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Abstract 

In this paper, we present a refined Steffensen’s inequality for convex 

functions and further prove some variants of Jensen’s inequality using the 

new Steffensen’s inequality. 
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1. Introduction 

The inequality 

( ) ( ) ( ) ( )∫ ∫ ∫λ−

λ+
≤≤

b

b

b

a

a

a
dxxgdxxfxgdxxg  (1) 

was discovered in 1918 by Steffensen [10], where ( )∫=λ
b

a
dxxf ,  f and g are 

integrable functions defined on ( ),, ba  g is decreasing and ( ) 10 ≤≤ xf  for each 

( )., bax ∈  See also [6], [7], [8] and [9]. 

Let I be an interval in .R  If R→ψ I:  is convex, then for all ,1x  Ix ∈2  and 

all positive numbers 1a  and 2a  satisfying ,121 =+ aa  we have 

( ) ( ) ( ).22112211 xaxaxaxa ψ+ψ≤+ψ  

Jensen [3] proved the inequality 
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where ψ is convex on an interval containing the real variables nxxx ...,,, 21  and 

( )niai ≤≤1  are positive weights such that ∑ =
=

n

i ia
1

.1  

Mercer [5] proved the inequality 

( ) ( ) ( )∑∑
==

ψλ−ψ+ψ≤
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1

1
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where ψ is convex on an interval containing the real variables nxxx ...,,, 21  with 

( )njj ...,,110 =<λ<  such that ∑ =
=λ

n

j j1
.1  

The inequality (3) was first published by Mercer in 2003 as a variant of Jensen’s 

inequality. One year later, Witkowski simply recovered the inequality in [11]. 

Thereafter, the inequality went through various refinements and generalizations. See 

for instance Matković [4] and the references therein. 
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The aim of this short note is to first provide a further proof of the following 

refined Steffensen’s inequality (4) established in [2] and also recover the inequality 

(3) through the new inequality (4). Furthermore, another variant of the Jensen’s 

inequality will be provided. 

2. Preliminary Results 

The following auxiliary results are presented. 

Theorem 2.1 [2]. Let ( ) 10 ≤≤ xf  and [ ] R→ψ 1,0:  be a convex and 

differentiable function with ( ) .00 =ψ  If [ ] R→1,0:f  is continuous, then 

( ) ( ) ( )∫∫ ψ′≤







ψ

1

0

1

0
dxxxfdxxf  (4) 

for all [ ].1,0∈x  

Proof. Let ( )xψ′  be the derivative of ( ).xψ  Then ( )xψ′  is an increasing 

function on the interval [ ]1,0  since ( )xψ  is an increasing function on [ ].1,0  This 

implies that ( )xψ′−  is decreasing. Then by making the substitution ( ) ( ),xxg ψ′−=  

0=a  and 1=b  into (1) yields 

( ) ( ) ( ) ( )∫ ∫ ∫
λ

λ−
ψ′≤ψ′≤ψ′

0

1

0

1

1
,dxxdxxxfdxx  

which simplifies to 

( ) ( ) ( ) ( ) ( ) ( )∫ λ−ψ−ψ≤ψ′≤ψ−λψ
1

0
.110 dxxxf  (5) 

Since ( )∫=λ
1

0
dxxf  and ( ) ,00 =ψ  the first part of inequality (5) yields the 

required result 

( ) ( ) ( )∫∫ ψ′≤







ψ

1

0

1

0
.dxxxfdxxf  

Proposition 2.2 ([1], p. 62.). Let nf  be a sequence of functions. If ffn →  in 

,
1

L  there is a subsequence 
jnf  such that ff

jn →  almost everywhere (a.e.). 
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3. Main Results 

This section begins as follows: 

Theorem 3.1. Let [ ]( )1,01Lf ∈  with ( ) 10 ≤≤ xf  for all [ ].1,0∈x  If 

[ ] R→ψ 1,0:  is a convex and differentiable function with ( ) ,00 =ψ  then 

( ) ( ) ( )∫∫ ψ′≤







ψ

1

0

1

0
.dxxxfdxxf  (6) 

Proof. Let ffn →  in .1L  Then by Proposition 2.2, there is subsequence 

,ff
jn →  a.e.. Let there exists 1Lh ∈  such that ( ) ( ).xhxf

jn ≤  Then by the 

dominated convergence theorem, 1Lf ∈  and 

( ) ( )∫ ∫∞→
=

1

0

1

0
.lim dxxfdxxf

jn
n

 

By the boundedness of ( )xψ′  on [ ],1,0  we have 

( ) ( ) ( ) ( ) 1Lxxhxxf
jn ∈ψ′≤ψ′  

which implies that 

( ) ( ) ( ) ( )∫ ∫ ψ′=ψ′
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 (7) 

Since nf  is continuous, then by (4), we have 

( ) ( ) ( )∫∫ ψ′≤
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which yields the required result 

( ) ( ) ( )∫∫ ψ′≤
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.dxxxfdxxf  

Example 3.2. Let ( ) .xex =ψ  Then ( ) .xex =ψ′  Thus 

( ) ( ) ( )∫∫ ≤
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Example 3.3. Let 
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where ,10 21 <<<<< nbbb �  00 =x  and .1=nx  Since 

( ) ( ) ( )∫
−
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then by (6), we obtain 
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=
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Theorem 3.4. Let the function ψ be convex and differentiable on an interval 

containing an n-tuple ( )nxxx ...,,1=  such that 10 21 ≤≤≤≤< nxxx �  and 

( ),...,,1 naaa =  a positive n-tuple with ∑ =
=

n

j ja
1

.1  If ( ) ,00 =ψ  then 

( ) ( ) ( )∑∑
==

ψ−ψ+ψ≤













−+ψ

n

j

jjn

n

j

jjn xaxxxaxx
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Proof. Consider ( )nja j ≤≤<< 110  such that ∑ =
=

n

j ja
1

.1  Let =nb  

∑
−

=
=−

1

1
,1

n

j jn aa  such that 12 ab =  and .11 =b  Expansion of inequality (8) 

yields 

( ) ( ) ( ){ }1122011 −−++−+−ψ nnn xxbxxbxxb �  

( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ].1122011 −ψ−ψ++ψ−ψ+ψ−ψ≤ nnn xxbxxbxxb �  
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Since 00 =x  and ( ) ,00 =ψ  

( ) ( ) ( ){ }nnnnn xbxbbxbbxbb +−++−+−ψ −− 11232121 �  

( ) ( ) ( ) ( ) ( ) ( ) ( ).11232121 nnnnn xbxbbxbbxbb ψ+ψ−++ψ−+ψ−≤ −−�  

Substitute ,1 121 abb −=−  nn ab −= 1  and ( )1+−=− jjj bba  for ,1...,,2 −= nj  

we get 

( ) ( )
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( ) ( ) ( ) ( ) ( )∑
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Hence 

( ) ( ) ( )∑∑
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Remark 3.5. It is observed that 

11 −− −= nnn bba  

212 −−− −= nnn bba  

�  

232 bba −=  

.1 121 bba −=−  

Thus 

1121 1 bbaaa nnn −=−+++ −− �  

.11 −−= na  

Therefore, 
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.1  



A NOTE ON SOME VARIANTS OF JENSEN’S INEQUALITY 

 

69 

Next is a Lemma before another variant of the Jensen’s inequality. 

Lemma 3.6. Let ( )xψ  be a convex and differentiable function on an interval I 

of real numbers. If ( ) ,00 =ψ  then 

( ) ( ) ,xxx ψ′≤ψ  (9) 

for all .Ix ∈  

Proof. Let ., Iyx ∈  Since ψ is differentiable. Then by the definition of 

convexity, we have 

( ) ( ) ( ) ( ).xyxxy −ψ′≥ψ−ψ  

Putting 0=y  and ( ) ,00 =ψ  we obtain 

( ) ( ) ,xxx ψ′≤ψ  

for all .Ix ∈  

Theorem 3.7. Let ψ be a convex and differentiable function on an interval 

containing an n-tuple ( )nxxxx ...,,, 21=  such that .10 21 ≤≤≤≤< nxxx �  If 

( ) 00 =ψ  and ∑ =
=

n

j ja
1

1  for ,10 << ja  then 
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Proof. Recall from (2) that 
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Then substitution of (9) into (11) yields the required result 
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.  

Remark 3.8. The inequality (10) is reversed if  ψ is concave. 
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Illustrative Example. Consider the convex function ( ) ,pxx =ψ  ,1>p  

,0>x  then (10) becomes 

∑∑
==

≤
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For ,2=p  we have 
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4. Conclusion 

This paper proved a refined Steffensen’s inequality for convex functions. The 

Jensen-Mercer’s inequality was also proved in this paper through exemplification of 

the refined Steffensen’s inequality. A further variant of the Jensen’s inequality was 

provided. 
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