Sensitivity Analysis of a Mixed Integer Linear Programming Model For Optimal Hydrothermal Energy Generation For Ghana

Christian John Etwire, Stephen B. Twum

Abstract: This paper examines further a Mixed Integer Linear Programming model constructed for optimal hydrothermal energy generation for Ghana as in [1]. Post Optimal Analysis is carried out on the model in order to assess its stability to slight variations of some input parameters such as minimum level running costs, extra hourly running costs above minimum level and start up costs of each generator on one hand and load demands and reserve margins on the other. The results show that the firm could minimize its cost of power generation if its input parameters were comparable to those lying between the 10 percent and -10 percent range. The10 percent and -10 percent range yielded a range of investment plans for the firmand also provided a basis for the selection of the best optimal solution.

Keywords: Stability, Post Optimality Analysis, Scheduling, Marginal Cost

1. Introduction

This study is a further development to an earlier work [1], in which mixed integer linear programming (MILP) was applied as a modeling tool to a power generation scheduling problem of a major power producer in Ghana. The aimwas to determine an optimal power production schedule that meets daily load demands at minimum cost of production and also to ascertain the marginal cost of producing electricity per day and therefore thetariff rate. The goal of this study is to perform post optimality analysis on the proposed model in [1] in order to ascertain its robustness, a range of variability under which the input parameters such as cost of running each generator at the minimum level, extra hourly cost of running each generator above its minimum level, start-up cost of each generator, load demand and reserve margin can change without affecting the optimum feasibility as well as provide a range of investment plans for the firm. Hydro-thermal power generation scheduling is a multifaceted problem consisting of Unit Commitment and Economic Dispatch problems. Unit Commitment refers to the problem of deciding on the startup and shutdown of the generators while Economic Dispatch refers the problem of deciding on the loading levels of each of the committed generators to generate enough power to satisfy load demand, budgetary and operational constraints at minimum production cost [2]. MILP has gained widespread usage in solving hydrothermal and unit commitment problems in the power sectordue to the recent improved capabilities of commercial solvers, the increased computational power of modern computers, their modeling capabilities and adaptability and ability to provide global optimal solutions.

 Faculty of Mathematical Sciences, University for Development Studies, P. O. box 24, Navrongo, U.E.R. Ghana, West Africa. Email: jecpapa@yahoo.com Delarue *et al.*,[3], Nadia*et al.*,[4], Ana and Pedroso [5] and Morales-Espana *et al.*, [6] employed MILP technique in solving varying power generation problems. The next section reviews the power generation problem and the formulated MILP model as discussed in [1] and followed by the post optimality analysis. The results and discussion section present details of the output levels of the generators resulting from the sensitivity analysis, the marginal costs of generation and some discussions. Remarks to conclude the discussions as well as point out direction for future work are made in the last section.

2. The Power Generation Problem

The power generation firm operates eight power plants comprising two Hydroelectric (Hi, i=1, 2) and six Thermal $(T_i, i=1,..., 6)$. These plants are committed to meeting the daily electricity load demands at some daily operational cost. The eight power plants together have twenty-four generators, ten (10) of which are for hydroelectric power generation and 14 for thermal. Each generator has to work between a minimum and a maximum level. There is an hourly cost of running each generator at its minimum level. In addition there is an extra hourly cost for each megawatt (MW) of power generated above the minimum level. Startup of a generator also involved cost. In addition to meeting the estimated daily electricity load demands, there must be sufficient generators working at any time of the day to make it possible to meet an increase in load. This increase would have to be met by the generators already operating within their permitted limits. There must be enough reserve (spinning reserve) to cater for unexpected increase in load demands or breakdown of any generator. The desire of the firm is to meet the daily load demands of consumers at minimum cost of operation of the power plants. The MILP model as in [1] is presented as follows:

Minimize $Cost = \sum_{i=1}^{24} \sum_{j=1}^{8} (C_j L_i n_{ij} + C_j^I L_i y_{ij} + C_j^{II} Z_{ij})$

Subject to

$$y_{ij} \leq (M_j - m_j)n_{ij}$$
$$x_{ij} = m_j n_{ij} + y_{ij}$$

$$\sum_{j=1}^{8} (m_j n_{ij} + y_{ij}) \ge D_i$$
$$\sum_{j=1}^{8} M_j n_{ij} \ge (D_i + R_i)$$
$$Z_{ij} \ge n_{ij} - n_{(i-1)j}$$
$$x_{ij}, y_{ij} \ge 0$$

 $n_{ij}, Z_{ij} \ge 0, Z^+$ (1)

Where:

 x_{ij} : Power output in MW from each generator of plant j, (j = 1, ..., 8) in period i (i = 1, ..., 24)

 y_{ij} : Excess power output in MW from each generator of plant j, j = 1, ..., 8 in period i, (i = 1, ..., 24) above minimum level.

 n_{ii} : Number of generators of plant *j* working in period *i*.

 Z_{ij} : Number of generators of plant *j* to start in period *i*.

 D_i : Demand of power in MW in period *i*.

 R_i : Reserve margin of power in MW in period *i*.

 M_j : Maximum level of power output of each generator of plant *j*.

 m_j : Minimum level of power output of each generator of plant *j*.

 C_j : Hourly cost (in GH ¢) of running each generator of plant *j* at the minimum level.

 C_j^{\prime} : Extra hourly cost (in GH ¢) of running each generator of plant *j* above minimum

level.

 C_i^{II} : Cost of starting up each generator of plant *j*.

 \hat{L}_i : Length of each period *i*.

4. Post Optimality Analysis

Sensitivity analysis was performed on the model to

ascertain its robustness and to find a range of possible values under which the input parameters can change without affecting the optimum feasibility [7]. Since the parameters of the model are usually approximations of their exact value, analysis of their sensitivity to slight variations is crucial towards finding an implementable solution. Parameters such as cost of running each generator at the minimum level, extra hourly cost of running each generator above its minimum level, start-up cost of each generator. load demands and reserve margins were varied 5% upward and downward and later 10% upward and downward to reflect a reasonable level of variation that can potentially occur.Parameters such as the number of generators available, minimum and maximum level of each generator were assumed fixed. Therefore, there were four resultant Scenarios. In scenario one, the load demands and reserve margins were varied by 5% upwards and downwards and 10% upwards and downwards. The cost input parameters were varied by 5% upwards and downwards and 10% upwardsand downwards in scenario two. The cost factors, demand and reserve margin were load varied simultaneously in scenario three. Kpong and TT2PP were assumed shut down for maintenance works and due to shortage of crude oil/gas respectively in scenario four. All the scenarios resulted to twenty-five cases as depicted in Table.In the Table, the first column indicates the scenarios, the second the percentage variation of load demands (%LD), the third the percentage variation ofspinning reserves (%SR) and the last column the percentage variation of cost parameters (%CP). The five and ten percent upward and downward variations are denoted respectively by 5 and -5 and 10 and -10 in "% varied" column. The entry "0" indicates the original parameter value.

Cases of Scenarios	%LD	%SR	%CP	Cases of Scenarios	%LD	%SR	%CP
Case 1 of scenario 1	5	5	0	Case 5 of scenario 3	-5	-5	5
Case 2 of scenario 1	-5	-5	0	Case 6 of scenario 3	-5	-5	-10
Case 3 of scenario 1	10	10	0	Case 7 of scenario 3	-5	-5	10
Case 4 of scenario 1	-10	-10	0	Case 8 of scenario 3	10	10	10
Case 1 of scenario 2	0	0	5	Case 9 of scenario 3	10	10	-10
Case 2 of scenario 2	0	0	5	Case 10 of scenario 3	10	10	5
Case 3 of scenario 2	0	0	10	Case 11 of scenario 3	-10	-10	5
Case 4 of scenario 2	0	0	-10	Case 12 of scenario 3	-10	-10	10
Case 1 of scenario 3	5	5	5	Case 13 of scenario 3	-10	-10	-10
Case 2 of scenario 3	5	5	-10	Case 14 of scenario 3	-10	-10	-5
Case 3 of scenario 3	5	5	10	Case 15 of scenario 3	5	5	-5
Case 4 of scenario 3	-5	-5	-5	Case 16 of scenario 3	10	10	-5
Scenario 4	Kpong and TT2PP were assumed shut down						

Table 1: Cases of Scenarios

The details of adjusted load demands and the key parameters of the problem are presented in Tables 2 and 3 (with costs in Ghana Cedis $(GH\phi)$). Table 2 shows the periods (in hourly interval) and their corresponding load demands (LD) and spinning reserve (SR). Table 3 also

show the power plants, the cost per minimum level of operation of the generators (CM), the cost per hour of generating above the minimum level (CA) and the start-up costs (SC). The interval [1, 2) am, indicates the period starting from 1 am and ending before 2 am and so on.

	5% Upward		5% Downward				
Period(am, pm)		SR (MW)	Period(am, pm)	LD(MW)	SR(MW)		
[1 2)	1594 95	98.70	[1 2]	1443.05	89.30		
[2, 3]	1564.50	129.15	[2, 3]	1415.50	116.85		
[3, 4)	1546.65	147.00	[3, 4)	1399.35	133.00		
[4, 5)	1554.00	139.65	[4,5)	1406.00	126.35		
[5, 6]	1580.25	113.40	[5, 6)	1429.75	102.60		
[6, 7)	1663.20	72.45	[6, 7)	1504.80	65.55		
[7, 8)	1580.25	155.4	[7, 8)	1429.75	140.60		
[8, 9)	1629.60	143.85	[8, 9)	1474.40	130.15		
[9, 10)	1668.45	105.00	[9, 10)	1509.55	95.00		
[10, 11]	1696 80	76.65	[10, 11]	1535.20	69.35		
[11, 12]	1703.10	70.35	[11, 12]	1540.90	63.65		
[12, 1]	1720.95	52.50	[12, 1]	1557.05	47.50		
[1 2)	1697 95	75.60	[1_2, 1]	1536.30	68.40		
[2, 3]	1715 7	57 75	[1, 2)	1552.30	52.25		
[3, 4]	1726.2	166.95	[3, 4]	1561.80	151.05		
[4, 5)	1741 95	151.20	[4,5]	1576.05	136.80		
[4, 0) [5, 6)	1735.65	157.50	[5,6)	1570.35	142 50		
[6, 7)	1718 85	174 30	[6, 7)	1575.15	157.7		
[7, 8]	1863 75	67.20	[7, 8]	1686 15	60.80		
[8, 9)	1874 25	56.70	[7,0)	1695 75	51 30		
[9, 10)	1865.85	65.10	[9, 10)	1688 75	58.90		
[10, 11)	1824.90	106.05	[10, 11)	1651 10	95.95		
[10, 11]	1788 15	142.80	[10, 11]	1617.85	129.20		
[17, 12]	1682.10	01 35	[12, 1]	1521.00	82.65		
[12, 1]	1002.10	51.55	114, 17	1021.00	02.00		
	10% Downwa	ard		10% Upward			
Period(am, pm)	10% Downwa LD(MW)	ard SR(MW)	Period(am, pm)	10% Upward	SR(MW)		
Period(am, pm) [1, 2)	10% Downwa LD(MW) 1670.90	ard SR(MW) 103.40	Period(am, pm) [1, 2)	10% Upward LD(MW) 1670.90	SR(MW) 103.40		
Period(am, pm) [1, 2) [2, 3)	10% Downwa LD(MW) 1670.90 1639.00	ard SR(MW) 103.40 135.30	Period(am, pm) [1, 2) [2, 3)	10% Upward LD(MW) 1670.90 1639.00	SR(MW) 103.40 135.30		
Period(am, pm) [1, 2) [2, 3) [3, 4)	10% Downwa LD(MW) 1670.90 1639.00 1620.30	SR(MW) 103.40 135.30 154.00	Period(am, pm) [1, 2) [2, 3) [3, 4)	10% Upward LD(MW) 1670.90 1639.00 1620.30	SR(MW) 103.40 135.30 154.00		
Period(am, pm) [1, 2) [2, 3) [3, 4) [4,5)	10% Downwa LD(MW) 1670.90 1639.00 1620.30 1628.00	SR(MW) 103.40 135.30 154.00 146.30	Period(am, pm) [1, 2) [2, 3) [3, 4) [4,5)	10% Upward LD(MW) 1670.90 1639.00 1620.30 1628.00	SR(MW) 103.40 135.30 154.00 146.30		
Period(am, pm) [1, 2) [2, 3) [3, 4) [4,5) [5, 6)	10% Downwa LD(MW) 1670.90 1639.00 1620.30 1628.00 1655.50	SR(MW) 103.40 135.30 154.00 146.30 118.80	Period(am, pm) [1, 2) [2, 3) [3, 4) [4,5) [5, 6)	10% Upward LD(MW) 1670.90 1639.00 1620.30 1628.00 1655.50	SR(MW) 103.40 135.30 154.00 146.30 118.80		
Period(am, pm) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7)	10% Downwa LD(MW) 1670.90 1639.00 1620.30 1628.00 1655.50 1742.40	SR(MW) 103.40 135.30 154.00 146.30 118.80 75.90	Period(am, pm) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7)	10% Upward LD(MW) 1670.90 1639.00 1620.30 1628.00 1655.50 1742.40	SR(MW) 103.40 135.30 154.00 146.30 118.80 75.90		
Period(am, pm) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [5, 6) [6, 7) [7, 8)	10% Downwa LD(MW) 1670.90 1639.00 1620.30 1628.00 1655.50 1742.40 1655.50	SR(MW) 103.40 135.30 154.00 146.30 118.80 75.90 162.80	Period(am, pm) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7) [7, 8)	10% Upward LD(MW) 1670.90 1639.00 1620.30 1625.50 1742.40 1655.50	SR(MW) 103.40 135.30 154.00 146.30 118.80 75.90 162.80		
Period(am, pm) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7) [7, 8) [8, 9)	10% Downwa LD(MW) 1670.90 1639.00 1620.30 1628.00 1655.50 1742.40 1655.50 1707.20	SR(MW) 103.40 135.30 154.00 146.30 118.80 75.90 162.80 150.70	Period(am, pm) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7) [7, 8) [8, 9)	10% Upward LD(MW) 1670.90 1639.00 1620.30 1655.50 1742.40 1655.50 1707.20	SR(MW) 103.40 135.30 154.00 146.30 118.80 75.90 162.80 150.70		
Period(am, pm) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7) [7, 8) [8, 9) [9, 10)	10% Downwa LD(MW) 1670.90 1639.00 1620.30 1628.00 1655.50 1742.40 1655.50 1707.20 1747.90	SR(MW) 103.40 135.30 154.00 146.30 118.80 75.90 162.80 150.70 110.00	Period(am, pm) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7) [7, 8) [8, 9) [9, 10)	10% Upward LD(MW) 1670.90 1639.00 1620.30 1655.50 1742.40 1655.50 1707.20 1747.90	SR(MW) 103.40 135.30 154.00 146.30 118.80 75.90 162.80 150.70 110.00		
Period(am, pm) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7) [7, 8) [8, 9) [9, 10) [10, 11)	10% Downwa LD(MW) 1670.90 1639.00 1620.30 1628.00 1655.50 1742.40 1655.50 1742.40 1655.50 1707.20 1747.90	SR(MW) 103.40 135.30 154.00 146.30 118.80 75.90 162.80 150.70 110.00 80.30	Period(am, pm) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7) [7, 8) [8, 9) [9, 10) [10, 11)	10% Upward LD(MW) 1670.90 1639.00 1620.30 1655.50 1742.40 1655.50 1707.20 1747.90 1777.60	SR(MW) 103.40 135.30 154.00 146.30 118.80 75.90 162.80 150.70 110.00 80.30		
Period(am, pm) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7) [7, 8) [8, 9) [9, 10) [10, 11) [11, 12)	10% Downwa LD(MW) 1670.90 1639.00 1620.30 1628.00 1655.50 1742.40 1655.50 1707.20 1747.90 1777.60 1784.20	ard SR(MW) 103.40 135.30 154.00 146.30 118.80 75.90 162.80 150.70 110.00 80.30 73.70	Period(am, pm) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7) [7, 8) [8, 9) [9, 10) [10, 11) [11, 12)	10% Upward LD(MW) 1670.90 1639.00 1620.30 1655.50 1742.40 1655.50 1707.20 1747.90 1777.60 1784.20	SR(MW) 103.40 135.30 154.00 146.30 118.80 75.90 162.80 150.70 110.00 80.30 73.70		
Period(am, pm) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7) [7, 8) [8, 9) [9, 10) [10, 11) [11, 12) [12, 1)	10% Downwa LD(MW) 1670.90 1639.00 1620.30 1628.00 1655.50 1742.40 1655.50 1747.90 1777.60 1777.60 1784.20 1802.90	SR(MW) 103.40 135.30 154.00 146.30 118.80 75.90 162.80 150.70 110.00 80.30 73.70 55.00	Period(am, pm) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7) [7, 8) [8, 9) [9, 10) [10, 11) [11, 12) [12, 1)	10% Upward LD(MW) 1670.90 1639.00 1620.30 1655.50 1742.40 1655.50 1707.20 1747.90 1777.60 1784.20 1802.90	SR(MW) 103.40 135.30 154.00 146.30 118.80 75.90 162.80 150.70 110.00 80.30 73.70 55.00		
Period(am, pm) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7) [7, 8) [8, 9) [9, 10) [10, 11) [10, 11) [11, 12) [12, 1) [1, 2)	10% Downwa LD(MW) 1670.90 1639.00 1620.30 1628.00 1655.50 1742.40 1655.50 1747.90 1777.60 1777.60 1784.20 1802.90 1778.70	SR(MW) 103.40 135.30 154.00 146.30 118.80 75.90 162.80 150.70 110.00 80.30 73.70 55.00 79.20	Period(am, pm) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7) [7, 8) [8, 9) [9, 10) [10, 11) [11, 12) [12, 1) [1, 2)	10% Upward LD(MW) 1670.90 1639.00 1620.30 1655.50 1742.40 1655.50 1707.20 1747.90 1777.60 1784.20 1802.90 1778.70	SR(MW) 103.40 135.30 154.00 146.30 118.80 75.90 162.80 150.70 110.00 80.30 73.70 55.00 79.20		
Period(am, pm) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7) [7, 8) [8, 9) [9, 10) [10, 11) [11, 12) [12, 1) [1, 2) [2, 3)	10% Downwa LD(MW) 1670.90 1639.00 1620.30 1628.00 1655.50 1742.40 1655.50 1707.20 1747.90 1777.60 1777.60 1784.20 1802.90 1778.70 1797.40	SR(MW) 103.40 135.30 154.00 146.30 118.80 75.90 162.80 150.70 110.00 80.30 73.70 55.00 79.20 60.50	Period(am, pm) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7) [7, 8) [8, 9) [9, 10) [10, 11) [11, 12) [12, 1) [1, 2) [2, 3)	10% Upward LD(MW) 1670.90 1639.00 1620.30 1625.50 1742.40 1655.50 1707.20 1747.90 1777.60 1784.20 1802.90 1777.40	SR(MW) 103.40 135.30 154.00 146.30 118.80 75.90 162.80 150.70 110.00 80.30 73.70 55.00 79.20 60.50		
Period(am, pm) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7) [7, 8) [8, 9) [9, 10) [10, 11) [11, 12) [12, 1) [1, 2) [2, 3) [3, 4)	10% Downwa LD(MW) 1670.90 1639.00 1620.30 1628.00 1655.50 1742.40 1655.50 1747.90 1777.60 1777.60 1778.70 1778.70 1797.40 1808.40	Ard SR(MW) 103.40 135.30 154.00 146.30 118.80 75.90 162.80 150.70 110.00 80.30 73.70 55.00 79.20 60.50 174.90	Period(am, pm) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7) [7, 8) [8, 9) [9, 10) [10, 11) [11, 12) [12, 1) [1, 2) [2, 3) [3, 4)	10% Upward LD(MW) 1670.90 1639.00 1620.30 1625.50 1742.40 1655.50 1707.20 1747.90 1777.60 1784.20 1802.90 1777.40 1808.40	SR(MW) 103.40 135.30 154.00 146.30 118.80 75.90 162.80 150.70 110.00 80.30 73.70 55.00 79.20 60.50 174.90		
Period(am, pm) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7) [7, 8) [8, 9) [9, 10) [10, 11) [10, 11) [11, 12) [12, 1) [1, 2) [2, 3) [3, 4) [4,5)	10% Downwa LD(MW) 1670.90 1639.00 1620.30 1628.00 1655.50 1742.40 1655.50 1707.20 1747.90 1777.60 1784.20 1802.90 1777.40 1808.40 1824.90	SR(MW) 103.40 135.30 154.00 146.30 118.80 75.90 162.80 150.70 110.00 80.30 73.70 55.00 79.20 60.50 174.90 158.40	Period(am, pm) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7) [7, 8) [8, 9) [9, 10) [10, 11) [11, 12) [12, 1) [1, 2) [2, 3) [3, 4) [4,5)	10% Upward LD(MW) 1670.90 1639.00 1620.30 1625.50 1742.40 1655.50 1707.20 1747.90 1777.60 1778.70 1797.40 1808.40 1824.90	SR(MW) 103.40 135.30 154.00 146.30 118.80 75.90 162.80 150.70 110.00 80.30 73.70 55.00 79.20 60.50 174.90 158.40		
Period(am, pm) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7) [7, 8) [8, 9) [9, 10) [10, 11) [11, 12) [12, 1) [1, 2) [2, 3) [3, 4) [4,5) [5, 6)	10% Downwa LD(MW) 1670.90 1639.00 1620.30 1628.00 1655.50 1742.40 1655.50 1742.40 1655.50 1707.20 1777.60 1777.60 1777.60 1777.60 1778.70 1797.40 1808.40 1824.90 1818.30	SR(MW) 103.40 135.30 154.00 146.30 118.80 75.90 162.80 150.70 110.00 80.30 73.70 55.00 79.20 60.50 174.90 158.40 165.00	Period(am, pm) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7) [7, 8) [8, 9) [9, 10) [10, 11) [11, 12) [12, 1) [1, 2) [2, 3) [3, 4) [4,5) [5, 6)	10% Upward LD(MW) 1670.90 1639.00 1620.30 1625.50 1742.40 1655.50 1777.20 1747.90 1777.60 1778.70 1797.40 1808.40 1824.90 1818.30	SR(MW) 103.40 135.30 154.00 146.30 118.80 75.90 162.80 150.70 110.00 80.30 73.70 55.00 79.20 60.50 174.90 158.40 165.00		
Period(am, pm) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7) [7, 8) [8, 9) [9, 10) [10, 11) [11, 12) [12, 1) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [5, 6) [6, 7)	10% Downwa LD(MW) 1670.90 1639.00 1620.30 1628.00 1655.50 1742.40 1655.50 1707.20 1747.90 1777.60 1777.60 1777.60 1784.20 1802.90 1778.70 1797.40 1808.40 1824.90 1818.30 1800.70	SR(MW) 103.40 135.30 154.00 146.30 118.80 75.90 162.80 150.70 110.00 80.30 73.70 55.00 79.20 60.50 174.90 158.40 165.00 182.60	Period(am, pm) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7) [7, 8) [8, 9) [9, 10) [10, 11) [11, 12) [12, 1) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7)	10% Upward LD(MW) 1670.90 1639.00 1620.30 1625.50 1742.40 1655.50 1707.20 1747.90 1777.60 1784.20 1802.90 1777.40 1808.40 1824.90 1818.30 1800.70	SR(MW) 103.40 135.30 154.00 146.30 118.80 75.90 162.80 150.70 110.00 80.30 73.70 55.00 79.20 60.50 174.90 158.40 165.00 182.60		
Period(am, pm) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7) [7, 8) [8, 9) [9, 10) [10, 11) [10, 11) [11, 12) [12, 1) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7) [7, 8)	10% Downwa LD(MW) 1670.90 1639.00 1620.30 1628.00 1655.50 1742.40 1655.50 1747.90 1777.60 1777.60 1777.60 1778.70 1797.40 1802.90 1778.70 1797.40 1808.40 1818.30 1800.70 1952.50	SR(MW) 103.40 135.30 154.00 146.30 118.80 75.90 162.80 150.70 110.00 80.30 73.70 55.00 79.20 60.50 174.90 158.40 165.00 70.40	Period(am, pm) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7) [7, 8) [8, 9) [9, 10) [10, 11) [11, 12) [12, 1) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7) [7, 8)	10% Upward LD(MW) 1670.90 1639.00 1620.30 1655.50 1742.40 1655.50 1707.20 1747.90 1777.60 1784.20 1802.90 1778.70 1797.40 1808.40 1818.30 1800.70 1952.50	SR(MW) 103.40 135.30 154.00 146.30 118.80 75.90 162.80 150.70 110.00 80.30 73.70 55.00 79.20 60.50 174.90 158.40 165.00 70.40		
Period(am, pm) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7) [7, 8) [8, 9) [9, 10) [10, 11) [10, 11) [11, 12) [12, 1) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7) [7, 8) [8, 9)	10% Downwa LD(MW) 1670.90 1639.00 1620.30 1628.00 1655.50 1742.40 1655.50 1747.90 1777.60 1777.60 1784.20 1802.90 1778.70 1797.40 1808.40 1824.90 1818.30 1800.70 1952.50 1963.50	SR(MW) 103.40 135.30 154.00 146.30 118.80 75.90 162.80 150.70 110.00 80.30 73.70 55.00 79.20 60.50 174.90 158.40 165.00 70.40 59.40	Period(am, pm) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7) [7, 8) [8, 9) [9, 10) [10, 11) [11, 12) [12, 1) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7) [7, 8) [8, 9) [7, 8) [8, 9]	10% Upward LD(MW) 1670.90 1639.00 1620.30 1628.00 1655.50 1742.40 1655.50 1777.20 1747.90 1777.60 1778.70 1777.40 1808.40 1824.90 1818.30 1800.70 1952.50 1963.50	SR(MW) 103.40 135.30 154.00 146.30 118.80 75.90 162.80 150.70 110.00 80.30 73.70 55.00 79.20 60.50 174.90 158.40 165.00 70.40 59.40		
Period(am, pm) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7) [7, 8) [8, 9) [9, 10) [10, 11) [11, 12) [12, 1) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7) [7, 8) [8, 9) [9, 10)	10% Downwa LD(MW) 1670.90 1639.00 1620.30 1628.00 1655.50 1742.40 1655.50 1742.40 1655.50 1707.20 1777.60 1777.60 1777.60 1778.70 1797.40 1802.90 1778.70 1797.40 1808.40 1824.90 1818.30 1800.70 1952.50 1963.50 1954.70	SR(MW) 103.40 135.30 154.00 146.30 118.80 75.90 162.80 150.70 110.00 80.30 73.70 55.00 79.20 60.50 174.90 158.40 165.00 182.60 70.40 59.40 68.20	Period(am, pm) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7) [7, 8) [8, 9) [9, 10) [10, 11) [11, 12) [12, 1) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7) [7, 8) [5, 6) [6, 7) [7, 8) [8, 9) [9, 10)	10% Upward LD(MW) 1670.90 1639.00 1620.30 1655.50 1742.40 1655.50 1777.20 1777.60 1784.20 1802.90 1778.70 1808.40 1824.90 1818.30 1800.70 1952.50 1954.70	SR(MW) 103.40 135.30 154.00 146.30 118.80 75.90 162.80 150.70 110.00 80.30 73.70 55.00 79.20 60.50 174.90 158.40 165.00 182.60 70.40 59.40 68.20		
Period(am, pm) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7) [7, 8) [8, 9) [9, 10) [10, 11) [11, 12) [12, 1) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7) [7, 8) [8, 9) [9, 10) [10, 11]	10% Downwa LD(MW) 1670.90 1639.00 1620.30 1628.00 1655.50 1742.40 1655.50 1707.20 1777.60 1777.60 1777.60 1778.70 1777.60 1778.70 1797.40 1802.90 1778.70 1797.40 1808.40 1824.90 1818.30 1800.70 1952.50 1963.50 1954.70 1911.80	SR(MW) 103.40 135.30 154.00 146.30 118.80 75.90 162.80 150.70 110.00 80.30 73.70 55.00 79.20 60.50 174.90 158.40 165.00 182.60 70.40 59.40 68.20 111.10	Period(am, pm) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7) [7, 8) [8, 9) [9, 10) [10, 11) [11, 12) [12, 1) [12, 1) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7) [7, 8) [8, 9) [9, 10) [10, 11)	10% Upward LD(MW) 1670.90 1639.00 1620.30 1655.50 1742.40 1655.50 1747.90 1777.60 1784.20 1802.90 1777.40 1808.40 1818.30 1800.70 1952.50 1954.70 1911.80	SR(MW) 103.40 135.30 154.00 146.30 118.80 75.90 162.80 150.70 110.00 80.30 73.70 55.00 79.20 60.50 174.90 158.40 165.00 70.40 59.40 68.20 111.10		
Period(am, pm) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7) [7, 8) [8, 9) [9, 10) [10, 11) [11, 12) [12, 1) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7) [7, 8) [8, 9) [9, 10) [7, 8) [8, 9) [9, 10) [10, 11) [11, 12)	10% Downwa LD(MW) 1670.90 1639.00 1620.30 1628.00 1655.50 1742.40 1655.50 1707.20 1747.90 1777.60 1784.20 1802.90 1777.40 1808.40 1824.90 1818.30 1800.70 1952.50 1963.50 1954.70 1873.30	SR(MW) 103.40 135.30 154.00 146.30 118.80 75.90 162.80 150.70 110.00 80.30 73.70 55.00 79.20 60.50 174.90 158.40 165.00 70.40 59.40 68.20 111.10 149.60	Period(am, pm) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7) [7, 8) [8, 9) [9, 10) [10, 11) [11, 12) [12, 1) [1, 2) [2, 3) [3, 4) [4,5) [5, 6) [6, 7) [7, 8) [8, 9) [9, 10] [10, 11) [10, 11) [11, 12)	10% Upward LD(MW) 1670.90 1639.00 1620.30 1655.50 1742.40 1655.50 1707.20 1747.90 1777.60 1784.20 1802.90 1777.40 1808.40 1824.90 1818.30 1800.70 1952.50 1954.70 1873.30	SR(MW) 103.40 135.30 154.00 146.30 118.80 75.90 162.80 150.70 110.00 80.30 73.70 55.00 79.20 60.50 174.90 158.40 165.00 79.40 59.40 68.20 111.10 149.60		

Table 2: Adjustment figures of load demands and reserve margins

		5% Upward				5% Downward			
PP	CM GH¢	CA GH¢	SC GH¢	PP	CM GH¢	CA GH¢	SC GH¢		
H1	4578.3040	35.7483	6031.1096	H1	4142.2751	32.3437	5456.7183		
H2	2519.1968	73.2900	2908.0494	H2	2279.2733	66.3100	2631.0923		
T1	24302.7301	240.6936	26500.9380	T1	21988.1844	217.7704	23977.0391		
T2	36312.0944	3362.8947	40505.3954	T2	32853.7997	328.3333	36647.7387		
Т3	25446.2225	231.2268	30173.8637	T3	23022.7728	209.2052	27300.1624		
T4	10550.1168	317.7195	11769.5584	T4	95045.3437	287.4605	10648.6481		
T5	9943.3449	222.9119	12195.6555	T5	8996.3596	201.6822	11034.1645		
T6	65633.4981	592.5192	75985.8568	T6	59382.6888	536.0888	68749.1085		
		10% Upward			10% Downward				
PP	CM GH¢	CA GH¢	SC GH¢	PP	CM GH¢	CA GH¢	SC GH¢		
H1	4796.3184	37.4506	6318.3052	H1	3924.2606	30.6414	5169.5226		
H1 H2	4796.3184 2639.1585	37.4506 76.7800	6318.3052 3046.5278	H1 H2	3924.2606 2159.3115	30.6414 62.8200	5169.5226 2492.6138		
H1 H2 T1	4796.3184 2639.1585 25460.0030	37.4506 76.7800 252.1552	6318.3052 3046.5278 27762.8874	H1 H2 T1	3924.2606 2159.3115 20830.9115	30.6414 62.8200 206.3088	5169.5226 2492.6138 22715.0897		
H1 H2 T1 T2	4796.3184 2639.1585 25460.0030 38041.2417	37.4506 76.7800 252.1552 380.1754	6318.3052 3046.5278 27762.8874 42434.2237	H1 H2 T1 T2	3924.2606 2159.3115 20830.9115 31124.6523	30.6414 62.8200 206.3088 311.0526	5169.5226 2492.6138 22715.0897 34718.9103		
H1 H2 T1 T2 T3	4796.3184 2639.1585 25460.0030 38041.2417 26657.9474	37.4506 76.7800 252.1552 380.1754 242.2376	6318.3052 3046.5278 27762.8874 42434.2237 31610.7143	H1 H2 T1 T2 T3	3924.2606 2159.3115 20830.9115 31124.6523 21811.0479	30.6414 62.8200 206.3088 311.0526 198.1944	5169.5226 2492.6138 22715.0897 34718.9103 25863.3117		
H1 H2 T1 T2 T3 T4	4796.3184 2639.1585 25460.0030 38041.2417 26657.9474 11052.5033	37.4506 76.7800 252.1552 380.1754 242.2376 332.8490	6318.3052 3046.5278 27762.8874 42434.2237 31610.7143 12330.0136	H1 H2 T1 T2 T3 T4	3924.2606 2159.3115 20830.9115 31124.6523 21811.0479 9042.9572	30.6414 62.8200 206.3088 311.0526 198.1944 272.3310	5169.5226 2492.6138 22715.0897 34718.9103 25863.3117 10088.1929		
H1 H2 T1 T2 T3 T4 T5	4796.3184 2639.1585 25460.0030 38041.2417 26657.9474 11052.5033 10416.8375	37.4506 76.7800 252.1552 380.1754 242.2376 332.8490 233.5267	6318.3052 3046.5278 27762.8874 42434.2237 31610.7143 12330.0136 12776.4010	H1 H2 T1 T2 T3 T4 T5	3924.2606 2159.3115 20830.9115 31124.6523 21811.0479 9042.9572 8522.8670	30.6414 62.8200 206.3088 311.0526 198.1944 272.3310 191.0673	5169.5226 2492.6138 22715.0897 34718.9103 25863.3117 10088.1929 10453.4190		

Table 3: Adjusted figures of the cost parameters

5. Results and Discussions

5.1 Generators and their output levels

The output of the optimization algorithm (using LPsolve version: 5.5.2) are presented in Tables 4 to 7(a andb) below. In each Table, the first column indicates the production periods; the second the power plants (PP) to commit to power generation; the third the number of generators of a power plant to be working (GW) in any

period: the fourth the number of generators to start up (GS) in any period (Zero entry in the fourth column means no new generator should be added to those already working whiles nonzero entry indicates the number of generators that should be added to those already working): the fifth, the total power outputs (TPO) from the committed generators and the sixth, the load demands (LD) in any period

Table 4 (a): Generators and output levels 1 for case 1 of scenario 1.

Period	PP	GW	GS	TPO	LD	Period	PP	GW	GS	TPO	LD
(am)		011	00	(MW)	(MW)	(am, pm)	1.1	011	00	(MW)	(MW)
	H1	6	0	900			H1	6	0	845.25	
	H2	4	0	124.95			H2	4	0	120	
	T1	3	0	300			T1	3	0	300	
[1, 2)	T2	1	0	100	1594.95	[7, 8)	T2	1	0	100	1580.25
	T3	1	0	110			T3	1	1	110	
	T4	2	0	60			T4	2	0	60	
	T5	0	0	0			T5	1	0	45	
	T6	0	0	0			T6	0	0	0	
	H1	6	0	874.5			H1	6	0	864.6	
	H2	4	0	120			H2	4	0	120	
	T1	3	0	300		4.50 [8, 9)	T1	3	0	300	
[2, 3)	T2	1	0	100	1564.50		T2	1	0	100	1629.60
	T3	1	0	110			T3	1	0	110	
	T4	2	0	60			T4	3	1	90	
	T5	0	0	0			T5	1	0	45	
	T6	0	0	0			T6	0	0	0	
	H1	6	0	856.65			H1	6	0	900	
	H2	4	0	120			H2	4	0	123.45	
	T1	3	0	300			T1	3	0	300	
[3, 4)	T2	1	0	100	1546.65	[9, 10)	T2	1	0	100	1668.45
	T3	1	0	110			T3	1	0	110	
	T4	2	0	60			T4	3	0	90	
	T5	0	0	0			T5	1	0	45	
	T6	0	0	0			T6	0	0	0	
	H1	6	0	864			H1	6	0	900	

	H2	4	0	120]		H2	4	0	151.8	
	T1	3	0	300			T1	3	0	300	
[4, 5)	T2	1	0	100	1554.00	[10, 11)	T2	1	0	100	1696.80
	T3	1	0	110			T3	1	0	110	
	T4	2	0	60			T4	3	0	90	
	T5	0	0	0			T5	1	0	45	
	T6	0	0	0			T6	0	0	0	
	H1	6	0	890.25			H1	6	0	900	
	H2	4	0	120			H2	4	0	158.1	
	T1	3	0	300			T1	3	0	300	
[5, 6)	T2	1	0	100	1580.25	[11, 12)	T2	1	0	100	1703.10
	T3	1	0	110			T3	1	0	110	
	T4	2	0	60			T4	3	0	90	
	T5	0	0	0			T5	1	0	45	
	T6	0	0	0			T6	0	0	0	
	H1	6	0	900			H1	6	0	900	
	H2	4	0	148.2			H2	4	0	160	
	T1	3	0	300			T1	3	0	300	
[6, 7)	T2	1	0	100	1663.20	[12, 1)	T2	1	0	100	1720.95
	T3	1	0	110			T3	1	0	121.45	
	T4	2	0	60			T4	3	0	90	
	T5	1	1	45			T5	1	0	49.5	
	T6	0	0	0]		T6	0	0	0	

From Table 4 (a), at period [1, 2) am; six, four, three and two generators from H1, H2, T1 and T4 respectively and a generator each from T2 and T3 should be committed to power generation. Their respective outputs; 900 MW, 124.95 MW, 300 MW, 60 MW, 100 MW and 110 MW satisfy exactly the load demand at that period. Four generators from T4 and a generator each from T2, T5 and T6 should be on standby for emergency use. Zero entries in column four mean no new generator from those plants should be added to those already working. At period [2, 3) am; six, four, three and two generators from H1, H2, T1 and T4 respectively and a generator each from T2 and T3 should be committed to power generation. Their respective outputs; 874.5 MW, 120 MW, 300 MW, 60 MW 100 MW and 110 MW satisfy exactly the load demand at that period. Four generators from T4 and a generator each from T2, T5 and T6 should be on standby for emergency use. At period [3, 4) am; six, four, three and two generators from H1, H2, T1 and T4 respectively and a generator each from T2 and T3 should be committed to power generation. Their respective outputs; 856.65 MW, 120 MW, 300 MW, 60 MW 100 MW and 110 MW satisfy exactly the load demand at that period. Four generators from T4 and a generator each from T2, T5 and T6 should be on standby for emergency use. At period [4, 5) am; six, four, three and two generators

from H1, H2, T1 and T4 respectively and a generator each from T2 and T3 should be committed to power generation. Their respective outputs; 864 MW, 120 MW, 300 MW, 60 MW, 100 MW and 110 MW satisfy exactly the load demand at that period. Four generators from T4 and a generator each from T2, T5 and T6 should be on standby for emergency use. At period [5, 6) am; six, four,three and two generators from H1, H2, T1 and T4 respectively and a generator each from T2 and T3 should be committed to power generation. Their respective outputs; 890.25 MW, 120 MW, 300 MW, 60 MW 100 MW and 110 MW satisfy exactly the load demand at that period. Four generators from T4 and a generator each from T2, T5 and T6 should be on standby for emergency use. At period [6, 7) am; six, four and three generators from H1, H2, T1 and T4 respectively and a generator each from T2, T3 and T5 should be committed to power generation. Their respective outputs; 843 MW, 148.2 MW, 300 MW, 60 MW, 100 MW, 110 MW and 45 MW satisfy exactly the load demand at that period. Four generators from T4 and a generator each from T2 and T6 should be on standby for emergency use. One recorded in column four against T5 indicates that a new generator from that plant has to be added to those already working. Similar interpretations follow for the outputs displayed in Tables (Tables 4(a) to 7(b)) below.

Period (pm)	PP	GW	GS	TPO (MW)	LD (MW)	Period (pm)	PP	GW	GS	TPO (MW)	LD (MW)
	H1	6	0	900			H1	6	0	900	
	H2	4	0	152.85			H2	4	0	158.75	
	T1	3	0	300			T1	3	0	300	
	T2	1	0	100	1697.95	[7, 8)	T2	2	0	200	1863.75
	T3	1	0	110			T3	1	0	110	
[1, 2)	T4	3	0	90			T4	5	2	150	
	T5	1	0	45			T5	1	0	45	
	T6	0	0	0			T6	0	0	0	
	H1	6	0	900			H1	6	0	900	
	H2	4	0	160			H2	4	0	160	
	T1	3	0	300	1715.7	[8, 9)	T1	3	0	300	
	T2	1	0	100			T2	2	0	200	1874.25
[2, 3)	T3	1	0	116.2			T3	1	0	114.75	
	T4	3	0	90			T4	5	0	150]

Table 4 (b): Generators and	l output for Case	1 of Scenario 1.
-----------------------------	-------------------	------------------

	T5	1	0	49.5			T5	1	0	49.5	
	T6	0	0	0			T6	0	0	0	
	H1	6	0	861.2			H1	6	0	900	
	H2	4	0	120			H2	4	0	160	
	T1	3	0	300			T1	3	0	300	
	T2	2	1	200	1726.2	[9, 10)	T2	2	0	200	1865.85
	T3	1	0	110			T3	1	0	110	
[3, 4)	T4	3	0	90			T4	5	0	150	
	T5	1	0	45			T5	1	0	45.85	
	T6	0	0	0			T6	0	0	0	
	H1	6	0	876.95			H1	6	0	899.9	
	H2	4	0	120			H2	4	0	120	
	T1	3	0	300			T1	3	0	300	
[4, 5)	T2	2	0	200	1741.95	[10, 11)	T2	2	0	200	1824.90
	T3	1	0	110			T3	1	0	110	
	T4	3	0	90			T4	5	0	150	
	T5	1	0	45			T5	1	0	45	
	T6	0	0	0			T6	0	0	0	
	H1	6	0	870.65			H1	6	0	863.15	
	H2	4	0	120			H2	4	0	120	
	T1	3	0	300			T1	3	0	300	
[5, 6)	T2	2	0	200	1735.65	[11, 12)	T2	2	0	200	1788.15
	T3	1	0	110			T3	1	0	110	
	T4	3	0	90			T4	5	0	150	
	T5	1	0	45			T5	1	0	45	
	T6	0	0	0			T6	0	0	0	
	H1	6	0	853.85			H1	6	0	900	
	H2	4	0	120			H2	4	0	137.1	
	T1	3	0	300			T1	3	0	300	
[6, 7)	T2	2	0	200	1718.85	[12, 1)	T2	1	0	100	1682.10
	T3	1	0	110			T3	1	0	110	
	T4	3	0	90			T4	3	0	90	
	T5	1	0	45			T5	1	0	45	
	T6	0	0	0			T6	0	0	0	

Table 5 (a): Generators and output for Case 2 of Scenario 1.

Period (am)	PP	GW	GS	TPO (MW)	LD (MW)	Period (am)	PP	GW	GS	TPO (MW)	LD (MW)
	H1	6	0	868.05			H1	6	0	824.75	
	H2	4	0	120			H2	4	0	120	
	T1	3	0	300			T1	3	0	300	
	T2	0	0	0	1443.05	[7, 8)	T2	0	0	0	1429.75
	T3	1	0	110		- ,	T3	1	0	110	
[1, 2)	T4	0	0	0			T4	1	0	30	
	T5	1	0	45			T5	1	0	45	
	T6	0	0	0			T6	0	0	0	
	H1	6	0	840.5			H1	6	0	839.4	
	H2	4	0	120			H2	4	0	120	
	T1	3	0	300]		T1	3	0	300	
	T2	0	0	0	1415.50	[8, 9)	T2	0	0	0	1474.40
	T3	1	0	110			T3	1	0	110	
[2, 3)	T4	0	0	0			T4	2	1	60	
	T5	1	0	45			T5	1	0	45	
	T6	0	0	0			T6	0	0	0	
	H1	6	0	824.35			H1	6	0	874.55	
	H2	4	0	120			H2	4	0	120	
	T1	3	0	300			T1	3	0	300	
	T2	0	0	0	1399.35	[9, 10)	T2	0	0	0	1509.55
	T3	1	0	110			T3	1	0	110	
[3, 4)	T4	0	0	0			T4	2	0	60	
	T5	1	0	45			T5	1	0	45	
	T6	0	0	0			T6	0	0	0	
	H1	6	0	831			H1	6	0	900	
	H2	4	0	120			H2	4	0	120.2	
	T1	3	0	300			T1	3	0	300	
	T2	0	0	0	1406.00	[10, 11)	T2	0	0	0	1535.20
	T3	1	0	110			T3	1	0	110	
[4, 5)	T4	0	0	0			T4	2	0	60	
	T5	1	0	45			T5	1	0	45	
	T6	0	0	0			T6	0	0	0	

	H1	6	0	869.75			H1	6	0	900	
	H2	4	0	120			H2	4	0	125.9	
	T1	3	0	300	1		T1	3	0	300	
	T2	0	0	0	1429.75	[11, 12)	T2	0	0	0	1540.90
	T3	1	0	110			T3	1	0	110	
[5, 6)	T4	1	1	30			T4	2	0	60	
	T5	0	0	0			T5	1	0	45	
	T6	0	0	0			T6	0	0	0	
	H1	6	0	899.8			H1	6	0	900	
	H2	4	0	120			H2	4	0	142.05	
	T1	3	0	300			T1	3	0	300	
[6, 7)	T2	0	0	0	1504.80	[12, 1)	T2	0	0	0	1557.05
	T3	1	0	110			T3	1	0	110	
	T4	1	0	30			T4	2	0	60	
	T5	1	1	45]		T5	1	0	45	
	T6	0	0	0			T6	0	0	0	

Table 5 (b): Generators and output for Case 2 of Scenario 1.

(pm) (MW) (MW) (pm) (MW) H1 6 0 900 H1 6 0 900	(10100)
H_2 4 0 121.15 H_2 4 0 160	_
11 3 0 300 11 3 0 300 17 0 10 10 300 17 0 10 10 10 10 10 10 10 10 10 10 10 10 1	1000.45
12 0 0 0 1536.30 [7,8] 12 1 0 100	1686.15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_
$\begin{bmatrix} 1, 2 \end{bmatrix} \boxed{14} \boxed{2} 0 \boxed{60} \qquad \boxed{14} \boxed{2} 0 \boxed{60}$	_
<u>15 1 0 45</u> <u>15 1 0 49.5</u>	_
H1 6 0 900 H1 6 0 900	
H2 4 0 137.5 H2 4 0 160	
T1 3 0 300 T1 3 0 300.25	
<u>T2 0 0 0 1552.30 [8, 9) T2 1 0 100</u>	1695.75
<u>T3 1 0 110</u> <u>T3 1 0 126</u>	
[2, 3) <u>T4 2 0 60</u> <u>T4 2 0 60</u>	
<u>T5 1 0 45</u> <u>T5 1 0 49.5</u>	
T6 0 0 0 T6 0 0 0	
H1 6 0 826.8 H1 6 0 900	
H2 4 0 120 H2 4 0 160	
T1 3 0 300 T1 3 0 300	
<u>T2 1 1 100</u> 1561.80 [9, 10) <u>T2 1 0 100</u>	1688.75
<u>T3 1 0 110</u> <u>T3 1 0 118.65</u>	
[3, 4) T4 2 0 60 T4 2 0 60	
T5 1 0 45 T5 1 0 49.5	
T6 0 0 0 T6 0 0 0	
H1 6 0 841.05 H1 6 0 150	
H2 4 0 120 H2 4 0 136.1	
T1 3 0 300 T1 3 0 300	
[4, 5) T2 1 0 100 1576.05 [10, 11) T2 1 0 100	1651.10
<u>T3 1 0 110</u> <u>T3 1 0 110</u>	
<u>T4 2 0 60</u> <u>T4 2 0 60</u>	
T5 1 0 45 T5 1 0 45	
T6 0 0 0 T6 0 0 0	
H1 6 0 835.35 H1 6 0 882.85	
H2 4 0 120 H2 4 0 120	
T1 3 0 300 T1 3 0 300	
[5, 6) T2 1 0 100 1570.35 [11, 12) T2 1 0 100	1617.85
T3 1 0 110 T3 1 0 110	
T4 2 0 60 T4 2 0 60	
T5 1 0 45 T5 1 0 45	
T6 0 0 0 T6 0 0 0	
H1 6 0 820.15 H1 6 0 886.9	
H2 4 0 120 H2 4 0 120	
T1 3 0 300 T1 3 0 300	
[6, 7) <u>T2</u> 1 0 100 1555.15 [12, 1) <u>T2</u> 0 0 0	1521.90
T3 1 0 110 T3 1 0 110	
T4 2 0 60 T4 2 0 60	
T5 1 0 45 T5 1 0 45	
T6 0	<u> </u>

Period (am)	PP	GW	GS	TPO (MW)	LD (MW)	Period (am)	PP	GW	GS	TPO (MW)	LD (MW)
((((((H1	6	0	865.9	()	(ani)	H1	6	0	850.5	()
	H2	4	0	120			H2	4	0	120	
	T1	7	0	300			T1	- 7	0	300	
	T2	2	0	200	1670.00	[7 8)	T2	2	0	200	1655 50
	T2	1	0	110	1070.30	[7, 0)	T2	1	0	110	1000.00
[1 2)	T4	1	0	30			T/	1	0	30	
[1, 2)	T5	1	0	45			T6	1	0	45	
	T6	0	0	45			TG	0	0	45	
	10	6	0	934		-		6	0	842.2	
	⊔2	4	0	120			□ □	0	0	120	
	T12	4	0	200			T12	4	0	300	
	T2	2	0	200	1620.00	(0.91	T2	2	0	200	1707 20
	T2	2 1	0	200	1039.00	[0, 9)	T2	2 1	0	200	1707.20
[2 3)	T4	1	0	20			T4	2	0	00	
[2, 3)	14 T5	1	0	30			14 T5	3	2	90	
	15	1	0	45			15	1	0	45	
	10	0	0	045.0			10	0	0	0	
		0	0	040.0				0	0	002.9	
	HZ	4	0	120			HZ	4	0	120	
	11	3	0	300	1000.00	[0, 40]	11	3	0	300	4747.00
	12	2	0	200	1620.30	[9, 10)	12	2	0	200	1747.90
[0 4]	13	1	0	110			13	1	0	110	
[3, 4)	14	0	0	0			14	3	0	90	
	15	1	0	45			15	1	0	45	
	16	0	0	0			16	0	0	0	
	H1	6	0	853			H1	6	0	900	
	H2	4	0	120			H2	4	0	132.6	
	T1	3	0	300			T1	3	0	300	
	T2	2	0	200	1628.00	[10, 11)	T2	2	0	200	1777.60
	T3	1	0	110			T3	1	0	110	
[4, 5)	T4	0	0	0			T4	3	0	90	
	T5	1	0	45			T5	1	0	45	
	T6	0	0	0			T6	0	0	0	
	H1	6	0	865.5			H1	6	0	900	
	H2	4	0	120			H2	4	0	139.2	
	T1	3	0	300			T1	3	0	300	
	T2	2	0	200	1655.50	[11, 12)	T2	2	0	200	1784.20
	T3	1	0	110			T3	1	0	110	
[5, 6)	T4	2	2	60			T4	3	0	90	
	T5	0	0	0			T5	1	0	45	
	T6	0	0	0			T6	0	0	0	
	H1	6	0	900			H1	6	0	900	
	H2	4	0	157.4			H2	4	0	157.9	
	T1	3	0	300			T1	3	0	300	
[6, 7)	T2	2	0	200	1742.40	[12, 1)	T2	2	0	200	1802.90
	Т3	1	0	110			Т3	1	0	110	
	T4	1	0	30]		T4	3	0	90	
	T5	1	1	45]		T5	1	0	45]
	T6	0	0	0			T6	0	0	0	

Table 6 (a): Generators and output for Case 3 of Scenario 1.

Table 6 (b):	Generators and	output for	Case 3 (of Scenario 1.
10010 0 (10)1	e enter a ter e anta	o a par lo	0 400 0 .	

Period (pm)	PP	GW	GS	TPO (MW)	LD (MW)	Period (pm)	PP	GW	GS	TPO (MW)	LD (MW)
	H1	6	0	900			H1	6	0	900	
	H2	4	0	133.7			H2	4	0	160	
	T1	3	0	300			T1	3	0	300	
	T2	2	0	200	1778.70	[7, 8)	T2	2	0	200	1952.50
	T3	1	0	110			T3	1	0	113	
[1, 2)	T4	3	0	90			T4	4	0	120	
	T5	1	0	45			T5	1	0	49.5	
	T6	0	0	0			T6	1	1	110	
	H1	6	0	900			H1	6	0	900	
	H2	4	0	152.4			H2	4	0	160	
	T1	3	0	300			T1	3	0	300	
[2 3)	T2	2	0	200	1797.40	[8, 9)	T2	2	0	200	1963.50
[2, 3)	T3	1	0	110			T3	1	0	124]

	T4	3	0	90			T4	4	0	120	
	T5	1	0	45			T5	1	0	49.5	
	T6	0	0	0			T6	1	0	110	
	H1	6	0	853.4			H1	6	0	900	
	H2	4	0	120			H2	4	0	160	
	T1	3	0	300	1		T1	3	0	300	
	T2	2	0	200	1808.40	[9, 10)	T2	2	0	200	1954.70
	T3	1	0	110			T3	1	0	115.2	
[3, 4)	T4	6	3	180			T4	4	0	120	
	T5	1	0	45			T5	1	0	49.5	
	T6	0	0	0			T6	1	0	110	
	H1	6	0	869.9			H1	6	0	900	
	H2	4	0	120			H2	4	0	126.8	
	T1	3	0	300			T1	3	0	300	
[4, 5)	T2	2	0	200	1824.90	[10, 11)	T2	2	0	200	1911.80
	T3	1	0	110			T3	1	0	110	
	T4	6	0	180			T4	4	0	120	
	T5	1	0	45			T5	1	0	45	
	T6	0	0	0			T6	1	0	110	
	H1	6	0	863.3			H1	6	0	868.3	
	H2	4	0	120			H2	4	0	120	
	T1	3	0	300			T1	3	0	300	
[5, 6)	T2	2	0	200	1818.30	[11, 12)	T2	2	0	200	1873.30
	T3	1	0	110			T3	1	0	110	
	T4	6	0	180			T4	4	0	120	
	T5	1	0	45			T5	1	0	45	
	T6	0	0	0			T6	1	0	110	
	H1	6	0	845.7			H1	6	0	897.2	
	H2	4	0	120			H2	4	0	120	
	T1	3	0	300			T1	3	0	300	
[6, 7)	T2	2	0	200	1800.70	[12, 1)	T2	2	0	200	1276.20
	T3	1	0	110			T3	1	0	110	
	T4	6	0	180			T4	3	0	90	
	T5	1	0	45]		T5	1	0	45	
	T6	0	0	0			T6	0	0	0	

Table 7 (a): Generators and output for Case 4 of Scenario 1.

Period	PP	GW	GS	TPO (MW)	LD (MW)	Period (am)	PP	GW	GS	TPO (MW)	LD (MW)
	H1	6	0	892.1			H1	6	0	824.5	
	H2	4	0	120			H2	4	0	120	
	T1	2	0	200			T1	3	0	300	
	T2	0	0	0	1367.10	[7, 8)	T2	0	0	0	1354.50
	T3	1	0	110			T3	1	0	110	
[1, 2)	T4	0	0	0			T4	0	0	0	
	T5	1	0	45			T5	0	0	0	
	T6	0	0	0			T6	0	0	0	
	H1	6	0	866			H1	6	0	851.8	
	H2	4	0	120			H2	3	0	90	
	T1	2	0	200			T1	3	0	300	
	T2	0	0	0	1341.00	[8, 9)	T2	0	0	0	1396.80
	T3	1	0	110			T3	1	0	110	
[2, 3)	T4	0	0	0			T4	0	0	0	
	T5	1	0	45			T5	1	1	45	
	T6	0	0	0			T6	0	0	0	
	H1	6	0	850.7			H1	6	0	885.1	
	H2	4	0	120			H2	3	0	90	
	T1	2	0	200			T1	3	0	300	
	T2	0	0	0	1325.70	[9, 10)	T2	0	0	0	1430.10
	T3	1	0	110			T3	1	0	110	
[3, 4)	T4	0	0	0			T4	0	0	0	
	T5	1	0	45			T5	1	0	45	
	T6	0	0	0			T6	0	0	0	
	H1	6	0	857			H1	6	0	900	
	H2	4	0	120			H2	3	0	99.4	
	T1	2	0	200			T1	3	0	300	
	T2	0	0	0	1332.00	[10, 11)	T2	0	0	0	1454.40
[4 5)	T3	1	0	110]		T3	1	0	110	
[4, 5]	T4	0	0	0]		T4	0	0	0	
	T5	1	0	45]		T5	1	0	45	

					-						-
	T6	0	0	0			T6	0	0	0	
	H1	6	0	824.5			H1	6	0	900	
	H2	4	0	120			H2	3	0	104.8	
	T1	3	1	300			T1	3	0	300	
	T2	0	0	0	1354.50	[11, 12)	T2	0	0	0	1459.80
	T3	1	0	110			T3	1	0	110	
[5, 6)	T4	0	0	0			T4	0	0	0	
	T5	0	0	0			T5	1	0	45	
	T6	0	0	0			T6	0	0	0	
	H1	6	0	875.6			H1	6	0	900	
	H2	4	0	120			H2	3	0	120	
	T1	3	0	300			T1	3	0	300	
[6, 7)	T2	0	0	0	1425.60	[12, 1)	T2	0	0	0	1475.10
	T3	1	0	110			T3	1	0	110	
	T4	0	0	0			T4	0	0	0	
	T5	0	0	0			T5	1	0	45.1	
	T6	0	0	0			T6	0	0	0	

Table 7 (b): Generators and output for Case 4 of Scenario 1.

Period	DD	GW	69	TPO	LD	Period	DD	CW/	69	TPO	LD
(pm)	FF	Gw	03	(MW)	(MW)	(pm)	FF	910	03	(MW)	(MW)
	H1	6	0	900			H1	6	0	900	
	H2	3	0	100.3			H2	4	0	152.5	
	T1	3	0	300			T1	3	0	300	
	T2	0	0	0	1455.30	[7, 8)	T2	0	0	0	1597.50
	T3	1	0	110			T3	1	0	110	
[1, 2)	T4	0	0	0			T4	3	1	90	
	T5	1	0	45			T5	1	0	45	
	T6	0	0	0			T6	0	0	0	
	H1	6	0	900			H1	6	0	900	
	H2	3	0	115.6			H2	4	0	160	
	T1	3	0	300			T1	3	0	300	
	T2	0	0	0	1470.60	[8, 9)	T2	0	0	0	1606.50
	T3	1	0	110			T3	1	0	110	
[2, 3)	T4	0	0	0			T4	3	0	90	
	T5	1	0	45			T5	1	0	46.5	
	T6	0	0	0			T6	0	0	0	
	H1	6	0	844.6			H1	6	0	900	
	H2	4	1	120			H2	4	0	154.3	
	T1	3	0	300			T1	3	0	300	
	T2	0	0	0	1479.60	[9, 10)	T2	0	0	0	1599.30
	Т3	1	0	110			T3	1	0	110	
[3, 4)	T4	2	2	60			T4	3	0	90	
	T5	1	0	45			T5	1	0	45	
	T6	0	0	0			T6	0	0	0	
	H1	6	0	858.1			H1	6	0	899.2	
	H2	4	0	120			H2	4	0	120	
	T1	3	0	300			T1	3	0	300	
[4, 5)	T2	0	0	0	1493.10	[10, 11)	T2	0	0	0	1564.20
	T3	1	0	110			T3	1	0	110	
	T4	2	0	60			T4	3	0	90	
	T5	1	0	45			T5	1	0	45	
	T6	0	0	0			T6	0	0	0	
	H1	6	0	852.7			H1	6	0	867.7	
	H2	4	0	120	-		H2	4	0	120	
(F - 0)	11	3	0	300		1 11 10	11	3	0	300	4500 70
[5, 6)	12	0	0	0	1487.70	[11, 12)	12	0	0	0	1532.70
	13	1	0	110	-		13	1	0	110	
	14	2	0	60	-		14	3	0	90	
	15	1	0	45	-		15	1	0	45	
	16	0	0	0			16	0	0	0	
	H1	6	0	838.3	-		H1	6	0	900	
	H2	4	0	120	0 0 1473.30 [12, 1) 0 5		H2	4	0	126.8	
	11	3	0	300			11	2	0	200	
[6, 7)	12	0	0	0		[12, 1)	12	0	0	0	1441.80
	13	1	U	110			13	1	0	110]
	14	2	U	60		14	2	0	60	_	
	15	1	0	45			15	1	0	45	_
	16	0	0	0			16	0	0	0	

5.2 Marginal cost of Electricity Generation

The marginal costs for producing electricity for the various periods indicate the amount by which the optimal generation cost will change if their respective load demands experience a unit change [8]. The marginal costs (MC) associated with each of the production periods and the ranges of the load demands for which they are valid for

cases 1,2,3 and 4 of scenario 1 are presented in Tables 8 (a and b) below. In each Table, the first column indicates the production periods. The second, the marginal costs associated with each of the production periods. The third and fourth columns record the minimum and maximum ranges of the load demands for which the marginal costs are valid.

Ma	arginal cost	for case 1	of scenario 1		Ma	rginal cost	for case 2	of scenario 1	
Period (am, pm)	MC (Gh¢)	Min (MW)	LD (MW)	Max (MW)	Period (am, pm)	MC (Gh¢)	Min (MW)	LD (MW)	Max (MW)
[1, 2)	69.80	1590.0	1594.95	1630.0	[1, 2)	34.05	1325.0	1443.05	1475.0
[2, 3)	34.05	1440.0	1564.50	1590.0	[2, 3)	34.05	1325.0	1415.50	1475.0
[3, 4)	34.05	1440.0	1546.65	1590.0	[3, 4)	34.05	1325.0	1399.35	1475.0
[4,5)	34.05	1440.0	1554.00	1590.0	[4,5)	34.05	1325.0	1406.00	1475.0
[5, 6)	34.05	1440.0	1580.25	1590.0	[5, 6)	34.05	1310.0	1429.75	1460.0
[6, 7)	69.80	1635.0	1663.20	1675.0	[6, 7)	34.05	1355.0	1504.80	1505.0
[7, 8)	34.05	1485.0	1580.25	1635.0	[7, 8)	34.05	1355.0	1429.75	1505.0
[8, 9)	34.05	1485.0	1629.60	1635.0	[8, 9)	34.05	1385.0	1474.40	1535.0
[9, 10)	69.80	1665.0	1668.45	1705.0	[9, 10)	34.05	1385.0	1509.55	1535.0
[10, 11)	69.80	1665.0	1696.80	1705.0	[10, 11)	69.80	1535.0	1535.20	1575.0
[11, 12)	69.80	1665.0	1703.10	1705.0	[11, 12)	69.80	1535.0	1540.90	1575.0
[12, 1)	220.22	1709.5	1720.95	1725.5	[12, 1)	69.80	1535.0	1557.05	1575.0
[1, 2)	69.80	1665.0	1697.95	1705.0	[1, 2)	69.80	1535.0	1536.30	1575.0
[2, 3)	220.22	1709.5	1715.7	1725.5	[2, 3)	69.80	1535.0	1552.30	1575.0
[3, 4)	34.05	1615.0	1726.2	1765.0	[3, 4)	34.05	1485.0	1561.80	1635.0
[4,5)	34.05	1615.0	1741.95	1765.0	[4,5)	34.05	1485.0	1576.05	1635.0
[5, 6)	34.05	1615.0	1735.65	1765.0	[5, 6)	34.05	1485.0	1570.35	1635.0
[6, 7)	34.05	1615.0	1718.85	1765.0	[6, 7)	34.05	1485.0	1555.15	1635.0
[7, 8)	69.80	1825.0	1863.75	1865.0	[7, 8)	220.22	1679.5	1686.15	1695.5
[8, 9)	220.22	1869.5	1874.25	1885.5	[8, 9)	229.24	1695.5	1695.75	1725.5
[9, 10)	212.30	1865.0	1865.85	1869.5	[9, 10)	220.22	1679.5	1688.75	1695.5
[10, 11)	34.05	1675.0	1824.90	1825.0	[10, 11)	69.80	1635.0	1651.10	1675.0
[11, 12)	34.05	1675.0	1788.15	1825.0	[11, 12)	34.05	1485.0	1617.85	1635.0
[12, 1)	69.8	1665.0	1682.10	1705.0	[12, 1)	34.05	1385.0	1521.90	1535.0

Table 8 (a): Marginal cost for case 1 of scenario 1.

The MCs are valid as long as their associated load demands lie within the specified minimum and maximum ranges. For instance, for period [1, 2) am, a marginal cost of GH¢ 69.80 is valid for that period since the load demand of 1594.95 MW lie within the range of 1590 MW to 1630 MW. This means that, any unit change in load demand changes the optimal generation cost by GH¢ 69.80. The

average marginal cost for producing electricity in a day for case 1 of scenario 1 is GH¢ 76.67. This marginal cost indicates the minimum tariff that is appropriate for the firm to charge consumers fora megawatt of power. Similar interpretations follow for the rest of the periods, which all record load demands lying between their respective minimum and maximum values.

N	larginal cos	st for case 3 o	f scenario 1		Marginal cost for case 4 of scenario 1					
Period	MC	Min (MAA)	LD	Max	Period	MC (Cha)	Min	LD	Max	
(am, pm)	(Gh¢)		(MW)	(MW)	(am, pm)	NC (Gri¢)	(MW)	(MW)	(MW)	
[1, 2)	34.05	1555.0	1670.90	1705.0	[1, 2)	34.05	1225	1367.10	1375.0	
[2, 3)	34.05	1555.0	1639.00	1705.0	[2, 3)	34.05	1225	1341.00	1375.0	
[3, 4)	34.05	1525.0	1620.30	1675.0	[3, 4)	34.05	1225	1325.70	1375.0	
[4,5)	34.05	1525.0	1628.00	1675.0	[4, 5)	34.05	1225	1332.00	1375.0	
[5, 6)	34.05	1540.0	1655.50	1690.0	[5, 6)	34.05	1280	1354.50	1430.0	
[6, 7)	69.80	1705.0	1742.40	1745.0	[6, 7)	34.05	1300	1425.60	1450.0	
[7, 8)	34.05	1555.0	1655.50	1705.0	[7, 8)	34.05	1280	1354.50	1430.0	
[8, 9)	34.05	1615.0	1707.20	1765.0	[8, 9)	34.05	1295	1396.80	1445.0	
[9, 10)	34.05	1615.0	1747.90	1765.0	[9, 10)	34.05	1295	1430.10	1445.0	
[10, 11)	69.80	1765.0	1777.60	1805.0	[10, 11)	69.80	1445	1454.40	1475.0	

[11, 12)	69.80	1765.0	1784.20	1805.0	[11, 12)	69.80	1445	1459.80	1475.0
[12, 1)	69.80	1765.0	1802.90	1805.0	[12, 1)	212.30	1475	1475.10	1479.5
[1, 2)	69.80	1765.0	1778.70	1805.0	[1, 2)	69.80	1445	1455.30	1475.0
[2, 3)	69.80	1765.0	1797.40	1805.0	[2, 3)	69.80	1445	1470.60	1475.0
[3, 4)	34.05	1705.0	1808.40	1855.0	[3, 4)	34.05	1385	1479.60	1535.0
[4,5)	34.05	1705.0	1824.90	1855.0	[4,5)	34.05	1385	1493.10	1535.0
[5, 6)	34.05	1705.0	1818.30	1855.0	[5, 6)	34.05	1385	1487.70	1535.0
[6, 7)	34.05	1705.0	1800.70	1855.0	[6, 7)	34.05	1385	1473.30	1535.0
[7, 8)	220.22	1949.5	1952.50	1965.5	[7, 8)	69.80	1565	1597.50	1605.0
[8, 9)	220.22	1949.5	1963.50	1965.5	[8, 9)	212.30	1605	1606.50	1609.5
[9, 10)	220.22	1949.5	1954.70	1965.5	[9, 10)	69.80	1565	1599.30	1605.0
[10, 11)	69.80	1905.0	1911.80	1945.0	[10, 11)	34.05	1415	1564.20	1565.0
[11, 12)	34.05	1755.0	1873.30	1905.0	[11, 12)	34.05	1415	1532.70	1565.0
[12, 1)	34.05	1615.0	1762.20	1765.0	[12, 1)	69.80	1435	1441.80	1475.0

5.3 Discussions

It is evident from the scenarios considered that cases with the same load demands and reserve margins present the same output levels of the generators committed to power production and therefore have the same power generation schedule. For instance, case 1 of scenario 1 and cases; 1, 2, 3 and 15 of scenario 3 have the same operating generators and output levels because the load demands and reserve margins in the respective cases were adjusted 5% upward. Similar interpretations follow for cases with the same percentage of upward or downward adjustment of the load demands and reserve margins. Also cases: 1 to 4 of scenario 2 has the same power generation schedule (same operating generators and output levels) as the original problem in [1]. The similarity in their generation schedule is due to the fact that they all have the same load demand and reserve margin pattern. Furthermore, it is evident that cases with the same cost factors present similar pattern of marginal cost of producing electricity. For instance, case 1 of scenario 2 and cases; 1, 5, 10 and 11 of scenario 3 have similar pattern of marginal cost of producing electricity due to the fact that the cost parameters of the respective cases were adjusted 5% upward. Similar interpretations follow for cases with the same percentage of upward or downward adjustment of the cost parameters. Moreover, it is observed in scenario 4 that load demands for the respective periods were satisfied when plants H2 and T5 were assumed shut down for maintenance works due to shortage of crude oil/gas respectively. The results of all the scenarios considered have similar interpretation as those of the original problem [1]. The optimal cost from run of the optimization algorithm using the original data was GH¢ 4,806,855.99. The optimal costs of the twenty-five cases considered are presented in Table 9 below. In the Table, the first column indicates the scenarios, the second the optimal costs associated with the cases considered, the third the percentage increase or decrease (%ID) above or below the optimal cost of the original problem and the optimal costs ranges in the last column.

Table 9): \$	Summary	of	Results
---------	-------	---------	----	---------

ROW	SCENARIOS	0000114		OPTIMAL COST R	ANGE
		OCGH¢	ID%GH¢	Lower GH¢	Upper GH¢
	Case 1 of scenario 2	5,047,197.18	5.00		
	Case 2 of scenario 2	4,713,193.23	-1.95		
1	Case 3 of scenario 2	5,305,997.74	10.38	1 226 170 92	5,305,997.74
'	Case 4 of scenario 2	4,326,170.82	-10.00	4,320,170.02	
	Case 1 of scenario 1	5,436,043.39	13.09		
	Case 1 of scenario 3	5,707,844.96	18.74		
	Case 2 of scenario 3	4,892,439.49	1.78	4 902 420 40	5 009 104 00
2	Case 3 of scenario 3	5,998,104.09	24.78	4,092,439.49	5,996,104.09
	Case 15 of scenario 3	5,903,130.68	22.81		
	Case 2 of scenario 1	4,199,880.34	-12.63		
	Case 4 of scenario 3	4,171,057.39	-13.23		
2	Case 5 of scenario 3	4,409,873.76	-8.26	3,779,893.35	4,630,021.23
3	Case 6 of scenario 3	3,779,893.35	-21.36		

	Case 7 of scenario 3	4,630,021.23	3.68		
	Case 3 of scenario 1	6,333,317.24	31.76		
	Case 8 of scenario 3	6,992,633.28	45.47		
	Case 9 of scenario 3	5,704,916.99	18.68	5,704,916.99	
4	Case 10 of scenario 3	6,649,981.51	38.34		8,763,512.91
	Case 16 of scenario 3	8,763,512.91	82.31		
	Case 4 of scenario 1	3,613,382.76	-24.83		
	Case 11 of scenario 3	3,794,051.21	-21.07		
	Case 12 of scenario 3	3,993,177.95	-16.93	2 260 474 42	2 002 177 05
5	Case 13 of scenario 3	3,268,174.42	-32.01	3,200,174.42	3,993,177.95
	Case 14 of scenario 3	3,487,785.24	-27.44		
6	Scenario 4	6,131,123.95	27.55		

The best optimal solution was given by case thirteen of scenario three, which yielded a minimum production cost of Gh(3,268,174.42 (reduced by 32%) and the worst by case sixteen of scenario three, which also yielded a minimum production cost of Gh(8,763,512.91 (increased by 82.31%). The cases in the various rows have the same number of generators and output levels of generators committed to power generation but differ in their optimal generation costs as shown in Table 9. For instance, the cases in row 1, have the same power generation schedule but differ in their optimal generation costs; so do the cases in rows 2, 3, 4 and 5. The ranges specifiedprovide investment plans for the firm.

6. Conclusions

The best optimal solution was given by case 13 of scenario 3, which yielded a minimum production cost of GH¢ 3,268,174.42 and the worst by case 16 of scenario 3, which also yielded a minimum production cost of GH¢ 8,763,512.91. Thus, the firm could minimize the cost of power generation if its cost parameters (the cost of running each generator at the minimum level, extra hourly cost of running each generator above the minimum level and start-up cost of each generator), load demands and reserve margins were comparable to those lying between the 10 percent and -10 percent range. Any scenario selected should provide an optimum investment for the firm.

Future Work

A number of features and characteristics of the hydrothermal power systems such as: the stochastic nature of electricity demand and the probabilistic reserve margin requirement constraints were omitted in the formulation of the model so a future paper will include them.

References

- Christian John Etwire and Stephen B. Twum, (2014), Optimal Hydrothermal Energy Generation for Ghana, International Journal of Scientific and Technology Research vol3, Issue 12, December 2014, pp. 65-74, ISSN 2277-8616.
- [2] Sinha N, R. Chakrabarti and P. K. Chattopadhyay, "Evolutionary Programming Techniques Economic Load Dispatch," IEEE Trans. on Evolutionary Computation, vol. 7, no. 1, pp. 83 – 94.
- [3] Delarue, E., David, B., Ronnie, B. and William, D., (2007), "Development of a Comprehensive

Electricity GenerationSimulation Model Using a Mixed Integer Programming Approach".Proceedings of world academy of science, engineering and technology,**22**: 99-104

- [4] Nadia, Z., Ali, K. and Majid, O. (2008). "OptimalUnit Commitment Using Equivalent Linear Minimum Up and Down Time Constraints."2nd IEEE International Conference on Power and Energy. Malaysia, 1021-1026
- [5] Ana, V. and Pedroso, J. P., (2012). A new MILPbased approach for Unit Commitment in power production planning, InternationalJournal of Electrical Power and Energy Systems.44: 997-1005.
- [6] Morales-Espana, G., Jesus, M. L., and Andres, R., (2013). "Tight and Compact MILP Formulation of Start-Up and Shut-DownRamping in Unit Commitment."IEEE Transactions on Power Systems.**28**(2): 1288-1296.
- [7] Taha H.A,(2011), Operations Research: An Introduction 9th Ed. Pearson Edu. Inc., Prentice Hall USA.
- [8] Arthur, S., and Sheffrin, M. S. (2003), Economics: Principle inAction. Upper Saddle River New Jersey, Pearson Prentice Hall, 111.

