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Abstract 
 

This paper explores the history and properties of the Gamma function with some analytical applications. 
Specifically, the Gamma function is employed to prove the legitimacy of the Standard Normal 
Distribution and for evaluation of some integrals involving the Laplace and Fourier Transforms using 
very simple techniques. Moreover, this paper demonstrates that the Gamma function is not a mere 
formula and proof in itself but rather an essential tool for applications in evaluating integrals that occur in 
practice and also in simplifying proofs of some other important identities and theorems in mathematics. 
 

 
Keywords: Gamma function; applications; standard normal distribution; Laplace and Fourier transforms. 
 

1 Introduction 
 
Many special functions arise in the consideration of the solutions of several differential equations. Special 
functions are some essential functions that are important enough to be given their own name. These include 
the well-known logarithmic, exponential and trigonometric functions, and extend to cover the Gamma, beta 
and zeta functions, spherical and parabolic cylinder functions, and the class of orthogonal polynomials, 
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among many others. The vast field of these functions contains many formulae and identities used by 
mathematicians, engineers and physicists. Special functions have extensive applications in pure 
mathematics, as well as in applied areas such as acoustics, electrical current, fluid dynamics, heat 
conduction, solutions of wave equations, moments of inertia and quantum mechanics [1-3]. At the heart of 
the theory of special functions lies the Gamma function, in that nearly almost all of the classical special 
functions can be evaluated by this powerful function. Gamma functions have explicit series and integral 
functional representations, and thus provide ideal tools for establishing useful products and transformation 
formulae. In addition, applied problems frequently require solutions of a function in terms of parameters, 
rather than merely in terms of a variable, and such a solution is perfectly provided for by the parametric 
nature of the Gamma function. As a result, the Gamma function can be used to evaluate physical problems in 
diverse areas of applied mathematics. While the Gamma function's original intent was to model and 
interpolate the factorial function, mathematicians and geometers have discovered and developed many other 
interesting applications thus  playing  a  particularly  useful  role  in applied mathematics. Equations 
involving Gamma functions are of great interest to mathematicians and  scientists,  and  newly  proven  
identities  for  these  functions  assist  in  finding solutions for many differential and integral equations. 
There exist a vast number of such identities, representations and transformations for the Gamma function, 
the comprehensive text [4] providing over 400 integral and series representations for these functions. 
Gamma functions thus provide a rich field for ongoing research, which continues to produce new results. In 
1959, in [5], It was stated that “of the so-called ‘higher mathematical functions’, the Gamma function is 
undoubtedly the most fundamental”. For instance the rising factorial provides a direct link between the 
Gamma and hyper-geometric functions, and most hyper-geometric identities can be more elegantly 
expressed in terms of the Gamma function. In [6], it is stated clearly that, “the Gamma function and beta 
integrals are essential to understanding hyper-geometric functions.” It is thus enlightening and rewarding to 
explore the various representations and relations of the Gamma function.  
 
The aim of this paper is to trace a brief history of the development of the Gamma function and illustrate its 
applications in the proofs of some useful properties and identities in mathematics and statistics. 
 

2 Materials and Methods  
 
This section presents some very relevant definitions for this work. 
 
Definition 1: (The Gamma function) 
 

The Gamma function,  commonly referred to as Euler’s integral is defined as  

 

                                                                                          
(1.1) 

 
See [7-9] for further discussions on Gamma functions. 
 
The central relation is given (see [10]) as  
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Prym was the first to investigate these functions in 1877 and so 

or sometimes referred to as the complementary incomplete Gamma functions.
 
Note that  
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The integral  converges for real 

(See [11] for further details on Incomplete Gamma Functions.)
 
Another very important topic considered in this paper is the standard normal distribution (Fig. 1) which is a 
special type of the normal distribution with mean equal to zero and the variance equal to one 
 
Definition 2: Let  be an absolutely continuous random variable. Then
normal distribution if its probability density function is
 

 
(See [12, p.167]). Then by (1.3) we have
 

 
The integral (1.4) is the total area bounded by the curve of the standard normal distribution and the 
horizontal axis which is equal to 1 (Fig. 1). 
 
Remark 1 
 
The property (1.4) means that the probability of the entire sample space occurring is certain. O
property is satisfied for a probability distribution then the distribution is said to be legitimate.
 
Definition 3: (Moment Generating Function)
 
The moment generating function of a standard normal random variable Z is defined for any 
 

.    
 
See [12] and the references therein. 

( ) ( ),0β βΓ = Γ

( ) ( ) (, ,x xγ β β β+ Γ = Γ

0x ≥ 0β >

( )1, xx e−Γ = ( )1, 1x eγ

( ), xβΓ

Z

2

1
exp

2

1
)( 2



−= zzf
π

2

1
)( = ∫∫

∞

∞−

−∞

∞−
edzzf

π

( ) ( ) 2
2

1 ttz
Z eeEtM ==

Iddrisu and Tetteh; JAMCS, 23(3): 1-16, 2017; Article no.JAMCS.34779

Prym was the first to investigate these functions in 1877 and so has been called Prym’s functions 

or sometimes referred to as the complementary incomplete Gamma functions. 

 

. 

converges for real  and the integral  converges for  

] for further details on Incomplete Gamma Functions.) 

Another very important topic considered in this paper is the standard normal distribution (Fig. 1) which is a 
he normal distribution with mean equal to zero and the variance equal to one (

be an absolutely continuous random variable. Then is said to have a 
if its probability density function is given as 

.                                                                       

, p.167]). Then by (1.3) we have 

.                                                                                    

The integral (1.4) is the total area bounded by the curve of the standard normal distribution and the 
horizontal axis which is equal to 1 (Fig. 1).  

The property (1.4) means that the probability of the entire sample space occurring is certain. O
property is satisfied for a probability distribution then the distribution is said to be legitimate. 

Moment Generating Function) 

The moment generating function of a standard normal random variable Z is defined for any 

.                                                                                                             

( ), xβΓ

)γ β β β

)1, 1 xx e−= −

β ( ), xγ β 0β >

Z

Z

,2




z−∞ < < ∞

1
2

2

1

=dz
z

t ∈ℜ

 
 
 

; Article no.JAMCS.34779 
 
 
 

3 
 
 

has been called Prym’s functions 

 for all . 

Another very important topic considered in this paper is the standard normal distribution (Fig. 1) which is a 
). 

is said to have a standard 

                                                                  (1.3) 

                                                                  (1.4) 

The integral (1.4) is the total area bounded by the curve of the standard normal distribution and the 

The property (1.4) means that the probability of the entire sample space occurring is certain. Once this 

 by 

                                                                                                         (1.5) 

0x >

( )10,~ NZ

t ∈ℜ



 
 
 

Iddrisu and Tetteh; JAMCS, 23(3): 1-16, 2017; Article no.JAMCS.34779 
 
 
 

4 
 
 

Definition 4:  (Laplace Transforms) 
 
The Laplace transform of a function   denoted by  is defined as 

 

                                                                                                        (1.6) 

 
where  is a parameter of the transform. See [13]. 
 

 
 

Fig. 1. The standard normal distribution curve 
 
Remark 2 
 
The defining equation for the Laplace transform is an improper integral. The existence of the Laplace 
transform of f  depends upon the existence of the limit. If the limit exist then the integral (1.6) is said to 
converge. If the limit does not exist then the integral is said to diverge and in that case there is no Laplace 
transform for f. 
 
Another consideration is the Fourier transform of a function . This can be defined in 

several ways. In our case, we consider the integral representation.  
 
Definition 5 : (Fourier transforms as integrals) 
 

 Let . The Fourier transform of , denoted by , is defined by  
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3 Results and Discussion 
 
The main focus of this paper is to present some applications of the Gamma function in the evaluation of 
some integrals. Here, we demonstrate the use of the Gamma function in the proof of the legitimacy of the 
standard normal distribution as a probability density function; in finding the Laplace transform and the 
Fourier transform of continuous functions on .   
 

3.1 The standard normal distribution  
 
This section presents a clear proof of a special property of the normal distribution called the legitimacy of 
the standard normal distribution. In this proof, the concept of the Gamma function is applied. Thus a step by 
step approach is used to write the standard normal distribution in the form of the Gamma function. 
 
We begin the proof of (1.4) as follows: 
 
Let the probability density function be 
 

 where .                                                       (1.8) 
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This transforms (1.9) to 
 

 

                                                                                               (1.10) 

Equation (1.10) is obtained through the application in simple manner of the Gamma function (1.1).  
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3.2 Moment generating function 
 
One of the important properties of the standard normal distribution is its moment generating function. Again, 
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To evaluate the integral, apply change of variables. 
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We will find the Laplace Transforms of some functions which are very useful when solving problems in 
science and engineering using the Gamma function. We demonstrate the application for three different 
functions and the idea can be employed for many other cases: 
 
Proposition 1 
 

Let  be a continuous functions on . The following are the Laplace transforms of the given functions. 
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Then substitute for the Gamma function in (1.18) to obtain 
 

 

 

 

 
as required. 
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Also let Then  

 
When and as  Thus (1.22) becomes 
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 We begin with the popular one-sided decaying exponential which is defined as 
 

 

 
Proposition 2 
 
The Fourier transform of the one-sided decaying exponential is 
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We prove this transformation with a simple technique associated with the Gamma function. 
 
Proof  
 
Write 
 

 

 

 

 

                                                                                                   (1.23) 

 
Apply change of variables:  
 

Let Then  

 
When and as  Equation (1.23) then becomes 

 

 

                                        

 
 

Gamma function (1.1) is then applied to yield 
 

              

 

Since , thus 

 

             

 
As required. 
 
The next to consider is the one-sided growing exponential which is defined as  
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Proposition 3 
 
The Fourier transform of the one-sided growing exponential is 
 

 .                                                                                                          (1.24) 

 
Proof 
 
By definition we have 
 

     

 

 

 

                                                                                                 (1.25)                           

 

Apply change of variables by letting Then  

 

When and when  

 
 
Thus (1.25) becomes 
 

 

                      

                                                                                   (1.26) 

 
Comparing (1.26) to the Gamma function (1.1) yields  
 

 

 
Which simplifies to 
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The next consideration is the double-sided exponential which is defined as 
 

. 

 
Proposition 4 
 
The Fourier transform of the double-sided exponential is 
   

. 

 
Proof 
 
Write 
 

                                                     (1.27) 

 
Note that  
 

              

 
Thus (1.27) becomes 
 

 

                 

                 

                                 

                                                                            (1.28) 

 Let Then  
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When and when  
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Equation (1.28) then becomes 
 

 

                                                                 

                                                   (1.29) 

 
Comparing (1.29) to the Gamma function (1.1) yields  
 

 

 

 

                                                                    
Which simplifies to 
 

 

 

. 

 

4 Conclusion 
 
The Gamma function has been studied and presented with illustrative examples to demonstrate its 
usefulness. It was applied in establishing the legitimacy of the probability density function of a standard 
normal distribution and also used to derive the moment generating function of a standard normal 
distribution. The Laplace and Fourier transforms of some common functions were obtained with the 
application of the Gamma function. This makes the Gamma function a powerful tool in solving some 
mathematical problems.  
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