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ABSTRACT 
 

The aim of this study is to evaluate the association between maternal factors and birth weight 
among babies by using and comparing frequentist and Bayesian methods’ results from an 
epidemiologist or public health point of view. Low birth weight babies, defined by WHO as babies 
born at term who weigh less than 2.5 kg is an important indicator of reproductive health and 
general health status of any Population. The incidence of low birth weight is quite high in the sub 
region which has a public health concern. 
Our study was based on data from 2011 Multiple Indicator Cluster Survey conducted by Ghana 
Statistical Service. A total sample size of 10,963 women within the reproductive age were selected 
throughout the entire country for the survey.  
The results from the frequentist and the Bayesian models show that, the two approaches can yield 
similar results using same data set. However, there are factors that the Bayesian technique can 
unfold which might not be the case using the frequentist model. We were able to show with our 
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data set that the Bayesian method may have a lot of benefits than the frequentist method. 
However, in order to narrow the credible intervals, there is the need to bring in informative priors so 
as to be able to well formulate the null and the alternative hypotheses. However, one can use the 
Markov Chain Monte Carlo, when using no priors to predict reliable results. 
Comparing the two approaches with respect to our data set, we can infer (from Table 4) that using 
Bayesian model provides better estimates in predicting low birth weight among babies in Ghana. 
We note however that to better understand the phenomenon under study the two methods could be 
used together. Our findings further revealed that low birth weight is not only a public health problem 
but also a socio-cultural issue. 
 

 
Keywords: Low birth weight; frequentist; Bayesian; informative priors. 
 
1. INTRODUCTION 
 
The debate over Bayesian versus Frequentist 
statistical inference is largely over in statistics 
community. Both Bayesian and frequentist                   
ideas have a lot to offer practitioners.                          
Each approach has a great deal to contribute to 
statistical analysis and each is essential                       
for the full development of the other approach. 
Both methods often lead to the same solution 
when no external information (other than the data 
and the model itself) is introduced into the 
analysis. But these methods are not the same 
and do different things. It is very important to 
understand the assumptions behind the theories 
and to correctly interpret the mathematical 
conclusions produced. Using both approaches 
for an important problem is good in practice [1]. 
The union of frequentist and Bayesian 
procedures is discussed extensively by [2], and 
this study is based partly on their work. 
Frequentist methods are at times misapplied or 
used wrongly and sometimes the results are 
interpreted wrongly. Unlike the frequentist, the 
Bayesian methods provide many practical 
benefits, like handling variables that are not 
observed, small sample sizes as well as errors 
associated with measurement and using prior 
information from earlier works [3]. 
 
In general, frequentist methods are 
computationally relatively simple. There is no 
need for numerical integration. Many of these 
methods, for sufficiently large data sets, are the 
locally most powerful tests possible. In many 
cases the frequentist and Bayesian 
interpretations are different: Bayesian methods 
are based on decision theoretic principles; 
actions are dictated by risk management by 
minimising the expected loss under a chosen 
‘loss’ function. Similar choices are needed in 
frequentist methodology to determine the optimal 
procedure (e.g. least squares or maximum 
likelihood estimation). 

Frequentist principle is based on the idea that, 
with repeated use of a statistical procedure, the 
actual accuracy of the long run average should 
not be less than the reported accuracy of the 
long average. This is really a joint frequency-
Bayesian principle.  
 
Low birth weight (LBW) is one of the key 
reproductive health indicators whose outcome is 
influenced by consumption of reproductive health 
care. [4] argue that one of the key measures of 
child health is that of birth weight. Birth weight is 
a good gauge of health of the child in the womb 
because the weight is taken immediately after 
birth. Consequently, a malnourished fetus will be 
born at low birth weight. Fetal growth can be 
affected by factors such as maternal, genetic and 
environmental. One of the key vulnerable 
processes in the life cycle of human being is the 
growth and development of the intrauterine which 
can lead to a permanent profound influence later 
in life. According to [5], the intrauterine growth 
menace has been well studied by birth weight 
within the developing countries. The birth weight 
of a child who is less than one year could be 
used to assess his chances of good health and 
growth, development and survival [6].  
 
LBW is prevalent in developing countries 
especially those in the Sub-Saharan region due 
to the high levels of malnutrition and infectious 
diseases. Throughout the world, over 20 million 
children under one year are born with low birth 
weight. Out of this number about 95% of these 
babies are located in developing countries. A 
large proportion of these babies are born in Asia 
which also have high parity rate and about 22% 
of them are also born in Africa. Within Asia, 
about 40% of the low birth weights occur in India 
with countries in the western world such as 
Sweden, having between 4% and 6% [7]. 
 
The birth weight of a child is a yardstick or a 
measure of how vulnerable the child may be 
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susceptible to childhood diseases and chances 
of survival. Sub-Saharan Africa (SSA) has the 
second highest incidence of low birth weight 
infants the world over (16%), with South Central 
Asia being the highest at 27% [8]. The most 
recent evidence in Ghana shows that 
approximately 10% of all births are LBW [9]. In 
particular, the UN envisages a reduction of low 
birth weight by at least one-third in the proportion 
of infants. This target is in fact, one of the seven 
major goals for the current decade of the “A 
World Fit for Children” programme of the United 
Nations [10]. 
 
The prevalence of LBW situation in Ghana                         
is not so different from what pertains in the                    
sub region. The rate has been hovering                    
around 10% according to the various results 
contained in the Multiple Indicators Cluster 
Questionnaire Surveys (MICS) and the 
Demographic and Health Surveys (DHS) 
conducted over the years. This includes only a 
few babies who are weighed at birth or              
described as being “very small” or “smaller                  
than average” when born. The major challenge is 
that most babies born in Ghana are not weighed 
at birth due to the fact that most mothers give 
birth at home and not at health facilities. For 
instance, about 79% of babies born in Ghana 
were not weighed according to the 1998 DHS 
report (page; 98). Again, in the 2003 DHS, 
information on birth weight was known for only 
28% babies in the five years preceding the 
survey and for the 2008 DHS, birth weight was 
reported for only 43% of births in the five years 
preceding the survey. The 2006 MICS report also 
indicates that, overall, nearly 2 in 5 babies are 
not weighed at birth and approximately 9% of 
infants are estimated to weigh less than 2.5 kg at 
birth. However, some research findings at 
various facilities across the country put the 
prevalence rate above 16% which is higher than 
the 15% global average threshold making it a 
public health concern as a country. Again, 
according to the WHO data published in April 
2011 LBW deaths in Ghana reached 6,056 or 
3.23% of total deaths in the country. Currently 
LBW is among the top 20 causes of deaths in 
Ghana.  
 
The primary objective of our present                           
study is to study and assess maternal                         
factors associated with low birth weight                        
babies by using and comparing both                     
frequentist and Bayesian methods’ results                   
from an epidemiologist or public health point of 
view. 

The justification for the comparison of Bayesian 
and Frequentist in this study is based on 
coherence and calibration. These are two 
important goals for statistical inference; 
 

i. Bayesian work has tendered to focus on 
coherence whilst Frequentist work has not 
been too worried about coherence. The 
problem with pure coherence is that one 
can be coherent and completely wrong. 

ii. Frequentist work on the other hand tends 
to focus on calibration whilst Bayesian 
work has not been too worried about 
calibration. The problem with pure 
calibration is that one can be calibrated 
and completely useless. 

 
Many statisticians therefore make use of both 
Bayesian perspective and Frequentist 
perspective, because a blend is often a natural 
way to achieve both coherent and calibration. 
 
1.1 Conceptual Framework 

 
Reasons for comparing these two approaches’ 
results are many, namely because frequentist 
techniques, even though the most universally 
and widely used, are sometimes considered as  
misused or misinterpreted [11-13], whilst 
Bayesian techniques are underused, however, 
they appear to present several practical 
advantages, such as accommodating small 
sample sizes, missing data, covariates measured 
with error, random effects or a hierarchical 
structure of variables, unobserved variables 
along with measurement errors and incorporating 
information from previous studies [11-14]. 
 
Dunson et al. [14] defines Bayesian methods as 
the explicit quantitative use of external evidence 
in the design, monitoring, analysis, interpretation 
and reporting of a study. According to [13], 
results of epidemiological observational studies 
provide a likelihood that can be combined with 
prior information using standard and advanced 
full Bayesian methods leading to purely 
probabilistic results. The specific application of 
Bayesian methods to case-control studies is both 
feasible and useful, particularly with the advance 
of advanced computational methods [15,16] 
coupled with the advent of Markov Chain Monte 
Carlo (MCMC) methods, Bayesian methods are 
being implemented with increasing frequency. 
MCMC methods are computer-intensive 
technical methods that allow one to simulate 
draws from the posterior distribution, without 
having to calculate the posterior distribution [17]. 
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Again, contrary to the classical confidence 
interval, Bayesian methods offer Bayesian 
credible interval which has a simple appealing 
interpretation as the interval containing the true 
parameter of interest with some probability (e.g., 
95%). Most researchers prefer this easy 
interpretation to that of the classical 95% 
confidence interval, which is the range of values 
containing the true parameter 95% of the times in 
repeated sampling [18]. Furthermore, people 
sometimes wrongly interpret the confidence 
interval as if it was a credible interval. This 
means that Bayesian approach seems more 
intuitive than the frequentist. 
 
Even though these practical advantages have 
long been available for epidemiologists, few 
epidemiological studies have used this powerful 
tool to assess exposure-disease relations [18]. 
Controversies are raised by the Bayesian 
approach, since one is compelled to re-examine 
fundamental notions about the concept of 
probability and classical statistical practices [19]. 
Its usefulness is accepted in specific situations 
such as in case of sequential data, but its system 
of inference using priors in other situations is still 
controversial [19] because of its subjectivity [11]. 
Therefore, comparing results, interpretations and 
limitations of both approaches would enrich our 
discussion and make our conclusions more 
robust. 
 
2. DATA  
 
Our study was based on data from 2011 Multiple 
Indicator Cluster Survey (MICS) conducted by 
Ghana Statistical Service. A total sample size of 
10,963 women within the reproductive age were 
selected throughout the entire country for the 
survey. All responses were solicited two years 
preceding the survey. The process for sample 
selection was the results of representative 
probability sampling of households conducted 
nationwide using the 2010 Population and 
Housing Census Enumeration Areas (EA’s). To 
be able to compare, the MICS used an 
internationally standardized sampling of two-
stratified sample design. The first stage involved 
selection of a number of EA’s from the ten 
regions which were used as clusters. The second 
stage involved the selection of households in 
each region using systematic sampling with 
probability proportional to size. In all 12,150 
households were selected for the sample, 
however, 11,925 households were duly 
contacted and interviewed. From the interviewed 
households, 10,963 women within the 

reproductive age group were identified for 
interview. 
 
3. METHODOLOGY 
 
The 2011 MICS was conducted with a sample of 
11,925 households from a selected household of 
11,970 throughout the ten administrative regions 
of Ghana translating into about 100% response 
rate. All the households were selected based on 
the sizes of the regions. The survey utilized both 
quantitative and qualitative data collection 
methods which aimed at providing basic data for 
measuring the progress of women and children 
in Ghana. The data set used for analysis in this 
study is based on information on all births and 
deaths that occurred two years preceding the 
survey. The study used SPPS (version 20), R-
console and SAS system version 9.4 for 
extraction and data analysis. Descriptive 
statistics as well as frequencies of the 
background characteristics of the mothers and 
the respective households the children belong to 
were generated. The association between the 
dependent and independent variables was 
ascertained using chi-square analysis 
procedures. Our dependent variable was based 
on the outcome of the weight of the baby 
whether LBW or normal. The independent 
variables included parity, area of residence, 
ethnicity region, antenatal care, economics 
status and mothers’ characteristics including; 
education, religion and age. A critical level of 
significance of 5 percent (p<0.05) was employed 
to identify the most statistically significant factors 
of LBW babies. Estimates of LBW were also 
obtained for the overall administrative regions. 
 
3.1 Model Specification (Logistic 

Regression) 
 
The following generalized linear logistic model 
was used 
 

  π =log (
�

���) = χβ + Ɛ                                (1) 

                                                            
where π links the linear function to log (

�
���). The 

link is not a linear function, µ is the probability of 
having a LBW baby and χ is the model matrix 
including, mothers’ educational level, age, 
religion, ethnicity, antenatal care, economic 
status of household and parity. The matrix also 
includes geographical location, such as region of 
origin and whether the respondent is from rural 
or urban environment; β is the vector of 
parameters, and Ɛ is the vector of residuals. We 
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applied the Fisher scoring method (SAS, 2007) 
to obtain Maximum Likelihood estimates of β. 
The overall goodness of fit was derived from the 
Likelihood Ratio Test of the hypothesis H0: c(β) = 
0 where a comparison is made between the full 
model and the reduced model [20]. It is therefore 
a test for global null hypothesis of the elements 
of the solution vector. 
 
The odds ratio in this study is the probability that 
a child will be born of LBW to the probability that 
the child born has normal birth weight. This 
means that the outcome variables in the logistic 
regression should be discrete and dichotomous. 
Logistic regression was therefore found fit to be 
used because the outcome variable was in 
binary form that is a child is born with LBW or 
otherwise. Again, there were no assumptions to 
be made about the distributions of the 
explanatory variables as they did not have to be 
linear or equal in variance within the group. The 
model suggests that the likelihood of a woman 
giving birth to a LBW child varies across all the 
independent variables to be studied. After fitting 
the model, the outcomes were used to interpret 
the existing relationships between LBW babies, 
household structure and mothers’ characteristics. 
 
3.2 Markov Chain Monte Carlo 
 
In drawing an �. �. �  sample from a complicated 
distribution π is difficult, especially in high 
dimensions. Markov chain Monte Carlo 
generates a sequence of random variables (�	) 
which are dependent and such that the 
distribution of �	 converges weakly to π as � → 1. 
Estimation of � ℎ(�)�(�)�� is still based on a law 
of large numbers, but now for dependent random 
variables: 
     � ℎ(�)�(�)�� ≈ ���,� = �

��� ∑ ℎ(�	�	���� ).       (2)                                                          

 
Here r is a “burn-in" period which discards values �	   whose distribution is too far from the target �. 
 
The random variables are constructed 
recursively: The initial value �� is arbitrary, and 
for each � ≥ 1, �	  is a deterministic function of  �	�� and a uniform random variable �	which is 
independent of  ��, … , �	�� 
   �	 = !(�	��, �	).                                       (3)                                                                   
 
 (In practice, often several uniform variables �	,�, �	,", … , �	,#  are used, but this is equivalent). 

Because the dependence of �	  on previous 
random variables is only via �	��, the sequence (�	)  is called a Markov chain. The conditional 
distribution of �	  given �	��  is called the 
transition kernel P of the chain 
 ℙ(�	 ∈ &|��, … , �	��) = ℙ(�	 ∈ &|�	��) = ((�	��, &).                                               (4) 
 
It is determined by the function G through 
 

 
 
In particular, P does not depend on t because G 
is the same for all t. We therefore call the Markov 
chain time-homogeneous. In Markov process 
theory, one usually starts by specifying the 
transition kernel  ((�, &) , the conditional 
probability that the next value of the chain is in A 
given that the current value is equal to x. It is 
always possible to construct a function G such 
that the above equation is satisfied. Because for 
Markov chain Monte Carlo, we need to draw from ((�, . ) for arbitrary values x, it is more natural to 
start with the concrete construction  
  �	 = !(�	��, �	).                                       (6)                                                                            
 
In order to use Markov chain Monte Carlo to 
estimate expected values with respect to the 
target π, we need to find a transition kernel P 
such that we can draw from the distribution  ((�, . ) for any x and such that for ) → ∞ 1 the 
arithmetic mean of the ℎ(�	)  converges to � ℎ(�)�(�)�� . The general theory of Markov 
chains shows that the second requirement holds 
in a wide range of cases if the chain can reach all 
sets A with �(&) > 0  and if �	��~� implies that  �	~�. If the second condition holds, we call � an 
invariant or stationary distribution for the 
transition kernel P. Because 
 ℙ(�	 ∈ &) = -(ℙ(�	 ∈ &| �	��)) = -(ℙ(�	��, &)), 
 � is stationary for P if 
 

�(&) = . �(�)((�, &)��      ∀&, 
 
or, in the case where ((�, . )  has the density 0(�, 1), if   
 �(1) = � �(�)0(�, 1)��.                              (7)                                                                           
 
There are two basic recipes for constructing a 
transition kernel P which has a given target 
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distribution � as stationary distribution. The first 
one is the so-called Gibbs sampler. For this we 
assume that � ∈ ℝ3  and we denote the 
conditional density of the � − �ℎ  component of   �, �5  given all the other components �, ��5 =(�6) 675 by �5: 
 �5(�5|��5) ∝ �(�) 
 
where ∝  means up to a term which does not 
contain �5. This means that we can identify �5   by 
inspecting how the target density � depends on 
the i-th component. We don't need any 
integration. The densities �5 are also called \full 
conditionals" (because we condition on all other 
components). The Gibbs sampler depends on a 
“visiting schedule" �	 ∈ {1,2, … , 0} and iterates the 
following steps for � = 1,2, … 

                                                         �5<	 ~�5<=�5<>��5<	��?��5< ,  ��5<	 = ��5<	��             (8) 
 
In words, we leave all components of �	�� 
except the one that is actually visited unchanged, 
and we update the visited component according 
to the conditional distribution of our target. By the 
definition of the conditional distribution, �  is 
invariant for this transition kernel. The visiting 
schedule can be either deterministic or it can 
randomly select one of the components. In order 
that the chain can reach all sets, we have to visit 
each possible component infinitely often. 
 
The Gibbs sampler requires that we can sample 
from the full conditionals. Because these 
distributions are one-dimensional, this is often 
possible. If it isn't, we can use the Metropolis-
Hastings algorithm instead. It is based on the fact 
that any reversible distribution is also stationary. 
Here �  is called reversible for the transition 
kernel P if 

                                

( ) ( , ) ( ) ( , ) , , ,
A B

x P x B dx x P x A dx A Bπ π= ∀∫ ∫          

(9)       
or in words, if �	~�, then 
 

 
 

Choosing for B the whole space ℝ3 , it follows 
that a reversible distribution � is stationary. 
 
If ((�, . ) has the density ((�, 1) for any x, then 
reversibility is equivalent to  
 �(�)0(�, 1) = �(1)0(1, �)      ∀�, 1.            (11)                                                   

For any pair � ≠ 1, we can therefore choose one 
of the two values ((�, 1)  and ((1, �)  arbitrarily, 
whereas the other one is determined by the 
reversibility equation. However, a solution 
obtained in this way does in general not satisfy � 0(�, 1)�1 = 1 for any x and thus is not the 
density of a transition kernel. To solve this 
problem, one can start with an arbitrary transition 
density q and then choose from the two possible 
solutions 
 

0(�, 1) = A(�, 1), 0(1, �) = �(�)A(�, 1)�(1)  

and 
                                      0(�, 1) = B(C)D(C,E)

B(E) , 0(1, �) = A(1, �)             (12)                                                    

 
the one which satisfies 0(�, 1) ≤ A(�, 1)  and  0(1, �) ≤ A(1, �) for any � ≠ 1. This solution can 
be written in the compact form, 
 0(�, 1) = A(�, 1) min J1, B(C)D(C,E)

B(E)D(E,C)K .           (13)                                                                   

 
It follows that � 0(�, 1)�1 ≤ � A(�, 1)�1 = 1 for 
any x, and one can put the missing mass on the 
diagonal, meaning that the chain does not move. 
Written in formulae, the transition kernel is given 
as; 
 

( )( , ) ( , ) 1 ( ) 1 ( , )A

A

p x A p x y dy x p x y dy= + −∫ ∫   

(14)                                                             
 
Assuming that we can simulate from the 
transition density A(�, . ) for any x, the following 
algorithm generates a Markov chain with the 
transition kernel P: 
 

• At time t, generateL	~A(�	��, �)�� = and �	~ MN�OPQR (0,1), independently from 
each other and independently of previously 
generated variables. 

• Set  
 

�	 = S L	       �O    �	 ≤ R�N J1, B=T<?D(T<,U<VW)
B(U<)D(U<VW,T<)K   

�	��     XYZX                                                                
[     (15) 

 
This is similar to the accept-or-reject method, but 
the proposal depends on the most recent value, 
and in case of a rejection, we do not move. The 
simplest choice of A(�, . ) is a normal density with 
mean x and an arbitrary covariance matrix ∑. In 
this case, A=�, � ′? = A(� ′, �) so that the 
acceptance probability is simply min (1, �(� ′)/�(�)). This means moving to value which is more 
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likely than the current value is always accepted 
whereas the acceptance of a move to a less 
likely value is given by the likelihood ratio. The 
algorithm for a symmetric q is due to [21] 
whereas the general case is due to [22]. 
 
In general, the posterior distribution, or any of its 
summary measures, can only be obtained 
analytically for a restricted set of relatively simple 
models. Thus, for a long time, researchers could 
only proceed easily with Bayesian inference 
when the posterior was available in closed-form 
or as a (possibly approximate) analytic 
expression. As a result, practitioners interested in 
models of realistic complexity did not much use 
Bayesian inference. This situation changed 
dramatically with the advent of computer-driven 
sampling methodology, generally known as 
Markov chain Monte Carlo (MCMC: e.g., [23,17]) 
Using MCMC techniques such as Gibbs 
sampling or the Metropolis–Hastings algorithm, 
researchers can directly sample sequences of 
values from the posterior distribution of interest, 
forgoing the need for closed-form analytic 
solutions. The current adage is that Bayesian 
models are limited only by the user’s imagination. 
 
3.2.1 Gibbs sampling  
 
The formal algorithm can be specified as follows. 
Let θ be a vector of model parameters with 
elements ] = ^]�, … , ]D_. The elements of θ could 
be the parameters of a regression model, 
structural equation model, and so forth. Note that 
information regarding θ is contained in the prior 
distribution p(θ). A number of algorithms and 
software programs are available to conduct 
MCMC sampling. Following the description given 
in [17], the Gibbs sampler begins with an initial 
set of starting values for the parameters, denoted 
as ](�) = =]�(�), … , ]D(�)?.  Given this starting 
point, the Gibbs sampler generates ](Z)  from ](Z��) as follows: 
 

1. sample ]�(Z)~0(]�|]"(Z��), ]`(Z��), … , ]D(Z��), 1) 
 

2. sample ]"(Z)~0(]"|]�(Z��), ]`(Z��), … , ]D(Z��), 1) 
       q   sample ]D(Z)~0(]D|]�(Z��), ]`(Z��), … , ]D��(Z��), 1)  

 
Then, a sequence of dependent vectors are 
formed: 
 ](�) = =]�(�), … , ]D(�)? 

](") = =]�("), … , ]D(")? ](Z) = =]�(Z), … , ]D(Z)? 
 

This sequence exhibits the so-called Markov 
property insofar as ](Z)  is conditionally 
independent of {]�(�), … , ]D(Z�") } given  ](Z��) . 
Under some general conditions, the sampling 
distribution resulting from this sequence will 
converge to the target distribution as a → ∞. (See 
[17]) for additional details on the properties of 
MCMC. In setting up the Gibbs sampler, a 
decision must be made regarding the number of 
Markov chains to be generated, as well as the 
number of iterations of the sampler. With regard 
to the number of chains to be generated, it is not 
uncommon to specify multiple chains. Each chain 
samples from another location of the posterior 
distribution based on purposefully dispersed 
starting values. With multiple chains, it may be 
the case that fewer iterations are required, 
particularly if there is evidence for the chains 
converging to the same posterior mean for each 
parameter. In some cases, the same result can 
be obtained from one chain, although often 
requiring a considerably larger number of 
iterations. Once the chain has stabilized, the 
iterations prior to the stabilization (referred to as 
the burn-in phase) are discarded. Summary 
statistics, including the posterior mean, mode, 
standard deviation, and credibility intervals, are 
calculated on the post-burn-in iterations. Also, 
convergence diagnostics are obtained on the 
entire chain or on post-burn-in iterations. 
 
The Bayesian analysis was performed using 
models identical to those used in the frequentist 
analyses. Non informative priors were used in 
this study. The MCMC method was then applied 
to derive posterior distributions of the model 
parameters, using SAS 9.4 and R-Console 
statistical software packages. Means, 95% 
credible intervals, and probability of the odds 
ratios were presented. We also indicatively 
presented the Deviance Information Criterion, a 
model goodness of fit measure that usually 
allows comparing models on the same data set: 
a lower DIC generally indicates a model that fits 
better to data [13]. Interpretation of both 
frequentist and Bayesian analyses were 
presented, stressing on differences, similarities 
and complementarities between both methods 
 

4. RESULTS 
 
There were 2873 births registered within the 
survey period. Out of this figure, 1336 were 
weighed at birth which is about 46.5%. The LBW 
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incidence found in this study was 13.7% from our 
sample of no-missing weights. Table 1 gives the 
description of the various categories in the study. 
Five regions; Western, Volta, Greater Accra, 
Brong Ahafo and Eastern all recorded rates 
lower than the national figure of 13.7%. Women 
from Central region are more likely to give birth 
to low birth weight children (about 16%) and 
those from Western and Volta regions the least 
likely to give birth to low birth weight children 
(4.4%). Low birth weight is also predominant 
among children born in the three northern 
regions of the country. Women who come from 
the poorest households, and those who stay in 
rural households or have up to middle school 
education are more likely than more advantaged 
women to give birth to LBW children. For 
instance, the proportion of LBW among women 
who have up to middle school education is 
76.1%, versus 23.9% for women who have a at 
least secondary school education. Women in 
urban households are likely to give birth to 
children of normal birth weight compared to 
those in rural households. Women from 
wealthiest households are more likely to give 
birth to normal weight children compared to 
women from poorest households. The probability 
of giving birth to children of low birth weight 
among first time mothers and those who have at 
least four children is higher than second time 
mothers. Again, women who are at most 24 
years or above 35 years have highest proportion 
of children whose weight is below 2.5 kg.   
Tables 2 and 3 show the results of our two 
models (multivariate logistic regression model 
and Bayesian posteriors model) of maternal 
factors associated with LBW. The factors 
observed to be highly significantly associated 
with LBW included maternal age and children 
ever born (parity) with with parity8 being highgly 
significant. The Bayesian model also show some 
significance in ANC. The results from (Fig. 1) 
also show the density plots and the trace plots 
for the parameters. The density plots portray the 
credible intervals of the parameters and the trace 
plots were used to test the convergence of the 
model (MCMC). From the figure, it is clear that 
antenatal care, age squared and parity especially 
parity eight all passed the convergence test, 
giving credence to the models’ validity. 
 
Table 4 shows the results of both frequentist and 
Bayesian models. We compared the two results 
based on the odds ratio, standard errors and 
credible intervals/confidence intervals. From the 
table, the odds ratio that fall within the 
Confidence intervals also fall in the Credidible 

intervals. Generally however, the odds ratio in 
the Bayesian are higher than that of the 
frequentist especially whre the parameters are 
significant. The standard errors in the Bayesian 
model are also lower compared with the 
frequentist model. This means that the Bayesian 
model can be more relied upon than the 
frequentist model. The credible intervals appear 
to be more spread than the confidence limits.  
 
5. DISCUSSION  
 
The 13.7% incidence of low birth weight (mean = 
2.10) and the normal mean birth weight of 4.012 
0.062 kg found in our study can be compared to 
other studies in the developing world (e.g., 
Nigeria, which is about 14%). The challenge 
however is that few mothers in Ghana give birth 
at health facilities and hence their babies are not 
weighed at birth. Over 50% of children born in 
Ghana are not weighed. About 46.5% of the 
children who were born in the survey period were 
weighed at birth (1336 of the 2873 births). The 
descriptive statistics show that locality 
(residence) has impact on the weight of the new 
born. Mothers in urban areas tend to give birth to 
normal weight children than those who live in 
rural areas.  
 
This is also evidenced by [24]. More so a case 
control study by [25] to determine the risk factors 
for LBW in Nagpur city of Maharashtra also 
found place of residence (rural) to be associated 
with LBW. 
 
The factors found to be significant using the 
frequentist models include age and parity. All the 
other variables like residence, ANC, Region, 
educational levels and economic status were not 
significant. This is similar to results obtained by 
[26,27] whose work revealed educational levels 
as not being a risk factor in predicting low birth 
weight. The findings however, is in sharp 
contrast to [28] who found both age and parity 
not to be significant to low birth weight in their 
study of a number of maternal factors including; 
birth spacing, height, pre-delivery weight and 
pregnancy weight gain, age, parity, educational 
level, economic status, ANC, maternal exposure 
to tobacco and hypertension anaemic. 
 
The Bayesian model on the other hand using 
same variables as the frequentist model 
produced age, parity and ANC to be risk factors 
associated with low birth weight. Again, all the 
other factors like residence, Region and 
educational levels considered in the model are 



 
 
 
 

Fosu et al.; BJAST, 16(2): 1-15, 2016; Article no.BJAST.25753 
 
 

 
9 
 

not significant. This stands to reason that                    
using Bayesian approach may unveil                   
additional risk factor(s) in predicting low                       
birth weight which might not come out clearly 
when using the frequentist approach. However 
the high risk for mothers bearing their eighth 
child found from both models must be a source 
of worry. 
 

Comparing the two models we find that the errors 
associated with the Bayesian model are much 
lower than the frequentist model; an indication 
that the Bayesian model may predict better even 
with non informative priors. This corroborates 
with the study conducted by [3] who also in 
comparing the two methods found the Bayesian 
to perform better. 
 

Table 1. Relationship between socio-demographic cha racteristics of mothers and LBW 
 

Indicator   LBW (< 2.5 kg)  Normal ( ≥ 2.5 kg)     Total  
N (%) N (%) N (%) 

Baby’s weight        
 183 (13.7) 1153 (86.3) 1336 (100) 
Mothers age       
≤24 55 (4.1) 232 (17.4) 287 (21.3) 
25 – 34 88 (6.5) 609 (45.6) 697 (52.1) 
35+ 40 (2.8) 312 (23.2) 352 (26.0) 
Total  183 13.7 1153 (86.4) 1336 (100) 
Antenatal care       
Attended  182 (13.6) 1147 (85.9) 1329 (99.5) 
Not attended 1 (0.1) 6 (0.4) 7 (0.5) 
Total  183 (13.7) 1153 (86.3) 1336 (100) 
Area/location        
Urban  85 (6.4) 511 (38.2) 569 (44.6) 
Rural  98 (7.3) 642 (48.1) 740 (55.4) 
Total  183 (13.7) 1153 (86.3) 1336 (100) 
Children ever born        
1 65 (4.9) 246 (18.4) 311 (23.3) 
2 34 (2.5) 199 (14.9) 233 (17.4) 
3 29 (2.2) 203 (15.2) 232 (17.4) 
≥4 55 (4.1) 504 (37.9) 559 (42.0) 
Total  183 (13.7) 1153 (86.3) 1336 (100) 
Wealth index quintiles (Economic status)     
Poorest 46 (3.4) 319 (23.9) 365 (27.3) 
Second 35 (2.6) 229 (17.1) 264 (19.8) 
Middle 40 (3.0) 185 (13.8) 225 (16.8) 
Fourth 34 (2.5) 209 (15.6) 243 (18.2) 
Richest 28 (2.1) 211 (15.8) 239 (17.9) 
Total  183 (13.7) 1153 (86.3) 1336 (100) 
Mother’s education        
Pre school 0 (0.0) 2 (0.2) 2 (0.2) 
Primary 44 (4.9) 227 (25.4) 271 (30.3) 
Middle 64 (7.2) 347 (38.8) 411 (46.0) 
Secondary+ 34 (3.8) 176 (19.6) 210 (23.4) 
Total  142 (15.9) 752 (84.1) 894 (100) 
Region        
Western 8 (0.6) 81 (6.1) 89 (6.7) 
Central 30 (2.2) 161 (12.1) 191 (14.3) 
Greater Accra 14 (1.0) 123 (9.2) 137 (10.3) 
Volta 8 (0.6) 64 (4.8) 72 (5.4) 
Eastern 11 (0.8) 75 (5.6) 86 (6.4) 
Ashanti 19 (1.4) 96 (7.2) 115 (8.6) 
Brong Ahafo 13 (1.0) 71 (5.3) 84 (6.3) 
Northern 22 (1.6) 159 (11.9) 181 (13.5) 
Upper East 29 (2.2) 157 (11.8) 186 (13.9) 
Upper West 29 (2.2) 166 (12.4) 195 (14.6) 
Total  183 (13.7) 1153 (86.3) 1336 (100) 
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Table 2. Logistic regression model 
 

Parameter Estimate  
(β)  

Std. error z-value Pr(>|z|) 95% 
confidence intervals 

Odds ratio MSE 

Intercept 0.085417 1.379637 0.062 0.95063 -2.5697490  2.8503370 1.089171 1.9033700 
Age  0.088379 0.097531 0.923 0.35590 -0.1034452 0.2726374 1.092402 0.00951215 
Age sqd. -0.00156 0.001575 -0.992 0.32107 -0.0045774 0.0016117 0.998441 0.00000024 
Parity 2 0.342182 0.244936 1.397 0.16241 -0.1334970 0.8290040 1.408017 0.0599927 
Parity 3* 0.607238 0.281534 2.157 0.03101 0.0611689 1.1677160 1.835355 0.0792600 
Parity 4* 0.783020 0.333863 2.345 0.01901 0.1402631 1.4530570 2.188070 0.1114620 
Parity 5* 1.179091 0.402977 2.926 0.00343 0.4119609 2.0000360 3.251417 0.1623880 
Parity 6* 1.181578 0.498824 2.369 0.01785 0.2480639 2.2228760 3.259514 0.2488216 
Parity 7 0.654110 0.493297 1.326 0.18484 -0.2915003 1.6513880 1.923429 0.2433382 
Parity 8** 2.602640 1.086394 2.396 0.01659 0.8607378 5.5521170 13.49933 1.1802343 
Parity 9 0.224840 0.703290 0.320 0.74920 -1.0966773 1.7057604 1.252122 0.4940094 
Parity 10* 1.820419 1.157665 1.572 0.11584 -0.1206060 4.8441809 6.174445 1.3401682 
ANC 2 -0.17949 1.105634 -0.162 0.87104 -2.0207868 2.7847656 0.835696 1.2224080 
Locality 2 0.033159 0.202667 0.164 0.87004 -0.3639370 0.4314230 1.033715 0.0410733 
Economic status 2 -0.02504 0.248776 -0.101 0.91984 -0.5103671 0.4674914 0.975271 0.0618880 
Economic status 3 -0.22517 0.260080 -0.866 0.38661 -0.7333866 0.2883160 0.79838 0.0676405 
Economic status 4 0.103000 0.285934 0.360 0.71868 -0.4529114 0.6702375 1.108491 0.08175702 
Economic status 5 0.360045 0.326952 1.101 0.27080 -0.2758790 1.0079452 1.433394 0.1068960 
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Table 3. Bayesian posterior model 
 

Parameter Mean ( β) Std. dev. Odds ratio 95% Bayesian credible interv al MSE Std. error  
Lower Upper  

Intercept -4.514712 5.3052 0.010947 -14.49495  6.1892 0.0211000 0.14530 
Age -0.216483 0.1887 0.805346 -0.57182  0.1685 0.0000267 0.00517 
Age square* 2.256857 2.0140 9.553017 -1.80848   6.0158 0.0030400 0.05516 
Parity 2 0.363909 0.2562 1.438943 -0.13795   0.8831 0.0000492 0.00701 
Parity 3 0.619332 0.2946 1.857687 0.06318   1.2127 0.0000651 0.00806 
Parity 4 0.827847 0.3352 2.288387 0.17143   1.4874 0.0000842 0.00918 
Parity 5 1.249233 0.4146 3.487667 0.44757   2.0626 0.0001280 0.01130 
Parity 6 1.259043 0.5216 3.522049 0.26459    2.3289 0.0002040 0.01420 
Parity 7 0.711070 0.4961 2.036169 -0.23461   1.6805 0.0001840 0.01350 
Parity 8** 3.168589 1.3237 23.77392 1.12369   6.2351 0.0013100 0.03620 
Parity 9 0.347425 0.7295 1.415418 -1.03334  1.8242 0.0003990 0.01990 
Parity 10 2.461445 1.3712 11.72174 0.14548   6.0874 0.0014100 0.03750 
ANC 2 0.255195 1.3712 1.290713 -1.92678  3.4620 0.0014100 0.03750 
Locality 2 0.024328 0.2045 1.024626 -0.37678  0.4290 0.0000313 0.00560 
Economic status2 -0.007232 0.2531 0.992794 -0.50384  0.5040 0.0000480 0.00693 
Economic status3 -0.230446 0.2618 0.794179 -0.75038  0.2933 0.0000514 0.00717 
Economic status4 0.096833 0.2888 1.101676 -0.46341  0.6782 0.0000625 0.00791 
Economic status5 0.400218 0.3309 1.492150 -0.25450   1.0546 0.0000821 0.00906 
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Table 4. Comparing results of logistic regression a nd Bayesian models 
 

Frequentist analysis  (Logistic regression ) Bayesian posterior analysis  (Non-informative priors ) 
Parameter Mean ( β) S.E S.D Odds 

ratio 
95% confidence 

intervals 
Mean (β) S.E S.D Odds ratio 95% credible 

intervals 
Intercept 0.0854 1.3796 50.37 1.0892 -2.57 2.85 -4.515 0.1453 5.31 0.0109 -14.49 6.19 
Age  0.0884 0.0975 3.561 1.0924 -0.10 0.27 -0.216 0.0052 0.19 0.8053 -0.57 0.17 
Age sqd.* -0.002 0.0016 0.058 0.9984 -0.00 0.00 2.2569 0.0552 2.01 9.5530 -1.81 6.02 
Parity 2 0.3422 0.2449 8.943 1.4080 -0.13 0.83 0.3639 0.0070 0.26 1.4389 -0.14 0.88 
Parity 3 0.6072 0.2815 10.28 1.8354 0.06 1.17 0.6193 0.0081 0.29 1.8577 0.06 1.21 
Parity 4* 0.7830 0.3339 12.19 2.1881 0.14 1.45 0.8278 0.0092 0.34 2.2884 0.17 1.49 
Parity 5* 1.1791 0.4030 14.71 3.2514 0.41 2.00 1.2492 0.0113 0.41 3.4877 0.45 2.06 
Parity 6* 1.1816 0.4988 18.21 3.2595 0.25 2.22 1.2590 0.0142 0.52 3.5220 0.26 2.33 
Parity 7* 0.6541 0.3933 18.01 1.9234 -0.29 1.65 0.7111 0.0135 0.50 2.0362 -0.23 1.68 
Parity 8** 2.6026 1.0864 39.66 13.499 0.86 5.55 3.1686 0.0362 1.32 23.774 1.12 6.24 
Parity 9 0.2248 0.7032 25.68 1.2521 -0.10 1.71 0.3474 0.0199 0.73 1.4154 -1.03 1.82 
Parity 10* 1.8204 1.1577 42.27 6.1744 -0.12 4.84 2.4614 0.0375 1.37 11.722 0.15 6.09 
ANC 2 -0.179 1.1056 40.37 0.8357 -2.02 2.78 0.2552 0.0375 1.37 1.2907 -1.93 3.46 
Locality 2 0.0332 0.2027 7.399 1.0337 -0.36 0.43 0.0243 0.0056 0.20 1.0246 -0.38 0.43 
Economic status 2 -0.250 0.2488 9.083 0.9753 -0.51 0.47 -0.007 0.0069 0.25 0.9928 -0.50 0.50 
Economic status 3 -0.225 0.2601 9.496 0.7984 -0.73 0.29 -0.230 0.0072 0.26 0.7942 -0.75 0.29 
Economic status 4 0.1030 0.2859 10.44 1.1085 -0.45 0.67 0.0968 0.0079 0.29 1.1017 -0.46 0.68 
Economic status 5* 0.3600 0.3270 11.94 1.4334 -0.28 1.01 0.4002 0.0091 0.33 1.4922 -0.25 1.05 
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Fig. 1. Density plots and trace plots of the poster iors 
 
6. CONCLUSION 
 
The results from the frequentist and the Bayesian 
models show that, the two approaches can yield 
similar results using same data set. However, 
there are factors that the Bayesian technique can 
unfold which might not be the case using the 
frequentist model. With respect to our data set, 
using the Stepwise approach for the classical 
methods, antenatal care (ANC) was never found 
to be significant yet it came out clearly as one of 
the significant factors in the Bayesian analysis. 
This stands to reason that the Bayesian models 
could reveal something that the usual frequentist 

models could not. We were able to show that the 
Bayesian method may have several benefits over 
the frequentist one, particularly with respect to 
our data. The inclusion of informative priors 
might however be useful in narrowing the gap of 
credible interval and provide precise choice 
between the null and alternative hypothesis. In 
case of borderline frequentist results however, 
the MCMC method may be more conservative, 
particularly without priors. 
 
Comparing the two approaches with respect to 
our data set, we can infer (from Table 4) that 
using Bayesian model provides better estimates 
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in predicting LBW among babies in Ghana. We 
note however that to better understand the 
phenomenon under study the two methods could 
be used together. Our findings further revealed 
that LBW is not only a public health problem but 
also a socio-cultural issue. 
 
The results of this study indicate that for                   
reducing the incidence of LBW, the                      
measures need to focus attention on                      
nutrition education to facilitate better                           
weight gain during pregnancy focusing more on 
the girl-child education, regular antenatal care 
visits and discouraging teenage and old age 
pregnancy, bearing more children as well as 
formulating policies that will reduce poverty 
among rural women. The girl child education 
policy must also be given all the needed 
resources it requires in other to achieve the 
desired set targets. 
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