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Abstract

This paper explores the history and properties of the Gafuneéion with some analytical applicatior
Specifically, the Gamma function is employed to prove kbgitimacy of the Standard Normal
Distribution and for evaluation of some integrals involvihg Laplace and Fourier Transforms using
very simple techniques. Moreover, this paper demonstratgstile Gamma function is not a mere
formula and proof in itself but rather an essential tookfiplications in evaluating integrals that occur in
practice and also in simplifying proofs of some other impoitietitities and theorems in mathematics

Keywords: Gamma function; applications; standard normal distrdyytLaplace and Fourier transforms.
1 Introduction

Many special functions arise in the consideration of thatieols of several differential equations. Special
functions are some essential functions that are impogtasugh to be given their own name. These include
the well-known logarithmic, exponential and trigonomettindtions, and extend to cover the Gamma, beta
and zeta functions, spherical and parabolic cylinder funstiand the class of orthogonal polynomials,
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among many others. The vast field of these functions ecmntanany formulae and identities used by
mathematicians, engineers and physicists. Special functitne extensive applications in pure
mathematics, as well as in applied areas such as acousfécstical current, fluid dynamics, heat
conduction, solutions of wave equations, moments of inentiagaantum mechanics [1-3]. At the heart of
the theory of special functions lies the Gamma functionhat hearly almost all of the classical special
functions can be evaluated by this powerful function. Garfunations have explicit series and integral
functional representations, and thus provide ideal tools fablksttiing useful products and transformation
formulae. In addition, applied problems frequently requalkitions of a function in terms of parameters,
rather than merely in terms of a variable, and such a soligiperfectly provided for by the parametric
nature of the Gamma function. As a result, the Gammaitumcan be used to evaluate physical problems in
diverse areas of applied mathematics. While the Garfunetion's original intent was to model and
interpolate the factorial function, mathematicians andrggers have discovered and developed many other
interesting applications thus playing a particularlyefuls role in applied mathematics. Equations
involving Gamma functions are of great interest to matheimas and scientists, and newly proven
identities for these functions assist in findingusohs for many differential and integral equations.
There exist a vast number of such identities, represensatind transformations for the Gamma function,
the comprehensive text [4] providing over 400 integral anéesaepresentations for these functions.
Gamma functions thus provide a rich field for ongoing reseavhith continues to produce new results. In
1959, in [5], It was stated that “of the so-called ‘higheatimematical functions’, the Gamma function is
undoubtedly the most fundamental”. For instance the risingpriat provides a direct link between the
Gamma and hyper-geometric functions, and most hyper-geonidentities can be more elegantly
expressed in terms of the Gamma function. In [6], it itedtalearly that, “the Gamma function and beta
integrals are essential to understanding hyper-geometriadogctlt is thus enlightening and rewarding to
explore the various representations and relations of ther@ammction.

The aim of this paper is to trace a brief history ofdbgelopment of the Gamma function and illustrate its
applications in the proofs of some useful properties antitaes in mathematics and statistics.

2 Materialsand Methods

This section presents some very relevant definitions fenibrk.

Definition 1: (The Gamma function)

The Gamma functiod, (,8) commonly referred to as Euleregral is defined as

r(B) :j:tﬁ‘le“ d, B>0. (1.2)

See [7-9] for further discussions on Gamma functions.

The central relation is given (see [10]) as
r(B+1)=B8r1(B8)=p! B>0. (1.2)

Now splitting the integral (1.1), fot= 0 , yields two incoraf Gamma functions:

y(B.x) = JX' et dt,

0

r(B,x) :'[t‘He't dt

X
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Prym was the first to investigate these functions in 18i7sa[ (,8, X) has been called Prym’s functio
or sometimes referred to as the complementary incom@latema function

Note that
r(8.0)=r(s)
and
y(B.X)+T(B.x) =T (B)
forall x>0 and3>0 . Also
M(Lx)=€* andy(1,x)=1-€*.
The integrall” (3, X) converges for rez 3 and the integraf(3,X) converges f¢f > O for all X>0.

(See [1] for further details on Incomplete Gamma Functic

Another very important topic considered in this papehésstandard normal distribution ((Fig. 1) ethis a
special type oftte normal distribution with mean equal to zero and the megia@qual to on(Z ~ N(01)).

Definition 2: Let Z be an absolutely continuous random variable. = Z is said to have standard
normal distributiorif its probability density function given as

1 1.,
f(z):Eex;{—Ez } —0<Z<o00. (1.3)

(See [12p.167]). Then by (1.3) we he

00 1 00 —122
f(2dz=——=| e ? dz=1. (1.4)
j—oo [277-.'.—00

The integral (1.4) is the total area bounded by the cofvéhe standard normal disstribution and
horizontal axis which is equal to 1 (Fig.
Remark 1

The property (1.4) means that the probability of the ersinmple space occurring is (certaince this
property is satisfied for a probability distribution thtee distribution is said to be legitime

Definition 3: (Moment Generating Functic

The moment generating function of a standard normal randoiaible Z is defined for art 1] by

M, (t)=E(e?)=e?" (1.5)

See [12] and the references therein.



Iddrisu and Tetteh; JAMCS, 23(3): 1-16, 2017; Adino.JAMCS.34779

Definition 4: (Laplace Transforms)

The Laplace transform of a functidn:[0,00) - [0  denotedpyf](a) defined as
L[ f](a) = j: f(t) e dt
A (1.6)
- -at
F(a)= m{ f(t)e " dt

wherea J0J is a parametef the transform. See [13].

0.4 |

02+

=

Fig. 1. The standard normal distribution curve
Remark 2
The defining equation for the Laplace transformars improper integral. The existence of the Laplace
transform off depends upon the existence of the limit. If tingitlexist then the integral (1.6) is said to

converge. If the limit does not exist then the gné is said to diverge and in that case thereifaplace
transform forf.

Another consideration is the Fourier transform ofuaction f :[0,00) — C . This can be defined in
several ways. In our case, we consider the integpksentation.

Definition 5 : (Fourier transforms as integrals)

Let f:[0 — C . The Fourier transform off [ Ll(R) , denoted Fy[ f ] ([)] , is dedi by

1 w

FIf](t)= EI‘” f (x) e (™) dx (1.7)

for tJR for which the integral exists. (See [14]).
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3 Results and Discussion

The main focus of this paper is to present somédiggtipns of the Gamma function in the evaluatidn o
some integrals. Here, we demonstrate the use oB#rema function in the proof of the legitimacy bét
standard normal distribution as a probability dgn&iinction; in finding the Laplace transform artet
Fourier transform of continuous functions [ o)

3.1 The standard nor mal distribution

This section presents a clear proof of a specigpgnty of the normal distribution called the legiéicy of
the standard normal distribution. In this proo& #oncept of the Gamma function is applied. Thssep by
step approach is used to write the standard nadisgibution in the form of the Gamma function.

We begin the proof of (1.4) as follows:

Let the probability density function be

f(2) = %ex{—%zz} where—0 < z< o0 (1.8)

Then
00 1 00 —EZ2
f(2)dz=—| e ? dz
J‘—oo ( ) [2]7-.'.—00

=i '[Oe_izzdz+'|me_;zzdz

—00 —EZ2 00 —EZZ
—IO e? dz+'|'O e? dz

1
Vo
1 0 —EZZ 00 —EZZ
:E JO e? dZ+J.0 e? dZ]
1 (= 57

E 2J‘O e? dZJ

0 —122
(J'O e 2 dzj . (1.9)

To evaluate the integral (1.9), apply change ofades and substitute for the Gamma function.

. %
Letu=EZ2 . Thenz=+/2u impliesdz=u—du

V2

Now, whenz=0, u=0 andag — o, U - o0,
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This transforms (1.9) to

Tf(z)dz:% j: é“%d :%(j:e'm‘%du)

_ 1 e %‘1 Cu
——f u’?2e"du

‘/1’_7 ’ (1.10)
=3

N

Equation (1.10) is obtained through the applicatiosimple manner of the Gamma function (1.1).

Sincel” (%) =Jr [13, p.152], hence
J tde=pr (1) =1

—00

as required.

3.2 Moment generating function

One of the important properties of the standardnabdistribution is its moment generating functidgain,
we apply the Gamma function to obtain the momenegating function of the standard normal distribnti

Definition 6

The moment generating function of a standard noraredom variableZ is defined for aftiy1[] as

2
M, (t) = E(e?) =€ (1.11)
We want to establish this result (1.11) with a demgpplication of the Gamma function.

By definition

E(éZ):T & f(3dz M() (1.12)
Then

1 e, 22
M, (t) = E(e‘z)=mj_me‘ze 2 dz

:%J.:oe —Ezzjdz \/_J:w z th
Iwe_ [y sz J ezzt)zeétzdz
r - "7
= jz_j e g, (1.13)
o
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To evaluate the integral, apply change of variables

LetU=Z-1. Thendu=dz Asz - —©, U - —o andag — ®©, U — %, Thus (1.13) becomes

= e? du (1.14)

Since the normal distribution is symmetric abowt thigin, integrating under the entire curve is shene as
integrating from zero to positive infinity and miplying by 2. Thus (1.14) yields

1,

P
M, (1) =22 ["e? du (1.15)

Applying change of variables again and substitatelie Gamma function:

Let X=%u2. Then u:\/g and duzgx_%dx Now u=0, X=0 and as

U - o, X — oo, Thus, (1.15) becomes

2
M, 2e J'\/_ %e'xdx

Etz

_ﬁ xyze dx
Mz(t)—ﬁ Ox% e

Hence

e2 ei }tz
M, (t)==—=T == =e?
=Tr ) = =

as required.

3.3 Laplacetransforms

Pierre Simon de Laplace was a French mathematistam lived during 1749-1827, and was essentially
interested to describe nature using mathematics.main idea behind the Laplace Transformation & th
one can solve an equation (or system of equatmm#pining differential and integral terms by trfamming

the equation in "t-space" to one in "s-space". Thakes the problem much easier to solve. The kind o
problems where the Laplace transform is invalualslyurs are in electronics.
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We will find the Laplace Transforms of some funn8owhich are very useful when solving problems in

science and engineering using the Gamma functioe.démonstrate the application for three different
functions and the idea can be employed for mangratases:

Proposition 1

Let f be a continuous functions dd . The followimg the Laplace transforms of the given functions.
iy f(t)=t"e™, L{flt :L, s>a
0] () { ()} (S_a)n+1
iy f(t)=€esinwt, L{f(t :;, s>a
i f(t) 1Y i e
f t - at Sa)t — S—a
iy f(t)=€*coswt, L{f(t)} v s> a,
wherea 10 .
Pr oof
(i) By definition 3 we have
L{t”ea‘}z F(s) = I:t“eat e*'dt
F(s)= t" et tdt (1.16)
Apply change of variables.
Let u:(s—a)tc» t=Lu Then dt=Ldu. Now t=0, u=0 and as
(s-a) (s-a)
t - o, U - 0, So(1.16) becomes
el u Y\ 1
F(s)—j0 (s—a) e (s—a)du
F(s):j“’#m” =01 du
o (s-a) }s—a)
1 o -
F(s)= 7z u"edu ()17

(s-a)
We then re-arrange (1.17) in a way that we canyaghyel Gamma function. That is:

— 1 ® (n+1)-14-u
F(S)_—(s—a)”*ljou edu (1.18)
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Then substitute for the Gamma function in (1.18)ltain

I S
F(S) - (S_a)n+1 r( 1)

n
(S— a)n+1 !

F(s)= s>0

as required.

(i) By definition 3 we have
at i _ — (" qat o -st
L{e smwt}— F(s) —jo e’ sinat e dt

F(s)= j:sincut elakgt (1.19)

%(eim _ e—iax) e—(s—a)tdt

9=
F(s)= % :{eiw lsak _ griaa e—(s—a)t}d )

F(s)= ?]‘I j: {e-[(s—a)—i ot _ glls-a “’]t}d .
F(s)= %[ J‘:’ alls-akialt g J': ollsalial g t] .

Apply change of variables:

Letu=[(s-a)-ia]t = t:mu. Then dt:mdu.
Alsoletv=[(s—a)+ia]t - t=mv. Then dt:mdv.

Whent=0, u=v=0 andag - ®©, U=V - oo,

Thus (1.20) becomes

F<s)=ﬂf§°  Gemaymia @b W“’}
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_1f L “etdu- L “e™dv
I:(S)_E_|(s—a)—ia)|-|.0 d |(s—a)+ia)|jo d }
I:(S):Z_li_ (s—al)—ia) I:Ul_le_Udu_ (s—a1)+ia) J:Vl_le_VdV}

S I ) P
‘z[[(s-a)-iw}r(l) (s m}r(l)}

Sincel (1) =0!=1, we have

(iii) By definition 3 we have;

L{eat coswt} =F(s) = j: e cosat e*'dt

F(s)= j: cosat €2 dt

(1.21)
R ST
(=2 e v oo
F(s)= % f:{e'[(s'a)'i o 4 glo-ahak
= (s) = %[ J‘: ells-akriak gt 4 I: olls-aick dt} 122

Apply change of variables:

=(ls—a)-iwft = t= 1 u. Thendt= L u.
Letu—[( ) ]t t w hen dt W}]d

10
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psorerv=(s-a)+iak =t Tenat= Y

Whent=0, u=v=0 andag - ©, U=V - c. Thus (1.22) becomes

“e L +[Te L Y
_-[0 © i(s—a)—ia)| ol IO (s-a)+iw m }
4 ! “edu+ L “e™dv

3 e el
— 1_ 1 e tdy + 1 °°V1—1e—v v
I:(S)_§_|(s—a)—ia)|~[0u e du |(s—a)+ia)|J.0 d}

F(S):%:|(s—al)—iw| T |(s—a1)+ia)| F(l)}

sincel(1)=0!=1 and® =-1 , we have

I I S
F(S)‘E_[(s—a)—iw] [(s-a)“wﬂ

[(s—a)+iw]+[(s—a)—iw]} ___s-a_
(s-a)’ - (iw) (s-a)" +af

3.4 Fourier transform

There are several ways to define the Fourier toansbf a function f : R — C . In this section, we adopt

the integral representation as in definition 4 asd to prove the established results with the egipin of
the Gamma function.

We begin with the populame-sided decaying exponentiahich is defined as

f(t)z{ (1, t<0

e, t=20

Proposition 2

The Fourier transform of the one-sided decayingagptial is

F[f](x):m.

11
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We prove this transformation with a simple techeiggsociated with the Gamma function.
Pr oof

Write

F)(x)

Sl
N

[ f)etdt

F[£](x)= % f: ete ™dt

R T P
——ETJ.O e dt 43)

Apply change of variables:

Letu=(ix+1t = t=-—— u. Thendt= du,

1
(ix+1) (ix +2)

Whent=0, u=0 andag — o, U - o, Equation (1.23) then becomes

1 -~
v

- 1 ® la-u
A= ez b e

Gamma function (1.1) is then applied to yield

Flrl =T

Sincel (1) =0!=1, thus

F[f](x):m

As required.

The next to consider is tlmme-sided growing exponentiabhich is defined as

=13 oo

e, t=0

12
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Proposition 3

The Fourier transform of the one-sided growing egial is

_ 1
F[f](X)— (IX—l)\/ZT :
Pr oof
By definition we have
FL](x) TI f (t)e *dt
Flf](x) TI g

ﬁ\

L el

Apply change of variables by letting = (iX —l)t = t=

Whent=0, u=0 andwheri — o, U - oo,

Thus (1.25) becomes

F[f](x):mfe'“du

-1 Jm u e du

(ix-2)v/277°

Comparing (1.26) to the Gamma function (1.1) yields

QU el

Which simplifies to

Fhkﬁza;jizﬁ.

ix-1"

Thedt =

(x-1)

du.

(1.24)

(125

(1.26)

13
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The next consideration is tld®uble-sided exponentialhich is defined as
f(t)=¢e, Oot.

Proposition 4

The Fourier transform of the double-sided exporéigi

A= 2

1+x2\m
Pr oof
Write
F[f](x)= ir’ f (t)e ™dt = ir’ e e dt (1.27)
Note that
_ t, t>0
|t|_ -t, t<0

Thus (1.27) becomes

F[f](x)= i{[_Ome‘ e gt + .[: et e‘(‘x‘)dt}

2m
_ 1 {[Oe(l—ix)tdt + J'°° e—(ix+1)tdt}
2T v 0
_ 1 77 St ® (ix+Dt
_E{ .[O (S) dt+.[0 e d
1 [ e g [0 (i)
= [retran |7 ¢
- L retetgrs r’e‘(l“x)tdt} (1.28)
277- 0 0
Let u=(ix+1t t=-1 U Thendt=—> du
(ix+2) (ix +2)

Also |etv=(1—iX)t . tz(l——lix)v. Thendt:—(l_lix)

Whent=0, u=v=0 andwhert - ©, U=V - oo,

dv.

14
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Equation (1.28) then becomes
_ 1 ® 4-u Y
F[f](x)—ﬁ{[O e du+J'O e dv}

_ 1 1 © lamu +;°° -1,V
F[f](x)_ﬁ{mjo uledu (1—ix)jovl e dv} (1.29)

Comparing (1.29) to the Gamma function (1.1) yields

(0= oy ")

F[f](x)= \/;—ﬂ{(ilerl)Jr(l—lix)}

Which simplifies to

=2

A= 2

4 Conclusion

The Gamma function has been studied and presentdd ilustrative examples to demonstrate its
usefulness. It was applied in establishing thetilmgicy of the probability density function of a stiard
normal distribution and also used to derive the moimgenerating function of a standard normal
distribution. The Laplace and Fourier transformssofme common functions were obtained with the
application of the Gamma function. This makes them@a function a powerful tool in solving some
mathematical problems.
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