heat
generation and convective boundary conditions and observed that internal heat generation
prevented the flow of heat from one surface to the other unless the local Grashof number
was strong enough to convert the internally generated heat in the fluid.

Ishak, (2010) obtained similarity solutions for steady laminar boundary layer flow over a

permeable plate with convective boundary conditions. Recently, Nor et al., (2012)
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analysed the boundary layer flow over a stretching sheet with convective boundary
conditions with slip effects. Fazlina and Anuar, (2012) investigated the mixed convection
boundary layer flow towards a vertical plate with convective surface boundary
conditions. Olanrewaju et al.,(2011) investigated the effects of internal heat generation,
thermal radiation and buoyancy forces on the boundary layer over a vertical plate with
convective surface boundary conditions and concluded that the combined effect of
increasing the Prandtl number and the Grashof number tend to reduce the thermal
boundary layer thickness along the plate whilst increasing the Biot number, the internal
heat generation parameter and the radiation absorption parameter enhances thermal
diffusion. Sadia and Hossain, (2012) further investigated the problem of mixed
convection boundary layer flow over a vertical flat plate with radiative heat transfer.
Aiyesimi et al., (2013) then performed a computational analysis of the effect of mass and
radiative heat transfer on free convective boundary layer flow over vertical surfaces and

made some interesting observations which have direct implications to industrial practice.

1.4.2 Free and Forced Convection Flow

Mohammad ef al.,(2013) analysed the heat and mass transfer in MHD free convection
flow over an inclined plate with hall current. Chamkha, (2004) investigated unsteady
MHD convective heat and mass transfer past a semi-infinite vertical permeable moving
plate with heat absorption.  Makinde, (2010) produced Similarity solution of
hydromagnetic heat and mass transfer over a vertical plate with convective surface
boundary conditions. Gangadhar et al., (2012) discussed similarity solution of
hydromagnetic heat and mass transfer over a vertical plate with convective surface

boundary condition and chemical reaction. Ibrahim and Makinde, (2010) analysed the
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MHD boundary layer flow of heat and mass transfer over a moving plate with suction
and in the presence of chemical reaction.

Ibrahim and Makinde,(2010a, b; 2011a, b) and Seini and Makinde, (2013) have made
significant contributions to the subject of heat and mass transfer by investigating
Hydromagnetic flow with Dufour and Soret effects past a vertical plate in porous medium
and obtain very interesting results. Seini, (2013) also presented Flow over unsteady
stretching surface with chemical reaction and non-uniform heat source. Arthur and Seini,
(2014) analyzed the MHD thermal stagnation point flow towards a stretching porous
surface. AbdelKhalek,(2009) examined MHD free convection with mass transfer from a
moving permeable vertical surface and produced interesting results using the perturbation
techniques. Makinde, (2010) studied similarity solution of MHD heat and mass transfer
over a moving vertical plate and convective surface boundary conditions. He concluded
that an increase in magnetic field intensity causes a decrease in the momentum boundary
layer thickness whiles both thermal and concentration boundary layer thicknesses
increase. The local Nusselt number and the local Sherwood number increases while the
magnitude of the local Skin friction coefficient decreases with an increase in the

convective heat exchange at both sides of the plate.

1.4.3 Viscous Dissipation in Transport Processes

Deformation and flow of materials require energy. This mechanical energy is dissipated
during the flow and converted to internal energy (heat) of the material. The increase in
internal energy expresses itself in temperature rise. In a viscous fluid flow, the viscosity
of the fluid takes energy from the motion of the fluid and transforms it to internal energy

of the fluid thereby changing the temperature distribution by playing a role like an energy

11
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source. This process is partially irreversible and is referred to as dissipation, or viscous
dissipation. Viscous dissipation plays an important role in natural convection in various
devices which are subjected to large deceleration in geological processes, polymer
processing and in oil products transportation through ducts. Jena ef al., (2014) recently
studied numerical solution of boundary layer MHD flow with viscous dissipation and
concluded that the dimensionless temperature profile as well as the thermal boundary
layer thickness quickly reduces whilst the rate of heat transfer increases as the Prandtl
number increased. Jai, (2012) examined the viscous dissipation and chemical reaction
effects on flow past a stretching porous surface in a porous medium.

Singh, (2012) analysed the effects of variable fluid properties and viscous dissipation on
mixed convection flow past a vertical plate in porous medium. Kazi et al., (2013) studied
the problem of viscous dissipation on MHD natural convection flow along a vertical
wavy surface. Pantokratoras, (2004) investigated the effect of viscous dissipation in
natural convection along a heated vertical plate and observed that viscous dissipation
assisted the upward flow and opposes the downward flow. Abdullah et al., (2007) later
examined the combined effect of conduction and viscous dissipation on
magnetohydrodynamic free convection flow along a vertical flat plate and concluded that
the velocity of the fluid within the boundary layer decreases with increasing magnetic
parameter, Prandtl number and conjugate conduction parameter while it increases slightly
for the increasing viscous dissipation parameter.

Gangadhar, (2012) presented a similarity solution for natural convection over a moving
vertical plate with internal heat generation and viscous dissipation. He found among

others that the internal heat generation prevented the flow of heat from the left surface to

12
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the right surface of the plate unless the local Grashof number was strong enough to
convert the internally generated heat in the fluid as observed by Makinde, (2011).
Ibrahim and Bhashar, (2013) produced similarity solution of heat and mass transfer for
natural convection over a moving vertical plate with internal heat generation and
convective boundary conditions in the presence of thermal radiation, viscous dissipation
and chemical reaction and their results agreed with the results obtained by Gangadhar,
(2012).

Prasanna ef al., (2012) solved numerically MHD boundary layer flow of heat and mass
transfer over a moving vertical plate in a porous medium with suction and viscous
dissipation using the fourth order Runge-Kutta method along with shooting techniques
and observed that the momentum boundary layer thickness decreased, while both thermal
and concentration boundary layer thicknesses increased with increase in the magnetic
field intensity. Kishan ef al., (2010) also studied the effects of viscous dissipation on
MHD flow with heat and mass transfer over a stretching surface with heat source,

thermal stratification and chemical reaction.

1.4.4 Heat and Mass Transfer with Chemical Reaction

A chemically reacting flow is a fluid flow in which a chemical reaction is also occurring.
Such flows occur in a wide range of fields including combustion, chemical engineering,
biological processes and pollution abatement. In many industrial processes involving
flow and mass transfer over a flat surface such as, manufacturing of ceramics, polymer
production, drying, evaporation at the surface of a water body and electric power
industry, the diffusing species can be generated or absorbed due to some kind of chemical

reaction with the ambient fluid, which can greatly affect the flow and hence the

13
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properties and quality of the final product (Makinde, 2011). The effect of a chemical
reaction depends on its order and whether the reaction is heterogeneous or homogeneous.
A reaction is said to be of n™ order, if the rate of reaction is proportional to the n™ power
of the concentration itself. A homogeneous reaction is one in which all the reactants are
in the same phase and occurs uniformly throughout the given phase, whereas a
heterogeneous reaction takes place in a restricted region or within the boundary of a
phase.

Das et al., (1994) studied the effect of homogeneous first-order chemical reaction on the
flow past an impulsively started infinite vertical plate with uniform heat flux and mass
transfer. Muthucumaraswamy and Ganesan, (2001) investigated the Effect of chemical
reaction and injection on flow characteristics in an unsteady upward motion of an
isothermal plate. Prasad ef al., (2003) studied the influence of reaction rate on the transfer
of chemically reactive species in a laminar, non-Newtonian fluid immersed in porous
medium over a stretching sheet. They concluded that the effect of chemical reaction was
more effective for zero and first-order reactions than second and third order reactions.
The MHD flow of uniformly stretching vertical permeable surface in the presence of heat
generation/absorption and chemical reaction was reported by Chamkha, (2003). Chamkha
et al., (2012) studied mass transfer with chemical reaction in MHD mixed convective
flow along a vertical stretching sheet. Mahdy, (2010) also investigated the effect of
chemical reaction and heat generation or absorption on double-diffusive convection from
a vertical truncated cone in porous media with variable viscosity. Rushi et al., (2013)
studied the chemically reacting dusty viscoelastic fluid flow in an irregular channel with

convective boundary condition while Prakash ef al., (2011) examined the influence of

14
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chemical reaction on unsteady MHD mixed convective flow over a moving vertical
porous plate. Jai ef al., (2009) investigated the chemical reaction effects on the heat and
mass transfer flow over a vertical stretching surface in a porous medium with constant
suction and variable permeability.

Cortel, (2007) examined the flow and mass diffusion of chemical species with first and
higher order reactions of two electrically conducting viscoelastic fluids over porous
stretching sheets with magnetic fields. He observed that increasing the order of the
chemical reaction decreases the concentration boundary layer when the reaction rate was
negative and the opposite trend was true for the case of a positive reaction rate. Makinde,
(2011) examined the MHD mixed-convection interaction with thermal radiation and n'®
order chemical reaction past a vertical porous plate embedded in a porous medium and
observed among others that the chemical species concentration increases with the
reaction order and decreases with the Schmidt number and chemical reaction parameter.
[brahim and Makinde, (2010) analyzed chemically reacting MHD boundary layer flow of
heat and mass transfer over a moving vertical plate with suction. Gangadhar ef al., (2012)
discussed similarity solutions of hydromagnetic heat and mass transfer over a vertical
plate with convective surface boundary conditions and chemical reaction and concluded
that the local skin-friction coefficient, the local heat and mass transfer rates at the plate
surface increased with increasing intensity of magnetic field, buoyancy force, convective
heat exchange parameter and the chemical reaction rate parameter.

1.5 Statement of the Problem

Heat and mass transfer is a common phenomenon in many engineering systems. It forms

an integral part of every human activity and occurs in respiration, blood circulation,
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metabolic processes, etc. The application of heat and mass transfer processes extend
beyond human activities to include modern day applications such as in the cooling of
nuclear reactors and electronic equipment and heating or sterilization in food industry.
The effects of excessive heating can be destructive and can cause irreversible damage to
human cells and to electronic equipment if proper control measures are not observed.
Manufacturing industries dealing with the production of mobile phones, laptops etc are
faced with the challenge of cooling their products efficiently whilst maintaining the
desired properties. The combined effect of heat and mass transfer with convective
boundary conditions is of great relevance in achieving the desired product characteristics.
This study therefore investigates the problem of heat and mass transfer with viscous
dissipation and n™ order chemical reaction.

1.6 Objectives of the Study

The general objective of this research is to analyse the heat and mass transfer over a

vertical surface with convective boundary conditions. In particular, the specific objectives

of this work include to:

i.  model the governing equations for heat and mass transfer over a vertical

surface with convective boundary conditions.

ii.  transform the partial differential equations modelling the problem of heat

and mass transfer to ordinary differential equations using similarity
analysis.
. analyse the effect of chemical reaction on heat and mass transfer

parameters as the order increases.
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iv.  examine the effect of viscous dissipation parameter on heat and mass
transfer.
1.7 Significance of the Study
This study would be of interest to many professionals including:
i.  engineers in the design of effective and efficient heat exchanger components.
ii.  biomedical engineers who produce lasers for medical applications in which the
cooling rate is properly controlled to avoid irreversible damages to cells.
iii.  manufacturing industries to cool their finished products efficiently.
iv.  Add up to existing literature and serve as a reference material for future
researchers.
1.8 Organisation of the Thesis
This thesis is organized into five chapters. The chronological development of the topic is
outlined briefly in Chapter one with appropriate references from literature. Chapter two
presents the derivation of differential equations governing fluid motion. In Chapter three,
heat and mass transfer over a vertical surface with convective boundary conditions is
discussed in the presence of viscous dissipation and n™ order chemical reaction.
Appropriate equations for the dimensionless velocity, temperature and concentration are
also derived. Chapter four presents the results obtained and subsequently discussed.

Chapter five also presents the conclusion and recommendations made.

17
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CHAPTER TWO
DERIVATION OF THE MATHEMATICAL MODELS AND

NUMERICAL METHODS

2.0 Introduction

This chapter presents the derivation of the equations necessary to study all fluid flow
problems. The subject of computational fluid dynamics is best described in the form of
partial differential equations as the characteristics of a moving fluid will depend on
multiple flow quantities. The basic equations of continuity, momentum, energy and

concentration shall be derived based on some fundamental laws of physics:

2.1  The Continuity Equation

The principle of mass conservation stipulates that the mass of a system remains constant.
The mass contained within a control volume (V) though may not be constant, since the
fluid moves across the bounding surface known as the control surface (S) as illustrated in
Figure 2.1. To simplify the problem, a steady, two-dimensional flow in the x and y
directions of a Cartesian coordinate system is assumed. A unit depth is therefore assigned

to the z direction, thereby providing a differential control volume of extent (dxdy.1)

P
/dSé \) -~

s 4 ?y
\—\‘

Figure 2. 1 Finite control volume fixed in space
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Consider an infinitesimal control volume in two dimensions at P(x,y) within a
chemically homogeneous fluid as shown in Figure 2.2. The side parallel to the x and y-
axes are respectively ox and &y in length. If the density is denoted by p and the velocity
by V', the mass contained in the control volume is p(&xﬁy. l) . The law of conservation of

mass for the control volume states that the rate of change of mass contained in the control
volume plus the net efflux of mass (diffusive as well as convective) across the control

surface should be zero provided that there are no sources of mass present in the control

volume. The rate of change of mass contained in the control volume is (/8¢ )(dx.5.1).

<

B
»

X

Figure 2. 2 An infinitesimal control-volume

Mass entering the face PQ is given by ;Ju(&y 1) where u is the x component of the

velocity. Mass leaving the face RS is by Taylor expansion, pu(dy.1)+ [6(;14)/ 6x]5x(cjz 1).

In evaluating the net efflux, the first quantity is considered as negative and the second as
positive, so that the net efflux in the x- direction 1s[6(pu)/ ax].(&c@).). Similarly, the net
efflux in the y - direction is[8(pv)/dy](&&). This is the convective component of efflux.

The diffusive component is zero because of the uniform chemical composition.
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Thus the net efflux from the control volume is
2p), 8o)) gy
Ox oy

The mass conservation equation then becomes

op , o)  lpv)
o0 ox oy

2.2)

Equation (2.2) is the general statement for the continuity of flow and is valid for all flow

categories whether steady or non-steady, compressible or incompressible. The last two

terms can be expanded into;

u(0p/x)+v(9p/oy)+ p(ou/ox + ov/ay)

(2.3)

The first two terms of equation (2.3) combine with 8p/ér to give Dp/Dt and equation

(2.2) becomes;
Dp/Dt + p(du/dx + 8v/dy) =0

For three dimensions, this can be generalized to
Dp/Dt+ pVV =0

For incompressible fluid, Dp/Dt =0, and the continuity equation becomes

For two dimensional steady flows, the continuity equation becomes

20
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o + L =0 2.7
ox 0oy

2.2 The Momentum Equation

The second fundamental law that is pertinent to the flow of a viscous fluid%is Newton's
second law of motion. For a differential control volume in the fluid, this requirement

states that the sum of all forces acting on the control volume must equal the net rate at

which momentum leaves the control volume, Figure 2.3.

y
ar,
(Tix" dy) dx dz
d
Velocity h /[ y .
components : { -
' +
dy\} T, dx dy /(P ax dx)dydz
: | f (r st B dx)d dz
pdydz ——- | - WL v
Tixdy dz =—4— | DR S ] _
dz //d I—\ £ X
//
—-— ¥
/J/ T dx dz (fu * a;" dz) dx dy
a b
z

Figure 2. 3 Infinitesimal Fluid Element with x direction forces

Consider only the x-components of forces as shown in Figure 2.3. The Newton’s 2nd law
requires two kinds of forces to act on the fluid: body forces, which are proportional to the
volume, and surface forces, which are proportional to area. Gravitational, centrifugal,
magnetic, and/or electric fields may contribute to the total body force. The x components

of these forces per unit volume of fluid are designated as X. The surface forces, Fs, are
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due to the fluid static pressure as well as to viscous stresses. At any point in the fluid, the

viscous stress (a force per unit area) may be resolved into two perpendicular components,
which include a normal stress 7, and a shear stress 7.

The surface forces in the x-direction exerted on the fluid element are sketched in Figure
2.3. On face abcd, the only force in the x-direction is that due to shear stress, rxyax Face

efgh is a distance dy above face abcd; hence the shear force in the x-direction on face

efgh is [Tyx +(6ryx /ay)ay}?x On face adhe, the only forces in the x-direction are the

pressure force pdy, which always acts in the direction into the fluid element, and7 0y,

which is in the negative x-direction. In contrast, on face bcgf, the pressure force

[p +(8p/ox)ox]py presses inward on the fluid element (in the negative x-direction) with a

shear force equal to [Txx + (6r” / &\f)ax]ay . The net surface force in the x-direction is;

O 8 S O R

Simplifying, the net surface force for the x- direction becomes:

0t _op o7,
Fos = [ax 2 & )6x6y (2.9)

The net force for the x-direction become

F = [61’ 6p or

e B ayj6x8y+X (2.10)

To use Newton’s second law, the fluid momentum fluxes for the control volume must
also be evaluated. For example, the mass flux through the x surface (in the y-z plane) is

(pou) , the corresponding x-momentum flux is (pu )u . Similarly, the x-momentum flux due

22




é
é
5
E

www.udsspace.uds.edu.gh

to mass flow through the y surface (in the x-z plane) is (pv)u . These fluxes may change in

each of the coordinate directions, and the net rate at which x momentum leaves the

control volume is:
ol (puu] ol(pv)e]
5 =", =) @11)

Equating the rate of change in the x momentum of the fluid to the sum of the forces in the

x direction, gives:

ollpu] , ollpvie] _07. p, 07 2.12)
ox oy oy

Ox Ox

This expression may be put in a more convenient form by expanding the derivatives on

the left-hand side:
W2l B _ 2% . % 2.13)
ac ) a'™ gy '

The two terms on the left-hand side of equation (2.13) represent the net rate of
momentum flow from the control volume. The terms on the right-hand side account for
the net viscous, pressure and body forces. These equations must be satisfied at each point
in the fluid. The stresses are associated with the deformation of the fluid and are a
function of the fluid viscosity and velocity gradients. Moreover, the magnitude of a stress
is proportional to the rate at which the deformation occurs. The deformation rate is, in
turn, related to the fluid viscosity and to the velocity gradients in the flow. For a
Newtonian fluid, the stresses are proportional to the velocity gradients, where the
proportionality constant is the fluid viscosity. For two dimensional flows, Stokes

viscosity law gives the following results:
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a2 Y AL o, D0 B

Substituting equations (2.13) and (2.14) into equations (2.12), the x-momentum equation

becomes;

p(ua_"”a_“J:_?l_’J,i{#[ a_“-_(a“+@)]}+ a[ [@Jrﬁ]]nf (2.15)
ox oy Ox Ox ox 3\ox oy oy| \oy @

Rearranging the right-hand side of each expression and substituting from the continuity

equation, the x- momentum equation becomes

2 2
p[u2+vQJ=-—%+p[Zx—?+gy—]+X (2.16a)

In a similar fashion the y- momentum and z- momentum components are obtained

2 2
respectively as; Yo, u-@v—ui—v—iaz =—a—p+y a—2+a—— +Y (2.16b)
o ) o (&' P
ow ow dp o*w  o'w
e o L - & Z 216
p[u Ox Y 62) 0z ‘u[ ot ozt J (2-16¢)

2.3  The Energy Equation
Consider the element of control volume shown in Figure 2.4. The energy associated with
mass is in the form of kinetic energy and internal energy. If e represents the internal

energy per unit mass, then the total energy contained within the control volume is

p[e +%ZZJ(8x6y.l) and its rate of change with time is -g—t(pe +§_Vf)3x6y with

Kz =y +v?
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Energy efflux consists of two parts, one convective and the other diffusive. Consider first

the convective efflux. The rate at which mass crosses the surface PS is pu(dy.1).
Therefore, the rate of energy converted across PS is [e +%K2]pu6y. By Taylor

expansion, the energy converted out across RQ is;

{[e+%£2}ou+%[(e+%£2)puj|ax}(ay.l) @.17)

ot or
T, +—>0y T, +—=0y
oy ooy
! »” or
S R WL Y ox
ox
4—
or
T 7,7 P Q Tt 0x
Toy lrw

Figure 2. 4 Stress on an infinitesimal volume

Therefore, the net convective efflux of energy across this pair of faces is

5 1,
5;[(”5:/_ )pu]axay @.18)

Similarly the efflux across the other pair of faces PQ and RS can be obtained.

The total convective efflux, therefore, is
ai[[e+lV2)pt{|6ani % %[(e%zj)pv}axay (2.19)

X 2
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Consider next the diffusive flux of energy. This is determined from Fourier's law of heat
conduction. Conduction flux across PS into the control volume is given by — k%.(ay.l).

Again, by Taylor’s expansion, the flux across RQ out of the control volume is given by

or o |,oT

—_— i d?
For a constant k, the net efflux across this pair of faces is,— kgaxay and across the

whole control volume is

1 1

6(e+—V2)pu 6[e+—V2]pv , :

- + = -k i T+a i: Ox0y (2.21)
ax 3y P

which in two-dimensional vector notation becomes

Vlovle+1/272)|- kv>T foxdy (2.22)

The rate at which the body force bf does work is given by

plfu+ fvlexdy = of Vexdy (2.23)
The rate at which the surface forces do work can be calculated. Work done by forces on

the surface PS of the control volume is — (Tﬂ.ay)u -—(r,y .ay)v and the work done by the

aruu arxyv

BT v+ . Bx]ay (2.24)

forces on the surface RQ is l:rn.u +

Therefore, the net work done by the forces acting on these two surfaces is

3
L T (2.25)
Ox ox
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The work done by the forces on the other two surfaces is similarly determined and adding

the results of the current to the previous, the total work done on the control volume is

[Brw 6rxy or 61”,
u

= = . = ]Bxay (2.26)

The total energy becomes:

ap(e+?V2)+6(e+}aész)pu +6(e+zi1/2)pv _k[azT azTJ

axl + aJ}Z

(2.27)

or u+t_v) olr, v+t u

:pfxu+fyv+(ﬂ lj’)+ (w ‘W)
ox A

The thermal energy equation is obtained by subtracting the mechanical energy equation

obtained by multiplying the momentum equation by the velocity, thus multiplying the x

momentum equation by u, and the y component by v.

u| 2 +ar”‘ +v Oy +ar’”
ox oy x oy

Subtracting equation (2.28) from the total energy equation (2.27), the thermal energy

(2.28)

equation becomes:

Oe Oe Oe &T &'T ou ov Ou ov
Pl — A |k ——— | 4
ot oOx 0oy ox~ oy

Substituting Stokes Viscosity law equation 2.14 into equation 2.29 which yields;

de Oe Oe o ou 0ov
p[—t+u_+v_]=k(ax2 +ay2]—p[a+5}+;@ (2.30)
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where @ is the viscous dissipative term.

Substituting i + i =0
Ox

Oe Oe Oe o’T 8T
— tU—+F+V— =k + + 2231
p[a: “ox vay} [ax2 ayZJ = el

where de=C 0T and C, =C, for an incompressible fluid.

The generalised thermal energy equation may then be expressed as

or 8T or o*T 8T
pcp|:5+ua+vail=k[ax2 +ay2]+yq) (232)
aY (&N | [oe & 208a &V
Where c:b=2[(—”) +(—] }+[——+—} ——[—“+—} (2.33)
ax dy oy x| 3|lax oy

Collectively, the terms on the right-hand side of equation (2.33) account for the rate at
which mechanical work is irreversibly converted to thermal energy due to viscous effects
in the fluid.

2.4  The Concentration Equation

If the viscous fluid consists of a binary mixture in which there are species concentration
gradients (Figure 2.5), there will be relative transport of the species, and species
conservation must be satisfied at each point in the fluid. The pertinent form of the
conservation equation may be obtained by identifying the processes that affect the

transport and generation of the species for a differential control volume in the fluid.
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L] .
M A,advy + 3y MA,a'{f,y+ay

|

M ety 0y M sadvrrix
... 4
M 44y ————> ——» M Juif i
"‘ ‘[ Ox

X,y MA,adv.y MA,dif,y

Figure 2. 5 Species conservation in two-dimensional flow of a viscous fluid with

mass transfer

Figure 2.5 describes the flow of species by advection and diffusion in a two dimensional
flow of a viscous fluid. Consider the control volume of Figure 2.5. Species A may be
transported by advection (with the mean velocity of the mixture) and by diffusion
(relative to the mean motion) in each of the coordinate directions. The concentration may

also be affected by chemical reactions, and the rate at which the mass of species A is

generated per unit volume due to such reactions is designated as »n . .The net rate at which

species A enters the control volume due to advection in the x-direction is;

MA,adv,x— A}A,advx+ax = (pAu)—[(pAu)+@3xilay = @Bx@v (234)
X X

29



MITININVERSITY FOR IDESN EITL A PR EDN T S TLITPIE S

&

- ..____‘

www.udsspace.uds.edu.gh

Similarly, multiplying both sides of Fick’s law (1.4) by the molecular weight MA
(kg/kmol) of species A to evaluate the diffusion flux, the ner rate at which species A

enters the control volume due to diffusion in the x-direction is determined as:

. . a a
Moo= M iz = [— D, &)ay - [(— D, ﬁ} 4 i(— D, aﬁaxﬂay

ox ox ) ox ox
) 8
= E(DAB %)axay (2.35)

Expressions similar to equations 2.34 and 2.35 may be formulated for the y-direction.

Referring to Figure 2.5, the species conservation requirement is
M dadvx— M agdvesae+ M aaiv.y — M 4 advyray + M aairx— M adif xeae+ M agir y — M adif xeap— M 440 =0

Substituting from equations (2.34) and (2.35), as well as from similar forms for the y-

direction, it follows that,

6(pAu)+3(PAV)=£(D ?E_A_]+£[D 804 1y (2.36)
o ay ox AB A ay AB ’

A more useful form of this equation may be obtained by expanding the terms on the left-
hand side and substituting from the overall continuity equation for an incompressible

fluid. Equation 2.36 then reduces to

u%w%:i(pw ?&]+i p, 21|, 237)
ox dy ox x ) oy oy

or in Molar form, to

%1y &Ca_0fp Cu), 0fp Kulin, (2.38)
x oy el ) "y
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2.5 Newton-Raphson Method

The Newton-Raphson method or simply the Newton method is a well-known and most
powerful method used for finding the root of the equation f (x) = 0 (Singerisu, 2002).
The Newton method can be derived by considering the Taylor's series expansion of the

function f (x) about an arbitrary point x, as:

)= f(xl)+(x—xl)f'(x1)+%(x—x,)z F(x,)+... (2.39)

Where the function, f and it's derivatives, f', f",... on the right-hand side of equation

(3.83) are evaluated at x,. By considering only the first two terms in the expansion, we
have;

F6)= )+ (e=x)f"(x,) (2.40)

In order to find the root of f (x)= 0, we set f (x) equal to zero in (3.84) to obtain

Fl)+ (e =x)f"(x, )= 0 (2.41)

Since the higher order derivative terms were neglected in the approximation of f(x) in

(2.39), the solution of equation (2.41) yields a next approximation to the root (instead of

the exact root) as:

- f(xl)
f’(xl)

X=X, =X,

(2.42)

Where x, denotes an improved approximation to the root. This iterative procedure can be

generated as x,,, = x, — /() F =19

")
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The problem now becomes fairly straightforward. We begin with an initial guess ofx,.

. 1s calculated. The process is
repeated until convergence is obtained in x.

An advantage of using the Newton's method is that it converges very fast in most cases
and also requires one initial guess (x,). However, in some problems, such as those
involving transcendental functions, the differentiation of the function f(x) may not be
available in explicit form. Transcendental functions are not involved in this research
work hence the Newton method is an efficient method for this present study.

2.6 Runge-Kutta Method

The Runge-Kutta methods are iterative ways to calculate the solution of a differential
equation. Starting from an initial condition, the solution is calculated forward step by
step. The most common method is the fourth-order Runge-Kutta method, often simply
referred to as the Runge-Kutta method. The Runge-Kutta method is a good choice for
solving differential equations because it is quite accurate, stable and easy to program.
There are several versions of the fourth-order Runge-Kutta Method (RK4). The method is

based on computing yy 4, as follows:

Ves1 = Ve +5 (i +2f+2f3+ fo) (2.43)
Where

fi = fte yi),

fo =f(te+Sye+2h), (2.44)

fz = f(tk +§:J’k +%fz).
fa = f(tx + h,yx + hf3),

3Z
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Thus, we begin the algorithm by first calculating f; with #, and yi as the initial inputs.
Thereafter, the step size is increased by A/2 and f2, f; and f; are subsequently calculated.
With these values, the new value for the variable y can be obtained.

The advantage of the RK4 method is obvious; no formulas for the higher derivatives need
to be computed nor do they have to be in the program.

Equations (2.7), (2.26), (2.33) and (2.38) are the generalised continuity, momentum,
energy and concentration equations respectively. These equations shall be revisited in the
next chapter and will be applied to solving a practical problem of relevance by

incorporating into these equations the assumptions for the development of the model.
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CHAPTER THREE

HEAT AND MASS TRANSFER OVER A VERTICAL SURFACE
WITH CONVECTIVE BOUNDARY CONDITIONS IN THE
PRESENCE OF VISCOUS DISSIPATION AND n"™ ORDER

CHEMICAL REACTION

3.0 Introduction

In this chapter, the incompressible flow of a viscous fluid over a vertical surface is
considered. The effect of viscous dissipation and n™ order chemical reaction is imbedded
in the heat and mass transfer problem. Boundary layer approximations are employed to
represent the problem in the form of continuity, momentum, energy and concentration
equations. Since thermal buoyancy force and buoyancy force due to concentration
difference is considered, the flow affect the velocity, temperature and concentration
distributions. The quantities of physical interest like the skin-friction coefficient, and the
rate of heat and mass transfers are computed for different values of the physical
parameters. The Newton -Raphson shooting method alongside the fourth order Runge-
Kutta method is used to solve the resulting coupled differential equation.

3.1  Developing the Mathematical Model

Consider a steady, laminar, incompressible, convection flow with heat and mass transfer

over a vertical plate in a stream of cold fluid at temperature 7, . The left surface of the

plate is assumed to be heated by convection from a hot fluid at temperature 7, , which
provides a heat transfer coefficient, /,. The cold fluid at the right side of the plate is

assumed to be Newtonian, and its property variations due to temperature and chemical
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species concentration are limited to fluid density. It is also assumed that it is a viscous
dissipative and chemically homogeneous fluid. The concentration of diffusing species is
very small in comparison to other chemical species. The concentration of species far from
the surface, C is infinitesimally very small and hence the Soret and Dufour effects are
neglected. An n" order homogeneous chemical reaction occurs in the flow and all
physical properties are assumed to be constant. The density variation and the effects of
buoyancy are taken into account in the momentum equation. In addition, there is no

applied electric field.

I
T; .
T - .
C U.
w g
uw u
s

:

Figure 3. 1 Flow Configurations and Coordinate System

Let the x-axis be taken along the direction of the plate (which is oriented vertically) and
y-axis normal to it. If », v, 7 and C are the fluid x-component velocity, y-component
velocity, temperature and concentration respectively, then under the Boussinesq and
boundary-layer approximations, and based on the above assumptions the continuity,
momentum, energy and mass transfer equations for the problem under consideration can

be derived.

o0
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3.1.1 The Continuity Equation
For incompressible and steady fluid flow, the continuity equation for a 2-dimensional
flow situation is obtained as denoted by equation (2.7).

ou ov

—t—=0
ox 0Oy
3.1.2 The Momentum Equation

The generalised X- momentum equation is as derived in equation (2.16a) and restated as;

ou Ou op *u d'u
B Bt V| St ) g b K
Ox ox* oy

It is assumed that the only body force acting on the fluid is the gravitational force, hence

the body force bf per unit volume, X is pg and the net force on the x-direction becomes

ou o g o’u o
p[u_hv_u]:__mﬂ[axpayfj_pg G.)

The density of a mixture is a function of its temperature and mass fractions of its species.
It can be expanded using a Taylor's series near the vicinity of a reference point (T, Cx)

of a single chemically reacting element given by:
op op
=p, +—(-1T,)+=(C-C.), 3.2
p=p.+-o(-T.)+22(C-C.) 32

where p_ is the density at the reference point. By definition, the coefficient of thermal

expansion, £, and composition coefficient of volume expansion, . are respectively:
3

L ——_
L

and neglecting the higher order terms in the Taylor's expansion, one obtains:
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p=p.—p.B(T-T.)-p.B(C-C,) (3.4)
Which is valid only if 8,(I'~T7,) and B.(C-C_) <<1

Substituting equation (3.4) into the momentum equation results in:

Ou  Ou _op o*u 0'u
—f A — = - T — T + C- C R T
p[u ax va_}/J pmg puogﬂT( ) pmgﬂC( ax ﬂ[axl +ay2j
(3.5)

Dividing equation (3.5) by p reduces it to:

w2y gt gB (- T.)+ gPe(C~ c)—i@#‘[az +§‘fj (3.6)

ox oy pax plax’ &
. op _ 0p.
G thatt —=——=-p, 3.7
iven tha e P8 3.7

Substituting equation (3.7) into (3.6) yields:

ou  Ou ’u o'u
uadrva—gﬁT(T—Tw)+gﬁC(C—Cw)+v[—ax—2+-a?] (38)
; .. 'u__du
Furthermore, in a boundary layer approximation, —-<<—-,
ox® oy

Therefore the Momentum equation for this present work becomes:

u%xu+v%=ugy;1:+gﬂr(T—Tw)+gﬁc(C-Cm), (3.9

where v is the kinematic viscosity and g is gravitational acceleration.

3.1.3 The Energy Equation
The generalised energy equation was derived as given by equation (2.32) and restated

here for emphasis.
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or or eoT gT 8T
—+u—+v—|=k + + ud
pc"[ar “ox vay} [aﬁ 63}2} '”

[(aujz (avﬂ {6;{ avT 2{6u av]2
where O=2(| —| +|—| |+|—+—]| —=|—+—
) oy & | 3l &

For a steady flow, % =0  hence, equation (2.32) reduces to:

oT 8T *T T
pCP[ua+ng|:k[ax—2+§)+u¢ (3.10)

Equation 2.33 has a number of boundary layer approximations, that is:

. ik is generally << ty
ox dy
e vis generally <<u hence @z ude 0
ox Oy

2 2

e [urthermore, 6_2_ << —'{ , o the boundary layer form is
ox oy

2
o= (8_uJ . (3.11)
oy
Therefore, equation 3.10 becomes:

oar or| ,8'T (ou)
s | [ 5

k
,where a =—— and u=uvp
p

T or 8T v (ou)
oru—+v—-=a —
ox oy

— -
v ' C,

Thus, the energy equation describing the problem is:
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2 2
or . or _ &'T i[@_J’ G.12)

U—A+V—=a—7+
Ox ady" c,\ oy

p

where 7 is the free stream temperature « is the thermal diffusivity and C, is the

specific heat at constant pressure.

3 .1.4 The Concentration Equation

The generalised concentration equation was derived in equation (2.38) given by:

L9, o, 3 (DAB acA)+3(DAB 5C4j+1§u,

v—t=—
ox dy Ox ox oy oy
Lo BC  &C
In boundary layer approximation, v <<—-, so the boundary layer form becomes
X
2 .
AP AR (3.13)

o oy

Assuming that the chemical reaction leads to the destruction of species A , then the molar

destruction rate can be defined as

Ns=-yC" where C=C-C_, (3.14)
The index » represents the order of the reaction, y is the plate surface rate of chemical
reaction.

Substituting (3.14) into (3.13) gives the Concentration equation below;

2

Vet Dan -y(c-c,) (3.15)
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3.2  Boundary and Initial Conditions

The governing equations discussed above generally require initial and boundary
conditions. The boundary of the calculation domain may be either solid or fluid and the
computation domain comprises usually only a part of the whole flow field. At present no
adequate mathematical theory is available to ensure a correct boundary condition for the
full Navier-Stokes equations in general. For mass and momentum equations all velocity
components are specified, for the energy and concentration equations, the values of the
dependent variables such as the temperature and the concentration at the wall and
upstream are also specified. Because it is a solid wall, it is assumed that the fluid cannot
flow across the surface and a no-slip condition is specified on the boundary.

The vertical component of velocity and the horizontal velocity are set to zero. The

concentration at the wall is set to beC,,. It is also assumed that the left surface of the
plate is heated by convection from a hot fluid at temperature 7, which provides a heat
transfer coefficient, s, . Hence the wall surface temperature, concentration and velocity
is

—k %T =h, |1, -T(x0)], C,(x0)=C, andu(x,0)=0, v(x,0)=0 (3.16)

The free stream velocity, temperature and concentration are as follows
u(x,0)=U, T(x,0)=T,, C(x,0)=C, (3.17)
where £ is the plate heat transfer coefficient, C, is the species concentration at the plate

surface and £ is the thermal conductivity coefficient.
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3.3 Similarity Solution

The idea of similarity solution is based on the fact that the solution of a problem u(x, y) '
will collapse on the same curve if defined by a function U if u(x,y)=U(y/ f(x)). The
function f(x) may be found by substitution in the partial differential equation to obtain
an ordinary differential equation for U. The similarity variable 7 is defined as the ratio of

the distance from the plate surface () to the approximate thickness of the momentum

boundary layer &,

i 3.18
=% (3.18)
3.4 Boundary Layer

Fluids flowing past solid bodies adhere to them. So a region of variable velocity must be
built up between the body and the free fluid stream. This region is called the boundary
layer. The growth of the velocity, thermal and concentration boundary layer in a laminar
flow is due to the molecular diffusion of momentum and energy. The momentum

boundary layer thickness &,, will grow according to:

5, =2ur (3.19)

where v is the kinematic viscosity and t is the time, which is related to the distance from

the leading edge x and the characteristic velocity v_, . according to;

char

(3.20)

41



T INIWERSILT ¥ FOR I>DEWEIL OPMIEIN T S TLIIDIES

&

www.udsspace.uds.edu.gh

The length of the plate is taking along the x-axis whilst the characteristic velocity is the

free stream velocity far from the plate denoted by U,

Substituting (3.20) into (3.19) leads to:

Ux
5, =2 JU: (3.21)

Substituting 3.21 into 3.18 gives

O bt ) 899
n 2% (3.22)

From Ostrach (1953) equation (3.19) is modified slightly to become:

- Jg (3.23)
Ux

Equation (3.23) defines the similarity variable for this research work.

The dimensionless velocity, temperature and concentration are thus given by:

- €=C,

U _T-T,
& -G

f'=a:=9(77) T -T

w o0

» ¢01) (3:24)

3.5 Stream Function

In analyzing fluid flow, the idea of a streamline which is an imaginary curve in the fluid
across which at a given instant, there is no flow must be considered. Thus the velocity of
every particle of fluid along the streamline is tangential to it at that moment. The concept
of the streamline is very useful, especially in ideal flow, because it enables the fluid flow
to be conceived as occurring in patterns of streamlines (John et al, 2001). These patterns
may be described mathematically so that the whole system of analysis may be based on

it. It requires a mathematical definition of a streamline. Consider a two dimensional case,
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the velocity and displacement vectors of a fluid at a point together with their orthogonal

components are as shown.

Figure 3. 2 Velocity and displacement Vectors

By definition of a stream line, ds//V", it follows that dy//v and dx//u
Thus the velocity triangle and the displacement triangle are similar and therefore

dx _dy

u v
This constitutes the equation of a streamline. The flow per unit depth between streamlines
aand b is given by:

Q, =y, and similarly Q, =y,

dy =y, -y,=0Q
So that

dy = udy — vdx (3.25)

and w which is called the stream function is given by:
V= Iua’y - I vdx
Thus the stream functions depends upon position coordinates y = f (x, y) and hence, the

total derivative;
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dy dy
dy =T dx +—— 3.26
s dyafv (3.26)

Comparing equation 3.26 and 3.25, the relationship between the stream function and the
velocity components are obtained as:

u= ¥ andv=-—— (3.27)
dy dx

The stream function is related to the volumetric flow Q, between the surface of the plate

and any position y according to:
OQ=Wy (3.28)
where W is the width of the plate. The volumetric flow rate is obtained from the velocity

as:
0= W_T udy (3.29)
0

Equation (3.29) can be expressed in terms of the dimensionless variables using equation

(3.23) and (3.24) as:

Q=WU,

=[5

} fidn (3.30)

Substitute (3.30) into (3.28) yields:

% =U0JUEIan (3.31)

n
The integral I f '(n)dn = f (n) and it is thought of as the dimensionless form of the
0

stream function and must be a function of the similarity variable 7

Simplifying further yields:
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v =oU,xf(n) (3.32)
3.6 Procedure of the Analysis of the Model
The stream function, y, satisfies the continuity equation (2.7) automatically if defined as

=6‘_w, and v=—%,
3y B

u
The system of governing equations are second order partial differential equations and can
be transformed to ordinary differential equation if equation 3.23 and 3.32 are substituted

into equations (2.7), (3.9), (3.12) and (3.15).

For continuity of flow,

é
é
5
E

ou ov
— =)
ox 0Oy
. oy Oy on
From Chainrule w=——=—"——, (3.33)
d on oy
oy % o on _(U, )?
= —(xU. )2 d —L =] 20 3.34
aal Virw  md = (3.34)

ol —

Therefore, u = o ! e (oxU, )}é ¥ '(77){&]
vx

on oy
u=U,f"(n) (3.35)
by the chain rule, Ou = 6_ua_q
x on ox
a’f,_ 1 - U % Bu_ "
a‘“é" 23{; and a_Uof (m (3.36)
ou_ 1 2 () 12 (u Vb
S ——=— [ U " zme U.| 2o ~ 337
_ = B J’[U] oS () Sl e V)] (3.37)
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Similarly, %ﬁ is obtained in the same manner using v = /wU, f(17)

Y~ BxyU, £+ Yy e )h s

L

, hence

v=Yxyu, ') - Y 0U, Vi) (3.38)

Applying the product rule on v and simplifying, % is obtained as

A B HEAG
%: 2yon 2(%}] £ +%x_]Uof’(7?) —-%x'onf'(ﬂ)_ 0 =%yon 2(%’) )

EYRV! bl
%: lszox z(u?o] f(m =y2x_%yUo-(u?0) f"(ﬂ) (3.39)

Substituting (3.37) and (3.39) into (2.7)
3 b 1 !
%x /szo-(ujoj f'(n)_gx ZJ’UO(%J Fay=0

ou Ov o Ve
> + — =0 hence the continuity equation is satisfied

Since the continuity equation is satisfied, the momentum equation can be obtained by

substituting in the dimensionless quantities into the governing equation (3.9) therefore:

ou ou 0u
ua+v5=u§+gﬂT(T—Tw)+gﬂC(C—Cm)

3 bl 3 b
o2 U, 1)L szo(u—"] P il ZyUoz[u—"] F@fm (340
v 2 v
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?}i is evaluated using the relation; % = 8_u 6_7)

dy on o
ou . on (U Yr. .
Recall —=U,;f"(n)asin(3.29) and —=x 2(—“] as in (3.22)
on oy v

I A 1/2
Ou_ U,f"(n) .x%(g"_] ’ =x‘”2U0.[U°J 7). (3.41)
oy v v

v%; , is obtained by multiplying (3.38) by (3.41),

v%, _ [—;-x']yU,,f'(ﬂ) _ yzx-/'é (LU, )? -f(ﬂ)] . x—uzUD.[%] £"(n)

ou 1 ) 2 Ua - " ' -lyr 2 rn
Vs Tl (7] £'@)f )= Yo xUG ) f () (3.42)

2
8_:21 is obtained by differentiating %‘ with respect to y which is given as

ou i[x-uz'Un(Zz_] f#(n)) = x—er_Uo[ﬂJ f"n)e x-lfz[&]
v e ’

é
é
5
E

» o
2t —xw, (S G4

Multiplying equation (3.43) by v results in:

X

U% =v.x" U, (%] 1f"(n)= (Uﬂ J 1"(n) (3.44)
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’ Using the similarity variable 8(n) = ;:_ 1.

, T'—T_ is made the subject which is given

as T-T, =6(n\T, -T.)
(3.45) Multiplying (3.45) by gf, resultsin:

8B, (I -T.,)=gB 0T, -T.) (3.46)

E=L

o0

e =k

w

Similarly, using the similarity variable ¢(n) =

, C—C_is made the subject

which is given as C-C_= ¢(7;XC . Cm)
(3.47) Multiplying (3.40) by gp, gives;

gB.(C-C,)=gB.4mXC, -C.) (3.48)

Substituting (3.40) ,(3.42), (3.44), (3.46) and (3.48) into (3.9)

1 s (u b
g *yU, [——) [ f'm+
v

é
5
5
E

2 e " ' -1 2 o Uoz m
%x-myu,, [i) fa) 'y - Yox7U f (rf)f(n)=[ E Jf ()

+gp,0(n\r, -T.) + gB.¢m)C, -C..)

2
U,
X

%x" U, /() f () + { Jf"'(n) +8B,6()T, - T..) +eB.4n)C, -C.)

= fn(n)_i_lff_'_ gﬁTo(UX{w _Tm)x + gﬂc¢(ﬂXC: _Cm)x
2 U, U,
= f”+%f}’+er6+Gc,¢ (3.49)
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gﬂTB(r’X{w _Tm)'x and ch — gﬂc¢(nXC; _Cw)x

" where Gr,.= (3.50)
& U,
' : . / e’ ; . g ol
From the dimensionless quantity 8(n7) = 5 , T 1s made the subject yielding:
ﬁ T'=gm(l =1 _Y+*T, (3.51)
E Differentiating (3.39) with respect to x using the product rule gives;
w or 1 u,\"
—=——=x""yl == | O@\NT,-T, i o
E 2 & o -1.) 65)
E To ﬁndu%r , recall that u=U, f'(n7) (3.53)
g 1/2
oT 1 U
y u—=-—x""*y ==| @@\, -T, ), [
| = &) o, -rw.s
E 1/2
Hence, ua—T=—lx’myUa[$) (r,-1.).7 6 (3.54)
Ox 2 v
Similarly differentiating T with respect to y gives,
1/2
L xﬂm[l_@_) , 0T, -T.) (3.55)
oy v

Multiplying (3.55) by (3.38) gives,

v@-#x-“yvo[ﬂ] (. -1)f @@ - 37U, (T, ~1.)fmo')  (3.56)
oy 2 v 2

Differentiating % with respect to y and multiplying the results by a gives;

a az—f =ax” {i)(fw -T.)0" (3.57)
oy v
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1/2
Recall %=x'”2UD.(——") £"(;7).as in (3.41), Squaring % and multiplying the results
)

v
by — give
YC g

P P

ou) U2(U,N...
2) -2 ()0 o

P

Substituting (3.54) , (3.56) , (3.57) and (3.58) into (3.12) and simplifying gives:
1/2 1/2
- lx"”yua[ﬂ] (I, -T.). 1" 0" +2xyU, [U—] L) f & -
. v 2 v

1

Ex”an (r,-1.).r6 =ax"{U

0
)

J(Tw -T.)0" + %—[UT) () (3.59)

—l—x'on (T,-T,) f 0 +ax {ﬂj(rw -T,)9" +U—"2[ﬂ—]f”(n)= 0
2 v C X

P

v v U’ n
0"+—f0 +—| ——=———|f"*=0
2a J a (cp (T, - roo)Jf

Therefore the Energy equation is transformed into a dimensionless form as:

é
E
5
E

0"+ VP fO'+ PE f"=0 (3.60)
2
where P, =Eand E = o e (3.61)
a Cp(Tw _Tm)

From the dimensionless quantity ¢(77) = g—_% C is made the subject as:

C=¢m)(C,-C,)+C, (3.62)

Differentiating (3.62) with respect to x using the product rule gives:

aC__l = i1.'2 ' B
i y[vj ¢#'(m)C, -C.) (3.63)
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u % is also evaluated by multiplying (3.63) by (3.35) yielding

1/2

oC b s PN .
ug=—§x 3f2y ¢(WXCW_CQ)'qu
\ L)
P U2
Hence u£= —lx‘myUo g, Cc,-C.).f¢ (3.64)
ax 2 \ v J

In the same manner C is differentiated with respect to y to obtain,

1/2
Z-s(L] -c)s (.69

v%, is obtained by multiplying (3.65) by (3.38), thus:

é
5
|
E

C v\ i 1/2
va—=x-”2[—°—) #n)C, -C.)x [1x“yU,,f'(n)-1x"”(uUu) f(n))
oy v 3 5
Hence:
a_C'__l -3/2 Uu e _ ' " l -1 — 1]
L yUa[U] c.-c)¢ 1 Sx u,(c,-C)¢ .1 (3.66)

Differentiating % with respect to y and multiplying the results by D gives

2
p?2 f =D x-‘(%J (c,-c.)¢" (3.67)

Using the dimensionless quantity ¢(77) =E'€_:%L ,(C —C,,) is made the subject for a

generalised order of reaction n to obtain;
(€-c.) =k, -c.) (3.68)

Given a reaction rate parameter, y , results in

-
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yc-c.) =yls(c,-C.) (3.69)
Substituting equation (3.64), (3.66), (3.67) (3.69) into (3.15)

1/2 1/2
—lx_myU,,(ZLj €, -C.). ¢+ 1x'”’yvo((—]i] c,-C.) ¢ 1 -
2 v 2 v

1

Ex_on (Cw -C,)¢' .f=Dx"(U"

v

] €, -C.)¢" ~7ldC, —C)

= D! {U—) (€, -c.)¢ -ys(c, -cC. )]"+%x"U,, C,-C.)¢.f (3.70)
v
Furthermore simplifying (3.70) result in;

v v X n-1
Fpt o o b O g4 b =0
¢ 2Df¢ DU"°¢ (Cy=C.)

Hence the Concentration equation (3.15) is transformed into a dimensionless form as:

é
E
5
E

8"+ S SF -S540 3.71)

where;

S0 (3.72)

3.7 Transformed Boundary Conditions
The boundary conditions (3.16) and (3.17) are also in partial differential form and hence
the need to transform them into ordinary differential equation by using the similarity

variables in (3.23) and (3.24)

Given %(x,0)=0 as the first boundary condition,
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Referring to equation (3.35), u=U, f '(7]) and n= yJ& .wheny=0, n=0,
vx
This impliesU,. 1'(0)=0,
Hence f'(0)=0 (3.73)
In solving the second boundary condition which is given as v(x,O) =0, recall that
_ b ; | R 1/2

v=ox YU )= x" )" £ )
as in (3.38). When y = 0,7 =0 and v = 0, Substituting yields,

0=2 5 OU,SO-2 5" (U,) 10,

Hence f(0)=0 (3.74)

Proceeding to the third boundary condition given as
or
k5, =h [r, -7(x0)]
Referring to equation (3.55)

1/2
(L) ot -1.)
oy v

Multiply both sides of (3.55) by - k and equating the results to 4, lT g T(x,O)J

1/2
k%k("—) ) ()
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_“(U_) 0T, ~1.) =h |, ~T(x0)]

o'(n)="0 1 oI =Tlx0)

k 112 & o F g
19

9'(n)=h7f(ﬂ 2 r-7)-(,-T.)

’ _hf ux |? (T—Tuo) (Tw Tw) (T Tw)
a(f;,)_T(Z (1) Bo) b )= T-2) ana
ACA
Bi, = . [uaj (3.75)
Hence:
0'(0)=B,[6(0)-1] (3.76)

MINIWVER SITT ™ FOR IODEWEL OPRAEDNN T S TLIIDODIE S
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Giving, C,, (x,O) =C,, as the fourth boundary condition

When y = 0,7 =0 and substituting into ¢(n) = (f = C(':“'“
c, (x0)-c, c,-C
0 —i » 2 = = s = = 1’
¢0) c,-C, I
Therefore,
$(0)=1 (3.77)

Evaluating the fifth boundary condition, u(x, oo) =1,

asy >o,7—>o and u=U,f(0)=u
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fl0)="2=1  Therefore f'(w)=1 (3.78)
ud!
: . e . T-T,
Solving for the sixth boundary condition,  T(x,0)=7, using 8(5) = A
:n asy—owo,n—© and T >7T, B(w)—T“_T” =0
H i R 2
E Hence,
]
g () = 0 (3.79)
. - . =,
S Solving for the seventh boundary condition, C(x, oo)= C,, using ¢(n) = T —c_
: C.-C
’ asy —oo,n = and C - C_ , therefore ¢(oo)=ﬁ:0
;
E #()=0 (3.80)
It is noticed that the local parameters B, ,Gr,,Gc, and B, in equation (3.75), (3.50) and
(3.72) respectively are functions of x. However in order to have similarity solution all

parameters must be constant and we therefore assume 4, =4:lx_/v2 B,=bx" B =cx

and ¥ =dx™' where a, b, ¢ and d are constants.

In the next section, the numerical solution and the software package used in the analysis
of the coupled ordinary differential equations are outlined.

3. 8 Numerical Solution

Many of the problems facing applied mathematicians and physicist is the difficulties
faced in solving nonlinear equations with variable coefficients and nonlinear boundary
conditions. Consequently, solutions are approximated using numerical techniques,

analytical techniques or a combination of both. The task of this process is to discretize the
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model equations and approximate them by sets of linear algebraic ones, which are solved
by suitable algorithms.

The numerical technique chosen for the solution of the coupled ordinary differential
equations (3.35), (3.47) and (3.58) together with the associated transformed boundary
conditions (3.60) to (3.66), is the standard Newton-Raphson shooting method alongside
with the fourth-order Runge-Kutta as outlined in chapter two of equation (2.42), (2.43)
and (2.44) integration algorithm. 5, is selected to represent the similarity variable at
infinity. We then begin with some initial guess value and solve the problem with some
particular set of parameters to obtain /"(0), 0'(0) and ¢'(0). This process is repeated with
another larger value of 7., until two successive values of f"(0), 6'(0) and ¢'(0) differ only
with the desired digit and this signifies the limit of the boundary along 1. The method of
superposition is used to choose the last value of 7. and this serves as the appropriate
value for that particular simultaneous equation of first order for seven unknowns.

To solve this system we require seven initial conditions whilst we have only two initial
conditions  £'(0) and f (0) on f; and one initial condition each on 6 and ¢. This means
that there are three unknown initial conditions, f "(0), 0'(0) and ¢'(0) which are not
prescribed. Next, the Newton Raphson shooting technique is employed to produce two
unknown initial conditions at 1 = 0 using the two ending boundary conditions. In this
calculation, the step size Ay = 0.001 was used while obtaining the numerical solution
with #max = 10 and six-decimal (10®) accuracy as the criterion for convergence. The
numerical procedure was carried out using a Maple 16 software package. From the
process of numerical computation, the plate surface temperature, the local skin-friction

coefficient, the local Nusselt number and the local Sherwood number, which are
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respectively proportional to f"(0), — 6'(0), and — ¢'(0) are also sorted out and their

numerical values presented in a tabular form.
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CHAPTER FOUR

RESULTS AND DISCUSSIONS

4.0 Introduction

This chapter presents the results of the solution of the problem analyzed in chapter three.
Both numerical and graphical results are presented and discussed for various control
parameters. The results are also compared with previously published data to validate the
numerical procedure.

4.1 Validation of Results

In order to benchmark the numerical results, the plate surface temperature 6(0) and the
local heat transfer rate at the plate surface - 8'(0) in the absence of internal heat
generation, viscous dissipation and n™ order chemical reaction was compared with the
works of Makinde and Olanrewaju (2010; 2012) for varying parameters of convective
heat transfer parameter (Bi), thermal Grashof number (er) and Prandtl number (Pr). It
is clear from the results that the present study is consistent with those reported by these

authors.

Table 4. 1 Comparison of results with Makinde and Olanrewaju (2010, 2012)

Controlling Makinde and | Makinde and | Present Study
parameters Olanrewaju(2010) | Olanrewaju (2012)
Bix | Grx | Pr -6'(0) 6(0) -68'(0) 6(0) -6'(0) 6(0)
0.1 |0.1 |[0.72]0.075077 | 0.249228 | 0.075077 | 0.249228 | 0.075077 | 0.249228
1.0 | 0.1 |0.72 | 0.237506 | 0.762494 | 0.237506 | 0.762494 | 0.237506 | 0.762494
10 (0.1 |0.72 | 0.305596 | 0.969440 | 0.305596 | 0.969440 | 0.305596 | 0.969440
0.1 0.5 [0.72]0.076138 | 0.238623 | 0.076138 | 0.238623 | 0.076138 | 0.238623
0.1 [1.0 |0.72 | 0.077045 | 0.229552 | 0.077045 | 0.229552 | 0.077045 | 0.2295515
0.1 | 0.1 |3.00 | 0.083046 | 0.169540 | 0.0830460 | 0.169540 | 0.0830460 | 0.169540
0.1 {0.1 |7.100.086721 | 0.132788 | 0.0867212 | 0.132788 | 0.0867212 | 0.132788
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The results of varying parameter values on the local Skin friction coefficient, the local
Nusselt number and the local Sherwood number are shown in Table 4.2. The Prandtl
parameter was taken to be 0.71(air), 4.0 and 7.1(water), which correspond to the common
fluids used in industries; the values of Schmidt parameter (Sc) were chosen to be 0.24,
0.60, 0.78, and 2.62 representing the diffusing chemical species of most common interest
in air that is, H,, HO, NHs, and Propyl benzene respectively. Attention was focused on
positive values of the buoyancy parameters that is, Grashof number Grx > 0 (which
corresponds to the cooling problem) and solutal Grashof number Gex > 0 (which
indicates that the concentration of the chemical species in the free stream region is less
than the concentration at the boundary surface). The values for the Convective heat
transfer parameter as well as the chemical reaction parameter were also chosen to be
greater than zero. It is observed that increasing the Prandtl number (Pr) reduces the local
Skin friction coefficient together with the Sherwood number and the Nusselt number.

The Skin friction coefficient and the Nusselt number are reduced whilst the Sherwood
number increases with increasing Schmidt number (Sc). Increasing the buoyancy forces
(Gr, Ge) increases the local Skin friction coefficient and the Sherwood number and
reduces the Nusselt number. The Skin friction coefficient and the Nusselt number as well
as the Sherwood number increases for increasing values of the convective heat transfer
parameter (Bi).

Furthermore, the Nusselt number and the Sherwood number are increased whilst the
Skin friction coefficient is reduced for increasing values of the order of chemical reaction
(n). The Eckert number (Ec) increases the Skin friction and the Sherwood number whilst

the Nusselt number is reduced. Increasing the reaction rate parameter reduces the Skin
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friction coefficient and the Nusselt number whilst increasing the Sherwood number. The
Eckert number (Ec) increases the Skin friction and the Sherwood number whilst the

Nusselt number is reduced.

Table 4. 2 Numerical results of skin friction coefficient, Nusselt number and the

Sherwood number

Pr Sc Gr |Gec |Ec g Bi -f"(0) | -8'(0) -¢'(0)

0.71 1024 [0.1 0.1 |0.1 ]oO.1 0.1 |0.539343 | 0.071929 | 0.255722

4.0 024 [0.1 [0.1 Jo0.1 |0. 0.1 |0.527355 | 0.073771 | 0.254717

71 024 [0.1 |01 0.1 [0.1 0.1 |0.526772 | 0.071826 | 0.254605

071 {060 [0.1 [0.1 [0.1 (0.1 0.1 [0.507188 | 0.071935 | 0.371435

071 1078 |10.1 ]0.1 (0.1 |0. 0.1 ]0.498585 | 0.071929 | 0.413099

0.71 [2.62 (01 |01 |01 |0.1 0.1 ]0.463067 | 0.071868 | 0.463067

071 1024 |05 [0.1 0.1 (0.1 0.1 ]0.681540 | 0.071760 | 0.263087

071 {024 11.0 (0.1 (0.1 joO.1 0.1 ]0.851384 | 0.071218 | 0.270995

071 (024 |14 |01 0.1 |O.1 0.1 |0.986547 | 0.070574 | 0.276758

071 1024 |0.1 (05 0.1 |0.1 0.1 ]1.079843 | 0.069706 | 0.284628

071 1024 |0.1 |10 (0.1 |0.1 0.1 [1.643945 | 0.064596 | 0.307937

0.71 1024 |01 (115 (00 |01 0.1 [2.147562 | 0.058561 | 0.325423

071 {024 (0.1 [0 |05 (0.1 0.1 ]0.569874 | 0.052712 | 0.257477

TTINIVERSITY FOR DENWEILOPMIEINT STUOIDDIES

071 {024 (0.1 [01 |10 (0.1 0.1 ]0.610857 | 0.025826 | 0.259745

071 {024 [0.1 [0.1 |15 [0.1 0.1 [0.655511 | 0.004786 | 0.262116

071 {024 (0.1 (01 0.1 (0S5 0.1 ]0.516806 | 0.071935 | 0.387433

071 1024 |0.1 |01 0.1 [1.0 0.1 10.499240 | 0.071926 | 0.513307

071 1024 j0.1 (0.1 0.1 (0.1 0.1 [0.543097 | 0.071925 | 0.243557

071 {024 |01 0.1 0.1 |0.1 0.1 |0.544584 | 0.071924 | 0.237357

0.71 1024 [0.1 0.1 |0.1 |0O.1 0.5 |0.582216 | 0.186420 | 0.257990

071 1024 {01 |01 0.1 0.1 1.0 [ 0.599122 | 0.233423 | 0.258863

N G L IS N e el el el el el el el el Ml Rl Rl el Ml Rl Rl B

0.71 |0.1 01 161 101 10.1 1.5 | 0.606753 | 0.254978 | 0.259254

4.2 Graphical Results

4.2.1 Effects of Parameter Variation on Velocity Profiles
The effects of parameter variation on the velocity boundary layer are shown in Figures

4.1 to 4.4. It is observed in Figure 4.1 that increasing values of the Schmidt number tend
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to reduce the velocity profile slightly. In Figures 4.1 and 4.3, the velocity profiles for
increasing thermal and solutal Grashof numbers increases just as that of increasing the
Eckert number in Figure 4.4. This happens because increases in these parameters cause
an increase in buoyancy forces and hence increase in velocity. Adding, the higher fluid
velocity ensures better convection and distribution of temperature and concentration,
respectively which is seen as lowering of fluid temperature and species concentration. It

is therefore noted that, increasing buoyancy forces will lead to a better flow kinematics.
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Figure 4. 1 Velocity profiles for varying values of Schmidt number (Sc)
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Figure 4. 2 Velocity profiles for varying values of thermal Grashof number (Gr)

TUINIWERSIT Y FOR _IDENWEIL  OPMIEDIN LT S TLOIDIES
o
I
-]

w *x
2 - e
1 % i oooo  Ge=0.1
] +""’+* ......... Gec=1.0
1 .* = +++  Gec=2.0
154+ . #xx Ge=3.0
o .. .+=
z 9 i -
.f*
® .’*
£ 1 °o°°°°°°°°;8336”..ouu.o“-“.o“oo.
-+ ooo
o
1. -
1" e Pr=0.71,8¢=0.24, Gr=0.1, Ec = 0.1,
e ™ Bi=0.1,n=1,$=0.1
i o
-0
1o
e L] L] = L] = L] = L)
o 2 4 6 8 10
n

Figure 4. 3 Velocity profiles for varying values of solutal Grashof
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Figure 4. 4 Velocity profiles for varying values of Eckert number (Ec)

4.2.2 Effects of Parameter Variation on Temperature Profiles

The effects of parameter variation on temperature profiles are shown in Figures 4.5 to
4.9. In Figure 4.5, increasing values of the Prandtl number causes a decrease in the fluid
temperature leading to a decaying thermal boundary layer. The reason is that smaller
values of Prandtl number are equivalent to increasing thermal conductivity and therefore
heat is able to diffuse away from the heated surface more rapidly than for higher values
of Prandtl number. In Figure 4.8 and 4.9, it is also observed that increasing both the
Eckert number and the convective heat transfer parameter increases the thickness of the
temperature boundary layer. Eckert number is the ratio of the kinetic energy of the flow
to the boundary layer enthalpy difference. The effect of viscous dissipation on the flow

field is to increase the energy, yielding a greater fluid temperature and as a consequence
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greater buoyancy force. It is observed in Figure 4.6 and 4.7 that with the increase in
buoyancy parameters, the surface temperature increases but slightly decreases towards

the free stream the increase is due to the increase in the dissipation parameter and hence it

enhances the temperature.
k-4
T= oooo Pr=0.71
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{=]
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Figure 4. 5 Temperature profiles for varying values of Prandtl number (Pr)
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Figure 4. 7 Temperature profiles for varying values of solutal Grashof number (Gc)
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Figure 4. 9 Temperature profiles for varying values of convective heat transfer

parameter (Bi)
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4.2.3 Effects of Parameter Variation on Concentration Profiles

Figures 4.10 to 4.15 depict the effects of varying parameters on the thickness of the

concentration boundary layer. It is observed in Figure 4.10 to 4.15 that, increasing the

buoyancy forces, the convective heat transfer parameter and the reaction rate parameter

MITININWVERSITY FOR IDESNWEITI AOPRIEDNNT S TLIIPIE S

028

04

0.2

have adverse effect of decaying the concentration boundary layer thickness. Also, a small
Schmidt number implies that the fluid has high diffusion coefficient for the species and
hence in steady state the concentration of the species is higher in the fluid which thereby
reduces the concentration gradient at the surface, hence the concentration decreases with
increasing Schmidt number. Moreover, the boundary layer thickness increases slightly
when the order of reaction increases. Its effect on fluid velocity and temperature is
negligible and hence those figures have not been included. Therefore it is concluded that

effect of parameter » on species consumption is not significant.
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Figure 4. 10 Concentration profiles for varying values of Schmidt number (Sc)
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Figure 4. 11 Concentration profiles for varying values of thermal Grashof

number (Gr)
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Figure 4. 12 Concentration profiles for varying values of Solutal Grashof

number (Gc)
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Figure 4. 13 Concentration profiles for varying values of convective

heat transfer parameter (Bi)
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Figure 4. 15 Concentration profiles for varying values of order of

chemical reaction (n)

4.3 Boundary conditions

It is observed from Figures 4.1 to .4.4 that the velocity starts from a zero value at the
plate surface and increases to a peak value and then decreases slightly towards the free
stream value far away from the plate surface satisfying the far field velocity boundary
condition for all parameter values. Generally, the fluid temperature attains its maximum
value at the plate surface and decreases exponentially to the free stream zero value away
from the plate satisfying the thermal boundary condition and this is observed in Figures
4.5 to 4.9. Figures 4.10 to 5.15 depict concentration profiles of species against spanwise

coordinate (r]) for varying values of physical parameters in the boundary layer. The

concentration of the species is highest at the plate surface and decreases to zero far away

from the plate satisfying the concentration boundary condition.
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CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

Heat and mass transfer over a vertical surface with convective boundary conditions in the

presence of viscous dissipation and n” order chemical reaction has been studied.

Numerical results have been compared to earlier results published in literature and a
perfect agreement was achieved. Among others, the results reveal that:

i. The velocity of the fluid increases with the increase in Eckert, thermal and

concentration Grashof numbers. It also decreases with an increase in Schmidt

number. This implies proper control of the Eckert, thermal and concentration

Grashop numbers will enchance the efficient flow of fluids whilst high

Schmidt numbers will impede easy flow.

ii. The temperature of the vertical surface reduces with increasing Prandlt number
and increases with increasing Eckert, convective heat transfer parameter,
thermal and concentration Grashof numbers. So a major improvement in
efficiency of lasers for the treatment of cancer will be obtained if high Prandtl
numbers are used.

iii. The concentration boundary layer of the fluid decreases with increase in
reaction rate parameter, Schmidt, convective heat transfer parameter, thermal
and solutal Grashof numbers; and increases slightly with increasing order of
chemical reaction. These facts should be taken into account for the practical

application in mass transfer processes.
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iv.  The Skin friction at the surface increases with the increase in the convective
heat transfer parameter, order of chemical reaction, Eckert, thermal and
solutal Grashof numbers; and decreases for increasing Prandtl, reaction rate
parameter and Schmidt numbers. High skin friction has the potential to impair
easy movement of fluid thereby increasing the temperature of surfaces hence
should be controlled.

v.  The Nusselt number increases with an increase in the convective heat transfer
parameter and decreases with increasing: reaction rate parameter, order of
chemical reaction, Schmidt, Eckert, Prandtl, thermal and solutal Grashof
numbers. An increase in Nusselt number means heat will be lost easily from
the system hence an increase in convective heat transfer will be an advantage
in efficient cooling. '

vi. The Sherwood number increases with an increase in reaction rate parameter,

Schmidt, convective heat transfer parameter, Eckert, thermal and solutal

MITINIWVERSITY FOR IDESNWEITL AP EDNN T S TLITX»IE S

Grashof numbers; and decreases with increasing Prandtl and order of chemical
W reaction. High Sherwood number implies high rate of mass transfer and this
can adversely affect the quality of the final product if not properly controlled.
5.2 Recommendations
In conclusion, the following recommendations are made:
i. The chemical reaction parameters of the fluid such as the Schmidt number should
be well controlled to achieve desired product characteristics.
ii. In the transportation of oil products through ducts, the effect of viscous

dissipation is enormous so it is recommended that the viscous dissipation
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parameter ( that is the Eckert number ) should be well controlled to enhance the
transportation process to avoid overheating,

iii. This study was conducted on a vertical plate; it is therefore recommended that it
should be extended to different geometries such as vertical cylinder or vertical
infinite channel.

iv. The research can serve as a reference material to future researchers.
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APPENDIX II

MAPLE CODE FOR NUMERICAL RESULTS

Pr:=071:8 =024:Gr .= 0.1:Gc :==0.1:Ec := 0.1:Bi
=010:f:=01:n:=1:
fens = {F(y),8(»),0(»)}:

sysl = diff (F(y),y83) + o+ F(y)-diff (F(7),y52) + Gr-0(y)
+ Ge-0(y) =0,diff (8(»),582) + 3+ PrF(»)-diff (8(),)
+ PreEc-diff (F(»),82)> = 0,diff (8(»),82) + - Se-F(»)

-diff (¢(y).,y) — Sc-B-(¢(»))" =0,D(F)(0) =0,F(0) =0,
6(0) =1,D(0)(0) =-Bi-(1 —06(0)),D(F) (10) = 1,6(10) =0,
8(10)=0:

p = dsolve ({sys], D(F) (0) =0, F(0) =0,6(0) = 1,D(8) (0) =-Bi
-(1=16(0)),D(F) (10) =1,(10) =0, 8(10) = 0}, fens, type

= numeric, method = bvp, abserr = le— 6)
proc(x_bvp) ... end proc

dsoll = dsolve({sysl}, numeric, output = operator )
[y =proc(y) ... end proc, F =proc(y) ... end proc, D(F) =

proc(y)
end proc, Dm(F) =proc(y) ... end proc, ¢ =proc(y)

end proc, D(¢) = proc(y) ... end proc, 6 = proc(y) ... end proc,
D(8) =proc(y) ... end proc|

dsoll (0);

[y=0,F(0)=0.D(F)(0) =0, D (F)(0)
=0.5393427189234077920(0) = 0.99999999999999966D(¢) (0)
= -0.255722468099067402(0) = 0.280711231942019190
D(8)(0) = -0.071928876805798042p
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APPENDIX III

MAPLE CODE FOR GRAPHICAL RESULTS

>
with(plots )
Pr:=10.71:8 =024:Gr = 0.1:Gc := 0.10: Ec == 0.1 : Bi
=010:f=01:n:=1:
fens = {F(»),8(»),¢(»)}:

95 = diff (F(y),383) + -+ F(y)-diff (F(»),582) + Gr-8(5)

+ Ge-0(y) =0,dif (8(3),382) + 7+ Pr-F(y)-diff(6(»),)

+ Pr-Ec- (dif (F(y),52))* =0, diff (8(7),82) + 7+ ¢

F(y)-diff (9(»),y) — Sc-B-(0(»))" =0:

pl = dsolve({sys,D(F)(0) =0,F(0) =0,4(0) =1,D(8)(0) =-Bi
-(1-6(0)),D(F)(10) =1,6(10) =0,8(10) = 0}, fens, type
= numeric, method = bvp, abserr = 1e-10) : plt = odeplot (pl,
[,8(»)],0..10, numpoints = 50, labels = ["n", "8(n)"], stvle
= point, symbol = circle, color = black ) :

plf = odeplot (pl, [y, F'(y)],0..10, numpoints = 50, labels = ["n",
"f (M)"], style = point, symbol = circle, color = black ) : plc
= odeplot (p1, [y, ¢(y) ], 0..10, numpoints = 50, labels = ["n",
"o(M)"], style = point, symbol = circle, color = black ) :

with(plots) :

Pr = 0.71:Sc = 0.24: Gr == 0.1:Gc = 0.1 : Ec = 0.1 : Bi
== O,I:B =0.1:n := 2:

Sens = {F(),0(»),¢(»)}:

sys = diff (F(y).y8$3) + % F(y)-diff (F(»),y82) + Gr-0(y)
+ Ge-0(y) =0,diff (0(»),¥52) + &+ PreF(y)-diff (8(»),»)
+ PreEe- (diff (F(»),52))> = 0,diff (6(»),182) + &+ e
F(y)-diff (¢(»),y) — Sc-B-(¢(y))"=0:

p2 = dsolve ({sys, D(F)(0) =0,F(0)=0,¢(0)=1,D(08)(0) =-B

(1 —8(0)),D(F)(10) = 1,6(10) =0, 8(10) =0}, fens, type
= numeric, method = bvp, abserr = le-lO) : p2t = odeplot (p2,
[»,8(»)],0..10, numpoints = 50, labels = ["n", "O(M)"], style
= point, symbol = point, color = black ) :

p2f = odeplot (p2, [y, F'(¥») ], 0..10, numpoints = 50, labels
=["", "fM)"], style = point, symbol = point, color = black ) :

p2c = odeplot (p2, [y, ()], 0..10, numpoints = 50, labels = ["",
"0(M)"], style = point, symbol = point, color = black ) :

83



www.udsspace.uds.edu.gh

} ‘ with(plots) :
Pr:=0.71:8¢ :=024:Gr :=0.1:Gc := 0.1: Ec = 0.1 : Bi
= 0.1:p:=01:n:=3:
fens = {F(y),08(y),0(y)}:

sys 1= diff (F(7),183) + - F(y)-diff (F(»),52) + Gr-6()
+ Ge-0(y) =0,diff (8(»),82) + 7 PrF(»)-diff(8(),5)
+ PreEe- (diff (F(»), y52))* = 0,diff (8(y), 82) + = Sc

F(y)-diff (0(y),y) — Se-B-(9(»))" =0:

p3 = dsolve({sys, D(F)(0) =0,F(0) =0,¢(0) =1,D(8)(0) =-B
+(1-8(0)),D(F) (10) = 1,4(10) =0,6(10) =0}, fens, type
= numeric, method = bvp, abserr = le-10) : p3t := odeplot (p3,
[¥,8(»)],0..10, numpoints = 50, labels = ["n", "0(M)"], style
= point, symbol = cross, color = black ) :

p3f = odeplot (p3, [y, F'(y)],0..10, numpoints = 50, labels = ["y",
"f'(m)"], style = point, symbol = cross, color = black ) :

p3c = odeplot(p3, [y, d(») ], 0..10, numpoints = 50, labels = ["y",
"o(m)"], style = point, symbol = cross, color = black ) :

with(plots) :

Pr:=1071:8 =024:Gr :=0.1:Gc = 0.1: Ec :== 0.1:Bi
=01:p:=01:n:=4:

fens = {F(y),0(»),0(y)}:

sys 5= diff (F(7),83) + - F(3)-diff (F(»),52) + Gr-6(»)
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+ Ge0(y) = 0,diff (8(»),82) + = PrF(»)-diff (8(),7)
+ PrEc- (diff (F(y),y$2))* = 0,diff ((y),y$2) + % Se

“F(y)-diff ((y),y) — Sc-B-((»))"=0:

p4 = dsolve ({sys, D(F)(0) =0, F(0) =0,9(0) =1,D(8)(0) =-B
(1—19(0)),D(F)(10) = 1,6(10) = 0,6(10) =0}, fens, type
= numeric, method = bvp, abserr = 1e-10) : p4t := odeplot (p4,
[y,8(»)],0..10, numpoints = 50, labels = ["n", "8(M)"], style
= point, symbol = asterisk , color = black )

péf = odeplot (p4, [y, F'(¥) ], 0..10, numpoints = 50, labels
=["","f' (M)"], style = point, symbol = asterisk, color = black ) :

pdc = odeplot (p4, [y, 9(y) ), 0..10, numpoints = 50, labels = [™n",
"d(n)"], style = point, symbol = asterisk , color = black ) :

> plots[display |({ple,p2c, p3c, pdc});




