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Abstract
In this paper, we discuss superquadratic functions and some results

related to Steffensen’s inequality. Particularly, we state and prove the
superquadratic form of the refined Steffensen’s inequality. Applications
of the new results are established.

Mathematics Subject Classification: 26D10, 26D15

Keywords: Steffensen’s inequality, superquadratic functions, Convex func-
tions, refinement



612 M.M. Iddrisu, C.A. Okpoti and K.A. Gbolagade

1 Introduction

The concept of superquadratic functions was first introduced by S. Abramovich
et al. in [1] and [2] and it has since been dealt with in numerous papers (see for
example [3]),[4]and [5]. The definition of a superquadratic function is a simple
modification of the geometrical notion of a convex function. In the case of a
superquadratic function, it is required that ϕ lies above its tangent line plus a
translation of ϕ itself. Our task in this paper is to present some refinements
of the Steffensen’s inequality

∫ b

b−λ
f(t)dt ≤

∫ b

a
g(t)f(t)dt ≤

∫ a+λ

a
f(t)dt, (1)

where λ =
∫ b
a g(t)dt, f and g are integrable functions defined on (a, b), f is

decreasing and for each t ∈ (a, b), 0 ≤ g(t) ≤ 1 (see also [6], [7]), [8] and [9].

2 Preliminary Notes

We give some definitions here.

Definition 2.1 (Convex functions)
Let I be an interval in �. Then ψ : I −→ � is said to be convex if for all
t1, t2 ∈ I and for all positive λ and μ satisfying λ+ μ = 1, we have

ψ(λt1 + μt2) ≤ λψ(t1) + μψ(t2). (2)

Geometrically, a convex function is defined as

ψ(t2) ≥ ψ(t1) + Ct1(t2 − t1)

where Ct1 is a slope for each t1 ∈ I and t2 ∈ I. [Note: If ψ is differentiable at
t1 then Ct1 = ψ′(t1).] A function ψ is said to be concave if −ψ is convex (i.e.
if the inequality (2) is reversed). If it is strict for all t1 �= t2, ψ is said to be
strictly concave. Some examples of convex functions are: |t|, tk for k > 1 and
−tk for 0 < k < 1, et, t(log t)k for k ≥ 1, − log t, etc. Concave functions are tk

for 0 < k < 1, log t,
√
t for t ≥ 0 etc.

Definition 2.2 A function ϕ : [0,∞) → � is superquadratic provided that
for all t ≥ 0 there exists a constant Ct1 ∈ � such that

ϕ(t2) − ϕ(t1) − ϕ(|t2 − t1|)︸ ︷︷ ︸
extra term

≥ Ct1(t2 − t1) (3)

for all t2 ≥ 0.
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The absolute values in the definition of superquadratic functions are employed
instead of extending ϕ : [0, b) → � to be an even function.

If ϕ(u) = u2, we have the identity v2−u2−(v−u)2 = 2u(v−u) where Cu =
2u. We observe that if ϕ(u) is superquadratic and a, b ≥ 0 then ϕ(u)−(au+b)
is also superquadratic. Any function ϕ(u) satisfying −2 ≤ ϕ(u) ≤ −1 for all
u ≥ 0 is superquadratic . Some examples of superquadratic functions are up

for p ≥ 2, −up for 0 ≤ p < 2, ϕ(u) = u2 log u for u > 0 and ϕ(0) = 0 (See also
[1],[2],[3]).

3 Results and Discussion

In [8], J.E. Pecaric gave a refinement of inequality (1) as(∫ 1

0
f(t)g(t)dt

)p

≤
∫ λ

0
f(t)pdt (4)

where λ =
(∫ 1

0 g(t)dt
)p

, f : [0, 1] −→ � is a nonnegative and nonincreasing

function, g : [0, 1] −→ � is an integrable function with 0 ≤ g(t) ≤ 1 (∀t ∈ [0, 1])
and p ≥ 1.

Putting p = 1 and replace f(t) with −ψ′(t) in (4), we obtain the following
theorem:

Theorem 3.1 Let the function g : [0, 1] −→ � be continuous such that
0 ≤ g(t) ≤ 1. If ψ : [0, 1] −→ � is a convex, differentiable function with
ψ(0) = 0. Then

ψ
(∫ 1

0
g(t)dt

)
≤
∫ 1

0
g(t)ψ′(t)dt (5)

for all t ∈ [0, 1].

Proof Let ψ′(t) denote the differential of ψ(t) which is increasing and
therefore −ψ′(t) is nonincreasing for all t ∈ [0, 1]. Then by (4) we have

−
∫ 1

0
g(t)ψ′(t)dt ≤

∫ λ

0
−ψ′(t)dt

This simplifies to ∫ λ

0
ψ′(t)dt ≤

∫ 1

0
g(t)ψ′(t)dt

Thus

ψ
(∫ 1

0
g(t)dt

)
≤
∫ 1

0
g(t)ψ′(t)dt

Let us also establish a refinement of (5), in this case, by considering a
superquadratic function. We first give a lemma.
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Lemma 3.2 Suppose that ϕ is a superquadratic function and that its dif-
ferential exists. Then for all t1 ≥ 0, there exists ϕ′(t2), ϕ′(t1) ∈ � such that

ϕ′(t2) ≤ ϕ′(t1) − 2ϕ(|t1 − t2|)
t1 − t2

for all t2 ≥ 0, t1 �= t2.

Proof By definition 2.2, if ϕ is superquadratic, then

ϕ(t1) ≥ ϕ(t2) + ϕ′(t2)(t1 − t2) + ϕ(|t1 − t2|). (6)

for all t1, t2 ≥ 0. Interchanging t1 and t2, we have

ϕ(t2) ≥ ϕ(t1) + ϕ′(t1)(t2 − t1) + ϕ(|t2 − t1|) (7)

Adding inequalities (6) and (7) we obtain

0 ≥ ϕ′(t2)(t1 − t2) + ϕ′(t1)(t2 − t1) + 2ϕ(|t1 − t2|)
or

0 ≥ [ϕ′(t2) − ϕ′(t1)](t1 − t2) + 2ϕ(|t1 − t2|)
Assume that t1 > t2, then

ϕ′(t2) ≤ ϕ′(t1) − 2ϕ(|t1 − t2|)
t1 − t2

.

Theorem 3.3 Let g : [0, 1] → �, be an integrable function such that 0 ≤
g(t) ≤ 1, (∀ t ∈ [0, 1]). If ϕ : [0, 1] → � is superquadratic and differentiable
with ϕ(0) = 0, then

ϕ
(∫ 1

0
g(t)dt

)
+ 2

∫ 1

0
g(t)

ϕ(|t− ∫ 1
0 gdt|)

t− ∫ 1
0 gdt

dt ≤
∫ 1

0
g(t)ϕ′(t)dt.

Proof Let G(t) =
∫ t
0 f(x)dx ≤ t. The function g(t) is continuous and the

differential of G(t) denoted G′(t) = g(t). Let

F (t) = ϕ{G(t)} = ϕ
(∫ t

0
f(x)dx

)
. (8)

Now differentiating (8) and integrating the result, we obtain

F (1) =
∫ 1

0
F ′(t)dt =

∫ 1

0
g(t)ϕ′(G(t))dt.

⇒
ϕ
(∫ 1

0
g(t)dt

)
=
∫ 1

0
g(t)ϕ′(G(t))dt. (9)
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Apply Lemma 3.2 by letting t2 = G(t) and t1 = t, then

ϕ′(G(t)) ≤ ϕ′(t) − 2ϕ(|t−G(t)|)
t−G(t)

. (10)

Substituting (10) into (9), we obtain

ϕ
(∫ 1

0
g(t)dt

)
≤
∫ 1

0
g(t)

(
ϕ′(t) − 2ϕ(|t−G(t)|)

t−G(t)

)
dt

Therefore

ϕ
(∫ 1

0
g(t)dt

)
+
∫ 1

0
g(t)

2ϕ(|t−G(t)|)
t−G(t)

dt ≤
∫ 1

0
g(t)ϕ′(t)dt

as required.

Remark 3.4 By choosing ϕ(u) = up, for p ≥ 2, Theorem 3.3 becomes

(∫ 1

0
g(t)dt

)p

+ 2
∫ 1

0
g(t)

(|t−G(t)|)p

t−G(t)
dt︸ ︷︷ ︸

extra term

≤ p
∫ 1

0
g(t)t(p−1)dt. (11)

Remark 3.5 Consider p = 2 in Remark 3.4 and write {G2(t)}′ = 2G(t)G′(t) =
2g(t)G(t) since G′(t) = g(t). Then the extra term becomes

2
∫ 1

0
g(t)[t−G(t)]dt = 2

∫ 1

0
tg(t)dt− 2

∫ 1

0
g(t)G(t)dt

= 2
∫ 1

0
tg(t)dt−

∫ 1

0
{G2(t)}′dt

= 2
∫ 1

0
tg(t)dt−

(∫ 1

0
g(t)dt

)2

.

Thus inequality (11) becomes

(∫ 1

0
g(t)dt

)2

+ 2
∫ 1

0
tg(t)dt−

(∫ 1

0
g(t)dt

)2

= 2
∫ 1

0
tg(t)dt.

Therefore, equality is attained for p = 2.

Applications. For n ≥ 1, let g(t) = 1
2
(1 + ε sinnt) for ε = −1 or 1. Then

ϕ
(∫ 2π

0
g(t)dt

)
= ϕ(π),

∫ 2π

0
g(t)ϕ′(t)dt =

ϕ(2π)

2
− nε

2

∫ 2π

0
ϕ(t) cos(nt)dt
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Also, let g(t) = 1
2
(1 + ε cosnt) for ε = −1 or 1. Then

∫ 2π

0
g(t)ϕ′(t)dt =

ϕ(2π)

2
(1 + ε) +

nε

2

∫ 2π

0
ϕ(t) sin(nt)dt.

If ϕ is superquadratic, then

1.

ϕ(π)+
∫ 2π

0
(1+ε sinnt)

ϕ(|t−G(t)|)
t−G(t)

dt ≤ ϕ(2π)

2
− nε

2

∫ 2π

0
ϕ(t) cos(nt)dt (12)

2.

ϕ(π)+
∫ 2π

0
(1+ε cosnt)

ϕ(|t−G(t)|)
t−G(t)

dt ≤ φ(2π)

2
(1+ε)+

nε

2

∫ 2π

0
φ(t) sin(nt)dt.

(13)

Remark 3.6 Using Remark 3.5, If ϕ(t) = t2, the extra term for (12) is

∫ 2π

0
(1 + ε sinnt)(t−G(t))dt =

∫ 2π

0
t(1 + ε sinnt)dt− π2

= π2 − 2πε

n

and the extra term for (13) is

∫ 2π

0
(1 + ε cosnt)(t−G(t))dt =

∫ 2π

0
t(1 + ε cosnt)dt− π2

= π2

Thus, (12) attains equality

π2 + π2 − 2πε

n
= 2π2 − nε

2

(
4π

n2

)

and (13) also attains equality

π2 + 2π2 − π2 = 2π2(1 + ε) +
nε

2

(−4π2

n

)

for ε = −1 or 1.
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4 Conclusion

A refinement of the Steffensen’s inequality is thus presented. As well, su-
perquadratic functions are discussed and established for the new Steffensen’s
inequality (5). This led to the applications of the results in superquadratic
form.
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