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a b s t r a c t

In this Letter the transition properties of the transverse Ising model with temperature-dependent param-
eters are investigated. By supposing the simple dependent relations of the interaction parameters on
temperature, the phase diagrams are straightforwardly obtained, which may be used to describe the
closed-loop behavior for the phase transition of the systems. In fact, the reentrant phase behavior of
the system obtained by this Letter is to some extent coincident with the phenomena exhibited in some
colloids and complex fluid mixtures as well as proteins.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The study of complex fluids, like some colloids and fluid mix-
tures has been being an important topic in physics and chemistry,
and the complexity and peculiarity of these systems have been
widely investigated by the theoretical and experimental research-
ers [1–14]. Davies et al. studied the solubility property of nicotine-
water system [6]. Walker et al. found that the phenomenon of
reappearing phases is caused by the complex competition between
entropy and energy in a solvent containing hydrogen bonds [7].
Moelbert et al. obtained the phase diagram for an aqueous solution
of nonpolar solute particles by mean-field calculation [8]. These
studies showed the complexity of the binary solutions, and indi-
cated the strength of interaction parameters among the system
may increase with temperature [9]. An increase of temperature
will lead to the overcome of enthalpic contribution of the two dif-
ferent components [10]. Meanwhile some results generated the
closed-loop phase diagrams of concentration against temperature.
These shapes of phase diagrams implied that the systems may have
more interesting and attractive phase behaviors. The earliest
closed-loop phase diagram was obtained in the nicotine-water
system [11]. Lang et al. studied the reentrant behavior of alkyl
polyoxyethylene nonionic surfactants [12]. Nord et al. studied
the critical phenomena in polyvinyl alcohol-acetate copolymer
solutions [13]. Narayanan and Kumar reviewed some important
developments regarding phenomenon of reentrant phase

transitions in binary and multicomponent liquid mixtures [14].
Recently Dias studied the cold denaturation of proteins within
the framework of numerical simulations of the Mercedes-Benz
model for water [15], and the system also exhibits the reappearing
phase behavior. In fact, the phenomenon of reentrant phase transi-
tion is intrinsically novel and is discovered in amazingly diverse
systems such as binary gases, liquid crystals, microemulsions, gels,
granular superconductors, proteins, organometallic compounds,
crystals [14–17].

Theoretically, Ising or Ising-like model has a long and venerable
tradition in the applications to order–disorder systems, such as fer-
romagnetic or ferroelectric systems, binary alloys, lattice gases,
complex fluid, and even proteins. In ferromagnetic or ferroelectric
field, Ising model has a wide and solid application [18–22]. In
proteins field, Poland and Scheraga, for example, discussed a com-
prehensive survey of these models to deal with the coil-to-helix
transition in proteins [23]. Further Badasyan et al. studied the
cooperativity and stability of a helix-coil transition using a similar
Ising-like model [24]. Zamparo et al. show an example for the case
of Ising-like model by studying the kinetics of the Wako–
Saito–Munoz–Eaton model of protein folding [25]. In complex fluid
field, Campi and Krivine applied usual Ising model with tempera-
ture-dependent effective interaction to complex fluids [26], and
obtained some meaningful results which can mimic the shapes of
the phase diagram of complex fluids. In this Letter we will study
the reentrant phase behavior of the system by using the transverse
Ising model (TIM). Considering the temperature dependences of
two kinds of effective interaction parameters, we will produce
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possible phase diagrams with the reentrant phase behavior and
density curves against temperature with closed-loop shape.

2. The model

The Hamiltonian of the transverse Ising model is [18–22].

H ¼ �
X

i

XSx
i �

X
hi;ji

JSz
i S

z
j ð1Þ

whereSx
i and Sz

i are the x- and z-components of a pseudospin-1/2
operator at site i in the lattice, and

P
hi;ji runs over only distinct

nearest-neighboring pairs. X and J are interaction parameters, and
usually called the transverse field and exchange parameters,
respectively.

Within the framework of the mean-field theory, the z compo-
nent of the pseudospin can be written as [18–22],

hSz
i i ¼ ðr=2x0Þ tanhðx0=2kBTÞ ð2Þ

where x2
0 ¼ X2 þ r2 and r ¼

P
iJhS

z
i i. The ensemble average of the

pseudo-spinhSz
i i is understood as the order parameter of the system.

In fact, hSz
i i is used to describe the transition of the system from

order (hSz
i i–0) to disorder (hSz

i i ¼ 0) state. For complex fluid system,
we use usually the average occupation number or density q of the
site i of the lattice to describe the transition properties [26],
whereq ¼ hSz

i i þ 1=2. In the following we can calculate the density
q and analyze the transition behaviors for the square lattice system.

3. The numerical calculations and phase diagrams

Experimental studies in complex fluids demonstrated that the
interaction parameters in the system may increase with increasing
temperature [9,10]. Even in some crystal materials the interaction
parameters showed positive relations with temperature [16,17].
Theoretically, by introducing the effective exchange interaction
with temperature dependence to the usual Ising model, Campi
and Krivine generated the phase diagrams of closed-loop shape,
and described the reentrant phase behavior of the phase diagram
of complex fluids [26]. Commonly, a microscopic Ising model can-
not have a temperature-dependent parameter. However, introduc-
ing the effective model (here the T-dependence) to a microscopic
theory will help to understand the physics of complicated systems
in a simple way [26]. In complex fluid, for example, the solvent effect
may be to bring about a renormalized, temperature-dependent
effective parameter [27]. In the transverse Ising model, therefore,
we suppose the effective exchange and effective transverse field
parameters J and X have simple temperature-dependent relations
as follows:

J ¼ J0
T
T0

� �n

and X ¼ X0
T
T0

� �m

ð3Þ

where T0 are arbitrary constant. In the following the effective
parameters J0, X0 and kBT are reduced by kBT0, and notated still as
J0, X0 and t for simplicity. In this way, we can calculate the density
and phase diagrams for the transverse Ising model with effective
temperature-dependent parameters. The interest of these calcula-
tions lies in three aspects. First, it is convenient to obtain the tem-
perature dependence of the density with the closed-loop shape
under the framework of the mean-field approximation. Secondly,
the four kinds of the possible phase transition diagrams describing
the reentrant phase behavior of the system can be obtained in the
same framework without introducing supplementary assumptions.
Finally, not only the exchange but also transverse field parameters
are considered as effective temperature-dependence parameters,
therefore the phase transition properties have obvious differences
with the previous work to a large extent.

Figure 1a shows the phase diagram of the effective exchange
parameter J0 against temperature t for different n. For n not larger
than 1.0 (red and blue curves), when J0 is very small, the system is
at disordered state for any given temperature, but when J0 is large,
the system is ordered at lower temperatures and disordered at
higher temperatures. This situation corresponds just to the usaul
phase diagram of the TIM with effective temperature-independent
parameters. For the case of n larger than 1.0 (green curve), at
higher temperatures the system is at disordered state for smaller
values of J0 and can be at ordered state for larger J0 values. At lower
temperatures, however, the system may be at disordered state for
a large range of J0 values. This is anomalous compared with the
above property for the usual TIM with effective temperature-
independent parameters because the usual system eventually ends
at ordered state when J0 is large enough. This anomaly could be
attributed to the fact that at lower temperatures, the effective
exchange parameter J increases with temperature so slowly that
the contribution of effective exchange interaction to the ordered
state is diminished to a large extent.

Meanwhile, the phase diagram shows a crossover point of tem-
perature t = 1. As the parameter n increases the disordered region
of the system increases at below this temperature and decreases
at above this temperature.

In fact, the anomalous phase diagram corresponds to a closed-
loop density curve against temperature, as shown in Figure 1b.
The system is disordered at lower temperatures and becomes
ordered at intermediate temperatures and again assumes disor-
dered state at higher temperatures. As the effective exchange
parameter J0 decreases, the closed-loop region for the ordered state
decreases. For the usual phase diagram, the corresponding density
curves are shown in Figure 1c and d. The system is ordered at
lower temperatures and disordered at higher temperatures. Maxi-
mum density of 1.0 or minimum one of 0.0 is obtainable when
values of n are less than 1.0. Generally, as n decreases from
Figure 1b–d (with constant J0), on the one hand, the temperature
region for the ordered state also decreases. On the other hand,
the temperature region for the ordered state transforms from
higher temperatures to lower temperatures, and their shape pro-
files change from closed-loop shape to inverted-U shape.

Figure 2a shows the phase diagram of n against temperature t
for different J0. When J0 is small (red curve), for small values of n,
the system is at ordered state at lower temperatures and at disor-
dered state at higher temperatures. For intermediate values of n,
the system is always at disordered state for any given temperature.
For larger values of n, the system is at disordered state at lower
temperatures and ordered state at higher temperatures.

When J0 is large (blue curve), for small and larger values of n,
the system is consistent with the situation when J0 is small (red
curve) respectively. For intermediate values of n, however, the sys-
tem is at disordered state at lower temperatures, ordered state at
intermediate temperatures and disordered state at higher
temperatures.

The corresponding density curves are shown in Figure 2b and
c. For small values of n, the system is ordered at lower tempera-
tures and disordered at higher temperatures and maximum den-
sity of 1.0 or minimum one of 0.0 is obtainable. For a large range
of n greater than 1, the system is at a disordered state at lower
temperatures for certain J0. This shows the same anamoly for
the system as illustrated in Figure 1a. For intermediate values
of n, the system is disordered at lower temperatures and becomes
ordered at intermediate temperatures and again assumes disor-
dered state at higher temperatures. Therefore, a closed-loop
density curve was obtained. For a large value of n, the system
is disordered at lower temperatures and becomes ordered at
higher temperatures. Thus the figure changes from closed-loop
shape to U shape.
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Figure 2. (a) The phase diagram of the exponent n against temperature t for different exchange parameter J0 (X0 = 1.1, m = 2.2). (b–c) The density curves for different n in
relation to the above phase diagram (for J0 = 1.2 and 0.9, respectively). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Figure 1. (a) The phase diagram of the exchange parameter J0 against temperature t for different exponents n (X0 = 1.1,m = 2.2). (b–d) The density curves for different
exchange parameter J0 in relation to the above phase diagram (for n = 1.5, 1.0 and 0.6, respectively).
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Figure 3a shows the phase diagram for X0 against temperature t
for various m. For the smaller n and m (red curve), the usual phase
behavior is exhibited. This is the same as the phase diagram of the
transverse Ising model with temperature-independent parameter,
i.e., the system is ordered at lower temperatures and disordered
at higher temperatures [22]. But when m is intemediate (blue
curve), for small values of X0 the system is at disordered state at
lower temperatures and ordered state at higher temperatures.
For larger values of X0, the system is always at disordered state
for any given temperature. When m is larger (green curve), for
small and large values of X0, the system is consistent with the
situation when m is intemediate (blue curve) respectively. For inte-
mediate values of X0, however, the system is at disordered state at
lower temperatures, ordered state at intermediate temperatures
and disordered state at higher temperatures. Hence the disordered
region becomes dorminant with the increase of O and a reentrant
phase behavior can be described.

The corresponding density curves are shown in Figure 3b. For
certain X0, when m is large, the system is disordered at lower tem-
peratures and becomes ordered at intermediate temperatures and
again assumes disordered state at higher temperatures. Therefore,
a closed-loop density curve was obtained. Further calculation indi-
cates that with increasing X0 the closed-loop region for the
ordered state decreases. As m decreases, the closed-loop shape is
lost.

Figure 4a is the phase diagram of m against temperature t for
various X0. When X0 is small (blue curve), for small values of m,
the system is at disordered state at lower temperatures and
ordered state at higher temperatures. For larger values of m, the

system is at disordered state at lower temperatures, ordered state
at intermediate temperatures and disordered state at higher tem-
peratures. It represents the reentrant phase behavior of the system.

When X0 is large (red curve), for small and large values of m,
the system is consistent with the situation when X0 is small (blue
curve) respectively. For intermediate values of m, however, the sys-
tem is always at disordered state for any given temperature.

The corresponding density curves are shown in Figure 4b. A
closed-loop density curve was obtained when m is large. With
increasing m, the reentrant phase region decreases and shifts to
the lower temperature obviously.

4. Conclusions

In this Letter the transition properties of the transverse Ising
model with temperature-dependent parameters are studied. With
the help of supposed exponent dependent relations of the effective
interaction parameters on temperature, the possible phase dia-
grams have been obtained by using the mean-field approximation.
Among these phase diagrams, there exist the normal and anoma-
lous phase diagrams. The anomaly in the phase diagram is com-
pletely determined by the closed-loop shapes of the density curves.

The numerical calculations indicate that the phase diagrams
depend sensitively and dramatically on the exponents n and m,
and the strength of effective interaction parameters J and X. With
changing the effective exchange and effective transverse field
parameters, the system is translatable between disordered and
ordered states which exhibit the reentrant phase behavior.
Although these results are qualitative and have not been compared

Figure 3. (a) The phase diagram of the transverse field parameter X0 against temperature t for different exponent m (for J0 = 1.4), and (b) The density curves in relation to the
above phase diagram (for J0 = 1.4 and n = 1.5).

Figure 4. (a) The phase diagram of the exponent m against temperature t for different transverse field parameter X0 (for J0 = 1.3, n = 1.6), and (b) The density curves in
relation to the above phase diagram (for X0 = 1.8).

124 B.J. Simons et al. / Chemical Physics Letters 605–606 (2014) 121–125



Author's personal copy

with experiments for specific materials, they show a tendency that
may be useful in future theoretical and experimental investiga-
tions of the complex fluid systems.

Appendix

Considering that hSz
i iwill be very small while the temperature is

near the transition temperature, we have the following equation
with respect to the transition temperature and interaction
parameters:

1 ¼ ðzJ=2XÞ tanhðX=2kBTÞ ðA-1Þ

where z is the coordination number of a site in the lattice system,
and for the square lattice z is 4. Substituting Eq. (3) into Eq. (A-1),
we have obtained a transcendental equation as follows:

1 ¼ ½zJ0ðT=T0Þn�m
=2X0� tanh½X0ðT=T0Þm=2kBT� ðA-2Þ

Obviously, the phase diagrams showing the relations between the
transition temperature and interaction parameters can be deter-
mined from Eq. (A-2). In fact, Eq. (A-2) can be calculated numeri-
cally by Monte Carlo simulation or common software such as
Mathcad. Here we take the phase diagram of X0 against tempera-
ture t for example to show Monte Carlo calculation, where
J0 = 1.4, n = 1.5 and m = 1.1. It can be found that when the size of
random number reaches 106 the results of Monte Carlo simulation
are in complete agreement with ones of Mathcad. The calculating
program of Monte Carlo simulation is as follows:

n = 1.5; m = 1.1;
N = 1000000;
f = inline(‘X-2.8⁄t^0.4⁄tanh(0.5⁄X⁄t^0.1)’);
rand(‘state’, sum(100⁄clock));
Xt = rand(N,2);
Xt (:,1) = Xt (:,1)⁄4;
Xt (:,2) = Xt (:,2)⁄6;
for k = 1:N

fXt (k) = f(Xt (k,1), Xt (k,2));

end
fabs = abs(fXt);
id0 = find(fabs<1e-4);
plot(Xt (id0,1), Xt (id0,2),‘⁄’)
axis([0406])

References

[1] K. Murata, H. Tanaka, Nat. Mater. 11 (2012) 436.
[2] R. Dong, J.C. Hao, Chem. Rev. 110 (2010) 4978.
[3] J. Liu, H. Gomez, J.A. Evans, T.J.R. Hughes, C.M. Landis, J. Comput. Phys. 248

(2013) 47.
[4] M. Laurati, C.M.C. Gambi, R. Giordano, P. Baglioni, J. Teixeira, J. Phys. Chem. B

114 (2010) 3855.
[5] A. Reinhardt, A.J. Williamson, J.P.K. Doye, J. Carrete, L.M. Varela, A.A. Louis, J.

Chem. Phys. 134 (2011) 104905.
[6] N.S.A. Davies, R.D. Gillard, Trans. Met. Chem. 25 (2000) 628.
[7] J.S. Walker, C.A. Vause, Sci. Am. (1987) 98.
[8] S. Moelbert, P. De Los Rios, Macromolecules 36 (2003) 5845.
[9] S.H. Chen, J. Rouch, F. Sciortino, P. Tartaglia Chen, J. Phys.: Condens. Matter 6

(1994) 10855.
[10] L.A. Davies, G. Jackson, L.F. Rull, Phys. Rev. Lett. 82 (1999) 5285.
[11] C.S. Hudson, Z. Phys. Chem. 47 (1904) 113.
[12] J.C. Lang, R.D. Morgan, J. Chem. Phys. 73 (1980) 5849.
[13] F.F. Nord, M. Bier, S.N. Timasheff, J. Am. Chem. Soc. 73 (1951) 289.
[14] T. Narayanan, A. Kumar, Phys. Rep. 249 (1994) 135.
[15] C.L. Dias, Phys. Rev. Lett. 109 (2012) 048104.
[16] M.M. Xavier Jr., F.A.O. Cabral, J.H. de Araújo, T. Dumelow, A.A. Coelho, Mat. Res.

7 (2004) 355.
[17] R.W. McCallum, I.R. Fisher, N.E. Anderson, P.C. Canfield, M.J. Kramer, K.W.

Dennis, IEEE Trans. Magn. 37 (2001) 2147.
[18] C.L. Wang, W.L. Zhong, P.L. Zhang, J. Phys.: Condens. Matter 3 (1992) 4743.
[19] T. Kaneyoshi, Phys. A 293 (2001) 200.
[20] J.M. Wesselinowa, Solid State Commun. 121 (2002) 489.
[21] A. Saber, S. Lo Russo, G. Mattei, A. Mattoni, JMMM 251 (2002) 129.
[22] B.H. Teng, H.K. Sy, Phys. Rev. B 70 (2004) 104115.
[23] D. Poland, H.A. Scheraga, Theory of Helix-Coil Transitions in Biopolymers,

Academic Press, New York, 1970.
[24] A. Badasyan et al., Phys. Rev. Lett. 109 (2012) 068101.
[25] M. Zamparo, A. Pelizzola, Phys. Rev. Lett. 97 (2006) 068106.
[26] X. Campi, H. Krivine, Europhys. Lett. 66 (2004) 527.
[27] C.N. Likos, Phys. Rep. 348 (2001) 267.

B.J. Simons et al. / Chemical Physics Letters 605–606 (2014) 121–125 125


