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ABSTRACT 

Acute respiratory infection (ARI) range, in spectrum, from mild colds and coughs to life-

threatening pneumonias. ARI particularly pneumonia is the major cause of morbidity and  

mortality among young children under five in developing countries with Ghana not an      

exception. In this study, we compared the linear SARIMA Model and the nonlinear two           

regime SETAR Model in predicting pneumonia cases in northern region of Ghana. Data                   

on monthly pneumonia cases obtained from the Tamale Teaching Hospital database was     

modeled using SARIMA and SETAR models. The results revealed that SARIMA (1, 1,               

1)(0, 0, 1)12 model was the best SARIMA model for the pneumonia cases. This model has               

the least AIC of 83.50, AICc of 83.71 and BIC of 96.08. Also, SETAR (2; 4, 3) model                       

was identified as the best SETAR model. This model has an AIC of -165.42 and BIC of               

90.06 as the least among the possible models based on the grid search for the best model. 

Diagnostic checks of both models with the Ljung-Box test and ARCH-LM test revealed                 

that both models were free from higher-order serial correlation and conditional     

heteroscedasticity respectively. Based on the forecast assessment from the linear                    

SARIMA and the nonlinear SETAR models, the forecast measures suggest that the               

nonlinear SETAR model outperform the linear SARIMA model. A comparative analysis                  

of the forecasting accuracy of these models with the Diebold-Mariano test revealed that               

there were no significant difference in the forecasting performance of the two models.                     

The two models were therefore proposed for predicting Pneumonia cases in the region. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Background of the Study 

Acute respiratory infection (ARI) range, in spectrum, from mild colds and coughs to life 

threatening pneumonias. ARI particularly pneumonia is the major cause of morbidity and 

mortality among young children under five in developing countries, accounting for more than  

95 percent of all new cases worldwide. According to Black et al. (2003), between 11 million   

and 20 million children with pneumonia will require hospitalisation and more than 2 million   

will die. Pneumonia accounts for approximately 1.9 million deaths globally in children under 

five each year (Black et al., 2003 and Williams et al., 2002).  

This is worrying as most pneumonia deaths should be preventable. Further, pneumonia     

remains the most common reason for adult hospitalisation in Sub-Saharan Africa, with an 

estimated 4 million episodes and 200,000 deaths each year. In the year 2011, there were an 

estimated 120 million episodes of childhood pneumonia globally of which 14 million  

progressed to severe disease with 1.3 million deaths (Zar et al., 2013). Most of these deaths 

(81%) occurred in children under 2 years of age. The incidence and the severity of childhood 

pneumonia was  higher in Africa and South East Asia, which account for 30% and 39% 

respectively of global burden of severe causes. 

 Pneumonia is a form of acute respiratory infection that affects the lungs and is the leading    

cause of deaths in children worldwide (Black et al., 2003). Pneumonia can be caused by  

bacteria, viruses, or fungi. Streptococcus pneumonia is the most common cause of bacterial 
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pneumonia in children whilst, Haemophilus influenza type b (Hib) is the second most common           

cause of bacterial pneumonia. Respiratory syncytial is the most common cause of pneumonia. 

Majority of pediatric pneumonia cases in developing countries are due to bacterial causes. In 

particular, the most common organism is Streptococcus pneumonia, which has been identified 

in 30%-50% of pneumonia cases. The second most common bacteria causing pneumonia is    

Hib, followed by Staphylococcus aureus and Klebsiella pneumonia. Viral pathogens such as 

Respiratory Syncytial Virus (RSV) influenza A and B, parainfluenza, human  

metapneumovirus, and adenovirus can also lead to ARI. Poll and Opal (2009) in their study of 

pathogenesis, treatment and prevention of pneumoccoca pneumonia has found that severe 

pneumonia is the leading cause of community-acquired pneumonia worldwide. It is a    

bacterium that is a common resident in the upper respiratory tract of humans causing many 

individuals to be carriers. It is estimated that 10% of adults and 20%-40% of healthy children 

are carriers, allowing the organism to be maintained in human populations. It is transmitted 

through direct contact with respiratory secretions, most commonly of those in the same 

household. Although pneumonias are not considered highly contagious, large community-wide 

outbreaks can still occur, especially in urban settings or areas with high population density. It 

commonly affects patients with Acquired Immunodeficiency Syndrome (AIDS) and other 

immune compromised states and the elderly as well as children under five. 

Pneumococcal pneumonia usually begins as a mild upper airway infection similar to a viral 

respiratory infection. If the pneumococcal bacteria enter the lower airways despite responses    

to prevent its descent such as coughing, mucous clearance, and local immune defenses, 

pneumonia will develop abruptly (Poll and Opal, 2009). The initial symptoms of    

pneumococcal pneumonia include fever, chills, fatigue, cough, and shortness of breath. The 
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cough associated with pneumococcal pneumonia will then become purulent with blood-tinged 

sputum and will be associated with chest pain. If left untreated, this disease can progress to   

acute respiratory failure, septic shock or death within days of onset. Severe pneumonia can     

also have clinical manifestations of meningitis, sepsis, pericarditis, and endocarditis. The more 

severe manifestations often occur in those with immune compromised states including the 

elderly, neonates, Human Immunodeficiency Virus (HIV) positive individuals, and asplenic 

individuals. Hib is the second most common bacteria- causing pneumonia worldwide. Hib 

pneumonia caused about 7.9 million cases worldwide in the year 2000 and accounted for 16% 

of total pneumonia deaths in children (Izadnegahdar et al., 2013). In a study of disease caused 

by Hib in children younger than five years, Hib‟s total mortality in children age 1-59 months 

was high at 371,000 deaths yearly. Combined with Severe pneumonia, these two pathogens      

are directly responsible for as many deaths worldwide as HIV/AIDs, malaria, and tuberculosis 

combined (Rudan and Campbell, 2009).  

In addition to causing pneumonia, Hib has other severe and life-threatening manifestations of 

meningitis and epiglottis (Watt et al., 2009).  Similarly to Severe pneumonia, Hib also resides 

in the nose and throat mucosa and can be spread through respiratory droplets (Hall, 2010). Hib 

pneumonia and pneumococcal pneumonia are both forms of lobar community-acquired 

pneumonias and present clinically in the same way. 

The most common viral cause of pneumonia is RSV which caused  33.8 million cases of       

Acute Lower Respiratory Infections (ALRI) in children under five in  2005 (Hall, 2010). This 

estimate corresponds to 22% of all ALRI and 3%-9% of ALRI-related deaths. RSV occurs 

worldwide, yet has the greatest burden of disease in developing countries; 96% of ALRI are 

caused by RSV and 99% of fatal cases of RSV were in developing countries in 2005 (Hall, 
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2015). RSV has been attributed to 15%-40% of children hospitalised for pneumonia or 

bronchiolitis in developing countries (Singh and Aneja, 2011). Age group primarily affected    

by RSV pneumonia is between 2 and 12 months of age. Specifically, the infants most at risk   

are those with underlying conditions including prematurity, lung disease, malnutrition, or 

congenital heart disease. RSV is a seasonal virus and occurs in cold seasons or wet seasons in 

temperate and Mediterranean climates, respectively. In islands in which there is perennial high 

rainfall, RSV seasonality can be difficult to predict (Weber et al., 1998). RSV bronchiolitis 

begins as an upper respiratory tract infection (URTI) with rhinitis, cough, and fever. These    

signs precede involvement of the lower respiratory tract in which patients begin to have 

shortness of breath, difficulty feeding, and respiratory distress (Simoes, 1999). In RSV 

bronchiolitis, unlike typical bacterial pneumonia, patients often also have a wheeze, prolonged 

expiratory phase, and air trapping, similar to asthmatics. RSV can also cause a pneumonia-like 

syndrome in one-third of cases, which requires longer respiratory support than bronchiolitis,  

and most often occurs in infants with underlying diseases. In a study in Pakistan, greater than 

25% of patients with RSV also had a co-infection with severe pneumonia or Hib (Singh and 

Aneja, 2011). Co-infection with bacteria is predicted account for a large part of the mortality 

caused by RSV (Simoes, 1999). Treatment in RSV bronchiolitis and pneumonia is mostly 

supportive with oxygen therapy and mechanical ventilation as needed (Simoes, 1999). In 

addition, since airway inflammation is a major factor in mortality due to RSV, the use of a     

long-acting beta adrenergic inhaler or inhaled racemic epinephrine are possible treatment 

options, although they have had mixed results in clinical studies. In developing countries, anti-

viral treatment with ribavirin is rarely used due to its high cost and lack of consensus on its 

efficacy in RSV.  
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Generally, pneumonia can be treated with antibiotics. Pneumonia is frequently an associated 

cause of mortality in children with other underlying conditions. Co-morbid conditions   

especially malnutrition, measles or HIV increase severity and risk mortality from pneumonia 

(Black et al., 2003). The World Health Organisation (WHO) estimated that there were              

more than 150 million cases of pneumonia each year and killing 1.6 million which accounts 

for 19% of all deaths worldwide. According to Paediatric Association of Ghana (PAG, 2010) 

pneumonia has been rated as one of the leading causes of under-five mortality and morbidity 

in Ghana, with twenty two percent of children dying from it. Due to the high incidence of 

pneumonia death revealed on existing literature especially under five which can have 

consequence on population growth and productivity in future, there is the need for stringent 

measures to curb the trend. This study therefore seek to compare both linear and non-linear      

time series models in predicting pneumonia cases in Northern Region of Ghana. 

1.2 Problem Statement 

Pneumonia kills more children under five than malaria, measles and AIDS combined (WHO, 

2013). It is the single major killer of children under five in developing world. In spite of this, 

relatively few global resources are dedicated to solving the problem and have received far less 

attention. Each year, more than two million children under five die of pneumonia in the 

developing world, compared to an estimated 800,000 children who die from malaria and     

around 300,000 children under five who die from AIDS (PAG, 2010). In the last decade there 

have been several advances and new interventions resulting in a substantial reduction in 

pneumonia incidence and improve outcomes. These include more widespread use of case 

management strategies, development and implementation of polysaccharide protein conjugate 



20 
 

vaccines, better prevention of HIV transmission and uptake of effective Antiretroviral Therapy 

(ART) of HIV – infected adults and children. As a result, there has been a considerable 

reduction in pneumonia mortality in children under five years of age from 1.7 million cases 

globally in 2000 to 1.3 million cases in 2011 (Zar et al. 2013). Nevertheless, pneumonia 

remains the major cause of deaths in children worldwide beyond the neonatal period. 

Recognising the symptoms  of pneumonia is the first step in reducing deaths among children 

under five. Caregivers or mothers play a critical role in recognising pneumonia‟s symptoms 

and immediately seeking appropriate care for their sick children. Indeed it is critical that 

caretakers or mothers     understand the importance of this disease and the risk it poses to their 

children‟s health. Yet, even though pneumonia is the leading killer of children in the 

developing world, most mothers and caregivers are ignorant about the danger signs and risk 

factors for pneumonia. Only about one in five caregivers know the danger signs of pneumonia 

(UNICEF, 2004). 

The increasing trend of this risk factor could be much worrying to the economic development   

of any state and world as a whole. Governments and other health institutions need to devote 

billions of dollars into the health sector in order to resolve this problem. Therefore, knowing     

the pattern of this disease could aid world health bodies to plan and develop policies that could 

be used to reverse the growing trend of this killer disease. Hence this study compares linear       

and non-linear time series models in predicting pneumonia cases in the                                      

Northern Region of Ghana. 

1.3 General Objective 

The main objective of this study is to develop appropriate SARIMA and SETAR models for 

predicting pneumonia cases in Northern Region of Ghana. 
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1.4 Specific Objectives 

i. To investigate the trend characterising pneumonia cases in Northern Region. 

ii. To compare the performance of the SARIMA and SETAR models in predicting 

pneumonia cases in Northern Region. 

iii. To predict future pneumonia cases beyond the period under consideration.  

 

1.5 Significance of the Study 

The findings of the study could be used by the Ministry of Health (MOH) to initiate policies to 

reduce the incidence of this condition in the Northern Region.  

In addition, the finding of the study would give an overview about the pattern of pneumonia 

cases in Ghana, therefore providing basis for further research about this disease in Ghana as a 

whole. Finally the findings of this study would contribute significantly to existing literature in 

health studies. 

 

1.6 Structure of the Thesis 

The thesis is organised into five chapters. Chapter one contains the introduction of the research 

work. Chapter two comprises of literature review. Chapter three outlines the methodology 

employed in this research, whiles chapter four presents the analysis and discussion of results. 

Chapter five is devoted to conclusion and recommendations. 
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CHAPTER TWO 

  

LITERATURE REVIEW 

2.0 Introduction 

This chapter reviews empirical works done on pneumonia cases and some relevant time series 

methods that have been used in this study. The chapter is divided into two main headings   

namely; empirical researches on pneumonia, empirical researches on time series models. 

2.1 Empirical researches on Pneumonia 

A number of researches have been carried out on pneumonia using different methodologies. 

UNICEF (2004) estimated that more than 150 million episodes of pneumonia occur every year 

among children under five in developing countries, accounting for more than 95 percent of all 

new cases worldwide. It has also been estimated that 26 percent of neonatal deaths are caused 

by severe infections during the neonatal period and a significant proportion of these infection 

are caused by pneumonia. 

Also, Theodoratou (2010) conducted a systematic review of the literature assessing the    

effect of pneumonia case management on mortality from childhood pneumonia. The 

review covered the following interventions: community case management with      

antibiotic treatment, and hospital treatment with antibiotics, oxygen, zinc and vitamin A. 

Pneumonia mortality outcomes were sought where available data were also recorded on 

secondary outcomes. They summarized results from randomized controlled trials (RCTs), 

cluster RCTs, quasi-experimental studies and observational studies across outcome 



23 
 

measures using standard meta-analysis methods. Their results estimate that community 

case management of pneumonia could result in a 70% reduction in mortality from pneumonia 

in 0–5-year-old children. In contrast, treatment of pneumonia episodes with zinc and vitamin   

A is ineffective in reducing pneumonia mortality. There was insufficient evidence to make a 

quantitative estimate of the effect of hospital case management on pneumonia mortality based 

on the published data. 

Again, Meyer et al. (2007) evaluate the impact of an intervention to reduce the duration of 

antibiotic treatment for pneumonia in a neurosurgical intensive care unit (ICU). The usage of 

antibiotics and the resultant costs were examined using interrupted time series analysis while 

resistance and device-associated infection rates were also described. Their result shows that 

intervention was associated with significant decrease from 949.8 to 626.7 after the intervention. 

This was mainly due to reduced consumption of second-generation cepha-losporins, imidazole 

and carbapenems. Similarly, total antibiotic costs showed a significant decrease from 13.16 

before to 7.31 after the intervention. The incidence of patients dying with pneumonia did not 

change significantly.  

Also, Victer et al. (1994) in a case study conducted in Brazil confirmed that in a number of 

community based studies, boys appears more frequently affected by pneumonia than girls. 

However, in clinical studies possibility of gender bias in seeking care cannot be ruled out,     

which may show male prepondence. 

Moreover, Shan (1994) in a study of risk factors for severe pneumonia in children have          

shown that parental education is a significant risk factor for severe pneumonia.                          

Again, WHO (2013) reported that 6.3 million children under five years old died worldwide, 
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nearly 17,000 every day. Almost 75% of all child deaths were attributed to only six conditions: 

neonatal causes, pneumonia, diarrhoea, malaria, measles, and HIV/AIDS.   

Furthermore, Walker et al. (2013) in their study of global burden of childhood pneumonia and 

diarrhoea found that pneumonia is the leading cause of death in children under five, with 1.3 

million deaths out of a total of 120 million episodes of pneumonia in the year 2011. 

Also, Singh and Aneja (2011) in their study of epidemiology and aetiology of childhood 

pneumonia established that an approximately 11-20 million cases (7%-13%) of pneumonia are 

severe type and that require hospitalization.  

Next, Rudan et al. (2008) in their study of epidemiology of pneumonia in developing world 

found that although paediatric pneumonia affects children worldwide, the majority of cases  

occur in developing countries. In the year 2000, the estimated incidence of pneumonia in  

children under 5 years old in developing countries was 0.29 episodes per child-year compared  

to 0.05 episodes per child-year in developed countries.  

Again, Singh and Aneja (2011) in their study of pneumonia management in the developing   

world established that majority of paediatric pneumonia cases in developing countries are due  

to bacterial causes. In particular, the most common organism is Streptococcus pneumonia,   

which has been identified in 30%-50% of pneumonia cases. The second most common bacteria 

causing pneumonia is Haemophilis influenzae type b (Hib), followed by Staphylococcus aureus 

and Klebsiella pneumonia. Viral pathogens such as RSV, influenza A and B, parainfluenza, 

human metapneumovirus, and adenovirus can also lead to acute respiratory infections.  

Moreover, Poll and Opal (2009) in their study of pathogenesis, treatment, and prevention of 

pneumococcal pneumonia has found that severe pneumonia is the leading cause of      

community-acquired pneumonia worldwide. It is a bacterium that is a common resident in the 
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upper respiratory tract of humans causing many individuals to be carriers. It is estimated that 

10% of adults and 20% - 40% of healthy children are carriers, allowing the organism to be 

maintained in human populations. It is transmitted through direct contact with respiratory 

secretions, most commonly of those in the same household. Although pneumonia are not 

considered highly contagious, large community-wide outbreaks can still occur, especially in 

urban settings or areas with high population density. It commonly affects patients with AIDS  

and other immune compromised states and the elderly as well as children under five.  

Also, Izadnegahgar et al. (2013) in their study of childhood pneumonia in developing countries 

found that 13.8 million cases of pneumococcal pneumonia in year 2000, accounting for 41%      

of all pneumonia deaths in children.  

Again, Watt et al. (2009) found in their study of burden of disease caused by Haemophilus 

Influenza type b in children younger than five years that Hib‟s total mortality in children age 1-

59 months is high at 371,000 deaths yearly.  

Furthermore, Weber et al. (1998) in a study of RSV in Tropical and Developing Countries    

found that age group primarily affected by RSV pneumonia is between 2 and 12 months of       

age. Specifically, the infants most at risk are those with underlying conditions including 

prematurity, lung disease, malnutrition, or congenital heart disease. 

Next, Wingerter et al. (2012) study application of the WHO criteria to predict radiologic 

pneumonia in United States (US) based paediatric emergency department. The WHO criteria, 

used for diagnosis of pneumonia, requires cough or difficulty breathing as well as age-specific 

tachypnea. Age-specific tachypnea is defined as greater than 60 breaths/minute for children     

less than 2 months old, greater than 50 breaths/minute for children 2-11months of age, and 

greater than 40 breaths/minute for children 1-5 years of age. WHO identifies three categories of 
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pneumonia: very severe, severe, or not severe. These categories are determined following the 

WHO algorithm as follows: “very severe” pneumonia contains one of the following signs or 

symptoms: central cyanosis, inability to breastfeed or drink, severe respiratory distress, or 

convulsions, lethargy, or unconsciousness. “Severe” pneumonia is defined as not meeting  

criteria for “very severe” pneumonia and having one of the following: retractions, nasal flaring, 

or grunting. Lastly, “not severe” pneumonia is defined by the WHO as meeting the general 

criteria for pneumonia, but not meeting the criteria for “very severe” or “severe” pneumonia.  

Further, Madhi et al. (2008) in their study of vaccines to prevent and improve child survival 

found that, historically, pertussis and measles were significant causes of childhood pneumonia. 

The pertussis vaccination, which has been available since the 1950s and is included in most 

immunization programs worldwide, is estimated to have prevented 38.3 million cases and 

607,000 deaths.  

Also, Van et al. (2003) in their study of influenza vaccination in the year 2000, had found that 

measles vaccination has also had a significant effect; measles deaths declined from 2.5 million 

to 873,000 from 1980 to 1999. More recently, vaccines have been developed for severe 

pneumonia, Hib, and influenza.  

Again, in a birth cohort study in Cape Town, South Africa, by Campbell and Nair (2015), it     

was shown that the majority of the pneumonia burden among children is within the first 2 years 

of life. The results of this study indicated that severe pneumonia accounts for the most 

pneumonia deaths in the first 6 months of life. This relationship of increased pneumonia cases 

in younger ages has also been demonstrated by Monto (1994). This study also evaluated the 

effect of    gender and revealed a male: female incidence ratio of 2:1, hypothesising a 

“biological frailty”  in males compared to females or differences in care- seeking by gender.  
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In addition, a longitudinal cohort study in Pakistan by Khan et al. (2009) noted similar     

increased incidences of childhood pneumonia in younger children and males. 

 Another study by Khan et al. (2009) conducted in the Himalayas showed that high altitude is 

significantly associated with increased pneumonia cases. High altitude is likely to contribute to 

pneumonia due to lung physiologic compensatory mechanisms such as increased ventilation, 

increased cardiac output, and a shift in the oxygen-haemoglobin affinity curve. These 

compensations are delayed in infants who take 3-4 years to adapt fully.  

Again, Schanzer et al. (2013) study statistical estimates of respiratory admissions attributed to 

seasonal and pandemic influenza pneumonia for Canada. The discharge abstracts of persons 

admitted with any respiratory condition were extracted from the Canadian Discharge Abstract 

Database, for April 2003–March 2010. Stratified, weekly admissions were modelled as a 

function of viral activity, seasonality, and trend using Poisson regression models. The results  

that an estimated 1 out of every 6 admissions attributable to seasonal influenza (2003–April 

2009) were coded to J10 (influenza virus identified). During the 2009 pandemic (May–March 

2010), the influenza virus was identified in 1 of 6 admissions attributed to the pandemic strain. 

Compared with previous H1N1 seasons (2007 ⁄ 08, 2008 ⁄ 09), the influenza-attributed 

hospitalization rate for persons less than 65 years was approximately six times higher during    

the 2009 H1N1 pandemic, whereas for persons 75 years or older, the pandemic rate was 

approximately five fold lower. 

2.2 Empirical researches on Time series Methods. 

 Williamson and Hudson (1999) in their study of monitoring system for detecting aberrations in 

public health surveillance successfully identified and fitted the Seasonal   

Autoregressive Integrated Moving Average (SARIMA) model for hepatitis A,    
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hepatitis B, hepatitis non-A-non-B, le-gionellosis, malaria, meningococcal infections, 

and tuberculosis and pneumonia. Sharmin and Rayhan (2011) modelled an infectious  

disease to provide an early signal of infectious disease epidemics by analysing the 

disease dynamics. A two-stage monitoring system was applied, which consists of 

univariate Box-Jenkins model or Autoregressive Integrated Moving Average 

(ARIMA) model and subsequent tracking signals from several statistical process-

control charts. The analyses were illustrated on January 2000–August 2009 national 

measles data. Their results of this empirical study revealed that the most     

adequate model for the occurrences of measles in Bangladesh was the SARIMA (3, 1, 

0)(0, 1, 1)
12 model, and the statistical process-control charts detected no measles 

epidemics during September 2007–August 2009. The two-stage monitoring system 

performed well to capture the measles dynamics in Bangladesh without detection of 

an epidemic because of high measles-vaccination coverage.  

Also, Feng et al. (2014) modelled outbreaks of hand-foot-mouth disease (HFMD) in Mainland 

China. Samples obtained from children hospitalized with HFMD in Zhengzhou, Henan, China, 

were examined for the existence of pathogens with reverse-transcriptase polymerase chain 

reaction (RT-PCR) from 2008 to 2012. SARIMA models for the weekly number of HFMD, 

Human Entero virus 71 (HEV71) and Coxsackie VirusA16 (CoxA16) associated HFMD were 

developed and validated. Cross correlation between the number of HFMD hospitalizations and 

climatic variables was computed to identify significant variables to be included as external 

factors. Time series modelling was carried out using multivariate SARIMA models when there 

was significant predictor meteorological variable. Their result showed that out of 2932 samples 

from the patients hospitalised with HFMD, 748 were detected with HEV71, 527 with CoxA16 
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and 787 with other Enter virus (EV) from January 2008 to June 2012. Average Atmospheric 

Temperature (AAT) lagged at 2 or3 weeks were identified as significant predictors for the 

number of HFMD and the pathogens. SARIMA (0, 1, 0)(1, 0, 0)52 associated with AAT at lag 2 

weeks and SARIMA (0, 1, 1)(1, 1, 0)52 Lag 3 weeks were developed and validated for  

description  and predication the weekly number of HFMD, HEV71-associated HFMD, and Cox 

A16-associated HFMD hospitalisations. 

Again, Briet et al. (2008) study forecasting models, with an aim to developing a forecasting 

system which could assist in the efficient allocation of resources for malaria control in Sri   

Lanka. Exponentially Weighted Moving Average models, ARIMA models and SARIMA  

models were compared on monthly time series of district malaria cases for their ability to    

predict the number of malaria cases one to four months ahead. The addition of covariates such 

as the number of malaria cases in neighbouring districts or rainfall were assessed for their     

ability to improve prediction of selected SARIMA models. They found that the best model for 

forecasting and the forecasting error varied strongly among the districts. The addition of     

rainfall as a covariate improved prediction of selected SARIMA models modestly in some 

districts but worsened prediction in other districts. Improvement by adding rainfall was more 

frequent at larger forecasting horizons. Their research point to the fact that heterogeneity   

patterns of malaria in Sri Lanka requires regionally specific prediction models. Prediction error 

was large at a minimum of 22% (for one of the districts) for one month ahead predictions. The 

modest improvement made in short term prediction by adding rainfall as a covariate to these 

prediction models may not be sufficient to merit investing in a forecasting system for which 

rainfall data are routinely processed.  

Next, Ekezie et al. (2014) conducted a research to model and forecast malaria mortality rate 
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using SARIMA models at Aboh Mabaise general hospital, Imo state Nigeria. They used the 

Box- Jenkins methodology to build ARIMA model for malaria mortality rate for the period. 

They concluded that the forecasted results revealed a decreasing pattern of malaria mortality    

in the last quarter of the year 2014.  

Also, Nobre et al. (2001) studied data collected through a national public health surveillance 

system in the United States to evaluate and compare the performances of SARIMA and a 

Dynamic Linear Model (DLM) for estimating case occurrence of two noticeable diseases 

(malaria and hepatitis A). Their comparison found out that the two forecasting modelling 

techniques (SARIMA and DLM) are comparable when long historical data are available     

(at least 52 reporting periods).The residuals for both predictor models showed that they    

were adequate tools for use in epidemiological surveillance. 

Again, Permanasari et al. (2009)  analysed  data  set on  human  Salmonellosis  occurrences  in  

United  States  which comprises of fourteen years of monthly data obtained from a study 

published by Centres for Disease Control and Prevention (CDC). Several SARIMA models 

were developed to forecast the occurrence of the disease. The models were validated using the 

diagnostic test to obtain the appropriate model. Their result showed that the SARIMA (9, 0, 1 

4)(12, 1, 24)12 was the fittest model. Moreover, Wongkoon et al. (2008) studied the incidence 

of Dengue Haemorrhagic Fever (DHF) in Northern Thailand. SARIMA models were applied 

to analyse 2003 to 2006 data. The forecasted data were validated with data collected from 

January 2007 to September 2007. Their results showed that SARIMA model was suitable for 

predicting the number of DHF incidence in Northern Thailand.  

Furthermore, Chen and Trajkovic (2004) analysed data collected from a deployed network     

and used clustering techniques to characterise patterns of individual users‟ behaviour. A         
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network traffic prediction approach was then developed based on user clusters. Based on the 

identified user clusters, they used the SARIMA model to forecast the network traffic by 

aggregating the predicted traffic of each user cluster. The predicted network traffic shows    

good agreement with the collected traffic data.  

Also, Yan et al. (2010) developed and evaluated an innovative hybrid model, which combines 

the SARIMA and the Generalised Regression Neural Network (GRNN) models, for bacillary 

dysentery forecasting in Yichang City of China. The model was applied to monthly data of 

bacillary dysentery from 2000-2007. Their test results showed that hybrid SARIMA-GRNN 

model outperformed the SARIMA model with lower mean square error, mean absolute error 

and mean absolute percentage error when simulation and forecasting performance are  

compared.  

Again, Li (2009) analysed the measured temperature of Stockholm from 1756 to 2007 by     

using Generalised Linear Model (GLM) and ARIMA models. He forecasted the monthly 

temperature of 2008 and compared with the true values. His conclusion was that the SARIMA 

model for the series fits the data better than the GLM. Moreover, Shekhar (2004) researched 

into recursive methods as applied to SARIMA (1, 0, 1)(0, 1, 1)12 model parameter estimation. 

His results established the stability and consistency of the SARIMA model and concluded that 

the parameters did not show a highly variable pattern with time. Also, the model was   

insensitive to minor fluctuations in the parameters. 

Next, Akter and Rahman (2010) studied milk supply of a dairy cooperative in the UK using 

Holt-Winter‟s seasonal model and SARIMA model. Their results showed that longer series 

produces better forecasts than a shorter series and the generated forecasts had error of less than 

3 per cent. Also, Xiang (2008) used SARIMA model to study climate change by considering 
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temperature measurement of Stockholm from 1756 to 2007. The result indicated that even the 

strongest outlier has weak effect and there exist a stable structure in the temperature data. 

Moreover, Yantei et al. (2005) fitted multiplicative seasonal ARIMA models to measured 

GSM traffic traces of China Mobile of Tianjin network. Their experiments showed that the 

forecasting values and the actual values had a relation.  

Furthermore, Fannoh et al. (2014) used SARIMA approach to model Liberia‟s monthly  

inflation rates which showed that SARIMA model was appropriate for modelling the inflation   

rates. 

Again, Otu et al. (2014) used Box-Jenkins methodology to build SARIMA model for     

Nigeria‟s monthly inflation. SARIMA (1, 1, 1)(0, 0, 1)12 model was developed and used to 

forecast monthly inflation for the year 2014.  

Also, Saz (2011) studied the efficacy of SARIMA models in the view of forecasting the  

inflation rates in Turkish economy. Tests were performed on the seasonality in the Turkish 

inflation rate. They used the systematic modelling approach in conjunction with the step-wise 

selection procedure of the HK algorithm to find the best model of inflation in Turkey. 

Next, Kibunja et al. (2014) considered a univariate time series model to forecast precipitation   

in Mt. Kenya region. SARIMA model was fitted on to the data and the model which exhibited 

the least AIC and BIC values was selected. The model passed residual normality test and the   

forecasting evaluation statistics.  

Again, Gikungu et al. (2015) developed a SARIMA model to forecast Kenya's inflation rate 

using quarterly data for the period 1981 to 2013 obtained from Kenya National Bureau     

Statistics (KNBS). SARIMA (0, 1, 0)(0, 0, 1)4 was identified as the best model. More so,      
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Sumer et al. (2009) developed ARIMA, SARIMA and regression models with seasonal latent 

variable in forecasting electricity demand of the data from „Kayseri and Vicinity Electricity   

Joint- Stock Company‟. Their results show that the regression model with seasonal latent  

variable was more efficient than ARIMA and SARIMA.  

Also, Chikobvu and Sigauke (2012) developed SARIMA and regression with SARIMA errors 

(regression-SARIMA) models  to predict daily peak electricity demand in South  Africa using 

data for the period  1996  to 2009. The performance of the developed models was evaluated by 

comparing them with winter‟s triple exponential smoothing model. Empirical results from the 

study show that the SARIMA model produces more accurate short-term forecasts. 

Moreover, Shulze and Prinz (2009) applied SARIMA model and Holt-Winters exponential   

Smoothing approach to forecast container transhipment in Germany, the results show that 

SARIMA approach yields slightly better values of modelling the container throughout than the 

exponential smoothing approach.  

Again, Oduro et al. (2012) conducted a study on application to microwave transmission of     

Yeji-Salaga (Ghana). They applied the SARIMA model to analyse the monthly data. The     

results showed that SARIMA (1, 1, 1)(0, 1, 2)12 was the best fitted model.  

Also, Pufnik and Kunovac (2006) provided a method of forecasting the Croatia‟s Consumers 

Price Index (CPI) by using univariate SARIMA models and forecasting future values of the 

variables from past behaviour of the series. Their paper attempts to examine whether separate 

modelling and aggregating of the sub-indices improves the final forecast of the all items index.  

Again, Akhter (2013) forecasted the short-term inflation rate of Bangladesh using the monthly 

CPI from January 2000 to December 2012. The paper employs the SARIMA models proposed 

by Box et al. (1994). Because of the presence of structural break in the CPI, the study truncates 



34 
 

the series and used data from September 2009 to December 2012. The forecasted result     

suggests an increasing pattern and high rates of inflation over the forecasted period of 2013. 

Furthermore, Nasiru and Sarpong (2012) employed an empirical approach to modelling    

monthly inflation data in Ghana using the SARIMA model. Their result showed that SARIMA 

(3, 1, 3)(2, 1, 1)12 model was appropriate for modelling Ghana‟s inflation rate. Diagnostic test  

of the model residuals with the ARCH LM test and Durbin Watson test indicates the absence of 

autocorrelations and ARCH effect in the residuals. The forecast results inferred that Ghana was 

likely to experience single digit inflation values in 2012.  

Also, Myriam et al. (2011) conducted a time series analysis of dengue incidence in     

Guadeloupe, French West Indies to forecast using climate variables as predictors. They used     

the Box-Jenkins approach to fit a SARIMA to model the incidence of the dengue from 2000 to 

2006 using clinical suspected cases. They concluded that temperature improves dengue   

outbreak forecasts better than humidity and rainfall. The SARIMA model used climate data as 

independent variables and incorporated it into an early and a reliably monitoring system of 

dengue outbreak. Next, Omane-Adjepong et al. (2013) examined the most appropriate short- 

term forecasting method for Ghana‟s inflation. The monthly dataset used was divided into two 

sets, with the first set used for modelling and forecasting, while the second set was used as test. 

SARIMA and Holt-Winters approaches were used to obtain short-term out of sample forecast. 

From the results, they concluded that an out  of  sample  forecast  from  an  estimated SARIMA 

(2,1,2)(0,0,1)12 model far supersedes any of the Holt-Winters‟ approach with respect to forecast 

accuracy. 

Moreover, Ismail et al. (2009) used a rule-based forecasting approach for forecasting peak load 

electricity demand. They concluded that rule-based forecasting increases the forecast accuracy 
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when compared to the traditional SARIMA model and that improvement depends on conditions 

of the data, knowledge, development and validation.   

Again, Jamaludin et al. (2015) study Relative Humidity (RH) of 13 stations all over the 

peninsular Malaysia for the period of 1968 to 2009. They model and make future trend 

predictions using RH data by applying the Box-Jenkins methodology to build SARIMA model 

for monthly RH data. The SARIMA model for each station was developed. These models were 

used to forecast 30 months upcoming RH data. Also, Amos (2010) examined financial time  

series with special application to modelling inflation data for South Africa. The data spanned 

from January 1994 to December 2008. The study considered two families of time series namely 

ARIMA with extension to the SARIMA model and the Autoregressive Conditional 

Heteroscedastic (ARCH) with extensions to the Generalised ARCH (GARCH) model. The   

study concluded that the SARIMA (1, 1, 0)(0, 1, 1)12 was the best fitting model from the    

ARIMA family of models while the GARCH (1, 1) was chosen to be the best fit from the    

ARCH-GARCH models. Furthermore, a comparison of the two selected models based on the       

goodness of fit and the forecasting power of the two models was carried out. It was established 

that the GARCH (1, 1) model was superior to the SARIMA (1, 1, 0)(0, 1, 1)12 model according 

to both criteria as the data was characterised by changing mean and variance.  

Also, Watiert et al. (1994) fitted a Self-excited Threshold Autoregressive (SETAR) model to 

epidemiological time series of reported cases of Salmonella typhimurium in France. The fitted 

„full‟ model was compared with a Simple Autoregressive (AR) model. They compared the full 

model with the „restricted‟ model. Their result favour modelling by a SETAR process instead   

of an AR process. Thus the time series of infections due to Salmonella typhimurium exhibits a 

type of non-linearity which can be accounted for by a threshold model.  
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Again, Modarres and Ouarda (2012) modelled the heteroscedasticity in the residuals of the 

SARIMA model using a GARCH model. The model is applied to two monthly rainfall time 

series from humid and arid regions. The effect of Box–Cox transformation and seasonal 

differencing on the remaining seasonal heteroscedasticity in the residuals of the SARIMA   

model was also investigated. It was shown that the seasonal heteroscedasticity in the residuals  

of the SARIMA model can be removed using Box–Cox transformation along with seasonal 

differencing for the humid region rainfall. Therefore, the GARCH modelling approach was 

necessary to capture the heteroscedasticity remaining in the residuals of the SARIMA model. 

However, the evaluation criteria do not necessarily show that, the GARCH model improves the 

performance of the SARIMA model.    

Also, Kahraman and Aydiner (2013) study daily exchange rate of dollar (USD) and gold prices 

series in Turkish Lara (TL) using multivariate self-exciting threshold autoregressive model 

application. Gold prices series has been taken as indicator variable and multivariate SETAR 

model has been created. Then, predictions have been obtained from the model to evaluate 

performance of the model. Accordingly, the model was said to be suitable to make predictions. 

According to this obtained multivariate SETAR model, the prices of gold and dollar affect each 

other in Turkey market and they can be modelled together. 

Again, Clements and Smith (1997) investigated the multi-period forecast performance of a 

number of empirical SETAR models that have been proposed in the literature for modelling 

exchange rates and Gross Net Product (GNP), amongst other variables. They took each of the 

empirical SETAR models in turn as the Domestic Gross Product (GDP) to ensure that the „non-

linearity‟ characterises the future, and compare the forecast performance of SETAR and linear 
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autoregressive models on a number of quantitative and qualitative criteria. Their results     

indicate that non-linear models have an edge in certain states of nature. 

Further, Gharleghi et al. (2014) used a nonlinearity test and a structural change test to detect     

the nonlinearity and the break date in three ASEAN currencies, namely the Indonesian Rupiah 

(IDR), the Malaysian Ringgit (MYR) and the Thai Baht (THB). Their study finds that the null 

hypothesis of linearity was rejected and evidence of structural breaks exist in the exchange      

rates series. Therefore, the decision to use the self-exciting threshold autoregressive (SETAR) 

model in their present study was justified. Their results showed that the SETAR model, as a 

regime switching model, could explain abrupt changes in a time series.  

Also, Boero and Marrocu (2003) analysed the out-of-sample performance of SETAR models 

relative to a linear AR and GARCH model using daily data for the Euro effective exchange      

rate. The evaluation was conducted on point, interval and density forecasts, unconditionally,  

over the whole forecast period, and conditional on specific regimes. Their results show that 

overall the GARCH model was better in capturing the distributional features of the series and 

predicting higher-order moments than the SETAR model. 

Next, Addo (2014) study a multivariate Self–Exciting Threshold Autoregressive with   

exogenous input (MSETARX) models and present an estimation procedure for the parameters.  

The conditions for stationarity of the nonlinear MSETARX models was provided. The   

efficiency of an adaptive parameter estimation algorithm and Least Squares Estimate (LSE) 

algorithm for this class of models was then provided via simulations.  

More so, Aidoo (2010) forecast the performance of Ghana Inflation rates using SARIMA   

models and SETAR model. Based on the in-sample forecast assessment from the linear  

SARIMA and the nonlinear SETAR models, the forecast measure Mean Absolute Error (MAE) 
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and Residuals Mean Square Error (RMSE) suggest that the nonlinear SETAR model    

outperform the linear SARIMA model. Also, using multi-step-ahead forecast method he 

predicted and compared the out-of-sample forecast of the linear SARIMA and the nonlinear 

SETAR models over the forecast horizon of 12 months. The results as suggested by MAE and 

RMSE, the forecast performance of the nonlinear SETAR models was superior to that of the 

linear SARIMA model in forecasting Ghana inflation rate.  

Furthermore, Acatrinei and Caraiani (2011) investigate the existence of nonlinear patterns in 

the dynamics of the main stock index returns in Romania. They use daily closing data of the           

BET stock index series from 2004 to early 2010. Based on several tests for nonlinearity they 

reject the null hypothesis of linearity. They also use several types of threshold models and 

compare their fitness and forecasting performance with basic AR models. They found that the 

LSTAR and SETAR models fit best the data; however, they cannot outperform the simpler AR 

models in forecasting. Their results suggest that although there are nonlinear features in data,   

the threshold models are not complex enough to reveal the data complexity. 

Finally, Basikhasteh et al. (2014) study the demand of gold prices due to economic crisis in    

Iran. They used AR model, AR-IGARCH model, SETAR and STAR models for forecasting     

and these methods were applied for modelling a monthly log return time series of gold price  

from August 2007 to November 2013 (price in Iranian Rial against 1 gram of gold). Their      

result shows that the time series is nonlinear and SETAR (2; 1, 3) model yields the best result 

for 2012. 

 

2. 3 Conclusion 
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The chapter dealt with reviewing of literature that is relevant to the study. Reviewing of the 

literature has exposed us to the diverse techniques that researchers have employed in predicting 

pneumonia cases. However, in most study of the condition, little time series models have been 

used, more specially the linear and nonlinear models. Based on the research gap found, this   

study therefore employed the Seasonal Autoregressive Integrated Moving Average (SARIMA) 

models and Self Excited Threshold Autoregressive (SETAR) models in predicting pneumonia 

cases in Northern Region of Ghana. 
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CHAPTER THREE 

METHODOLOGY 

  

3.0 Introduction 
 

This chapter focused on the source of data collected for the research and the various statistical 

techniques employed in analysing the data in order to meet the desired objectives of the study. 

The chapter is divided into thirteen main headings namely; data and source, trend analysis, unit 

root test, Autoregressive model (AR(p)), Moving Average model (MA(q)), Autoregressive 

Moving average (ARMA(p, q)) model, Autoregressive Integrated Moving Average (ARIMA(P, 

d, q)) model, Seasonal Autoregressive Integrated Moving Average (SARIMA(p, d, q)(P,D,Q))12 

model, Self-Excited Threshold Autoregressive (SETAR) model, linearity test, model selection 

criteria, model diagnostics and Diebold-Mariano test. 

3.1 Data and Source 

This study used secondary data on monthly pneumonia inpatients cases from January 2000 

to October 2015 obtained from the Tamale Teaching Hospital (TTH) data base. The data 

for this research was analysed with R, Gretl, and Minitab statistical packages. 

 

3.2 Trend Analysis 

The trend of a series reflects the long term growth of the time series over time. A time series 

variable may exhibit different type of trends; the linear, linear constant growth, quadratic and 
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quadratic constant growth among others. This study evaluated the above different types of    

trend models for the disease under consideration. If the trend in the time series is a linear 

function of time t, then  

                                                                                                              

where,    are the observations of the time series,   is a time dummy (               and 

     is a random error component. When the series exhibit quadratic trends, the model is given 

as; 

             
                                                                                           

For a polynomial of order k 

             
         

                                                                           

If the trend is characterised by a constant growth rate, then the equation is 

      
                                                                                                                        

It logarithmic form can be written as  

                                                                                                               

If the constant growth rate is quadratic, then its logarithmic form is given as 

                  
                                                                                     

The coefficients appearing in the equations (3.1) to (3.6) above are obtained by applying the 

principles of Ordinary Least Squares (OLS). 
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3.3 Unit Root Test 

A very essential aspect of time series analysis is to ensure that the data is weakly stationary. A 

variable is said to be covariance or weakly stationary if the first two moments of the series; the 

mean and the autocovariance are finite and are time invariant. That is, the expected value of    

the time series does not depend on time and the autocovariance function,               at any 

lag say k, remain constant over time. Stationarity condition ensures that the properties of the 

estimated parameters from the model are standard. When this condition is assured, then the 

estimated model can be used for forecasting. To check for stationarity, we sometimes test for 

the existence or nonexistence of what we call unit root. Unit root test is performed to     

determine whether a stochastic or a deterministic trend is present in the series. When the roots 

of the characteristic equation lie outside the unit circle, then the series is considered  

stationary. In testing for a unit root in a given series the features of the series must be known. 

When the series contains both seasonal and non-seasonal behaviour, the test of stationarity    

must be conducted on both components. The presence or absence of unit roots is imperative to 

identifying the nature of the processes that generate the time series data and to investigate the 

order of integration of the series. This is because, contemporary econometrics has indicated  

that, regression analysis using non-stationary time series variables produce spurious regression 

since standard results of ordinary least squares do not hold. 

Many methods have been suggested for testing for stationarity of a time series data. These  

include both graphical and quantitative methods. The graphical approach includes observing     

the Autocorrelation function (ACF) plots. A strong and slow dying ACF will suggest deviation 

from stationarity. For the purpose of this study, in addition to the ACF, other quantitative 

techniques for testing for unit root were employed. These are discussed below. 
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3.3.1 Augmented Dickey-Fuller (ADF) Test 

The ADF test proposed by Dickey and Fuller (1979) was employed in the study to determine 

whether the disease involved contained a unit root (non-stationary) or has stationary  

covariance. The ADF test proposed by Dickey and Fuller was an extension of the Dickey-

Fuller (DF) test based on the assumption that, the series follows a random walk. Given an 

autoregressive process of order one, AR (1), below 

                                                                                                                    

where    denotes a serially uncorrelated white noise sequence with a mean of zero and constant 

variance. If    , equation (3.7) becomes a random walk model without drift, which is known 

as a non-stationary process. The fundamental concept of the ADF test is to simply regress         

on its lagged value      and find out if the estimated   is statistically equal to one or not. 

Subtracting      from both sides of equation (3.7) result in  

                                                                                                                      

where       and                We further test for the null hypothesis of     against 

the alternative    . If    , then    , meaning that the series have a unit root. Under the 

null hypothesis    , the t-value of the estimated coefficient of      does not have an 

asymptotic normal distribution (Erdogdu, 2007). 
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The decision to reject the null hypothesis or otherwise is based on the DF critical values of           

the  -statistic. Since errors of the DF test usually show evidence of serial correlation rather on 

the assumption that the error terms were uncorrelated. In order to overcome this problem, the 

ADF test includes the lags of the first difference series in the regression equation to make the 

error term white noise and therefore the regression equation is presented in the following form. 

          ∑        
 
                                                                                                 

For the inclusion of intercept as well as time trend t, the model becomes. 

               ∑       

 

   

                                                                

where   is a constant,   the coefficient on time trend series, ∑        
 
    is the sum of the   

lagged values of the dependent variable      and p is the lag order of the autoregressive      

process. The parameter of interest in the ADF test is  . For    , the series contains unit root 

and hence non-stationary. The choice of the starting augmentation order depends on; data 

periodicity, significance of    estimates and white noise residuals. After preliminary estimation, 

non-significant parameter augmentation can be dropped in order to enjoy more efficient 

estimates. The test statistic for the ADF test is given by 

   
 ̂

    ̂ 
                                                                                                                 

where     ̂  is the standard error of the least square estimate of  ̂.The null hypothesis is    

rejected if the test statistic is greater than the critical value.  
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3.3.2 Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Test 

KPSS proposed by Kwiatkowski et al. (1992) is another complementary test for determining    

the order of integration of a series    by testing the null hypothesis that, the data generating 

process is stationary (          ) against the alternative that it is non-stationary     

(           . Kwiatkowski et al. (1992) derived a test for this pair of hypotheses. The test 

assumes that if there is no linear trend term, the point of departure is a data generating process 

of the form 

                                                                                                                 

where    is a random walk,           ,            
   and    is a white noise process. In 

this context, the foregoing pair of hypotheses is equivalent to the pair; 

          
   .  

          
   .  

If    holds,    is composed of a constant and the stationary process   ; thus,    is also     

stationary. Kwiatkowski et al. (1992) therefore proposed the following test statistic 

     
 

  
∑

  
 

 ̂ 
 

 

   

                                                                                                    

where   is the number of observations,    ∑   ̂
 
    with   ̂      ̅ and  ̂ 

  is an estimator  

of  

  
     

   
       ∑  
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That is,  ̂ 
  is an estimator of the long-run variance of the process   . If    is a stationary     

process,    is integrated of order one (I (1)) and the quantity in the denominator of the KPSS 

statistic is an estimator of its variance, which has a stochastic limit. The term in the      

denominator ensures that overall; the limiting distribution is free of unknown nuisance 

parameters. If, however,    is integrated of order one (I (1)), the numerator will grow without 

bounds, causing the statistic to become large for large sample sizes. The null hypothesis of 

stationarity is rejected for large values of KPSS. 

3.4 Autoregressive Model of Order (AR (p)) 

A time series    is said to be an autoregressive process of order p, if it is a measured linear sum 

of the past p values plus a random error. The general AR model of order p is given by: 

                                                                              

where the Y’s and    are respectively the original series and random error at time period t,       

are the AR parameters to be estimated with            and p is the order of the AR model. 

Thus the value at time t depends linearly on the last p values and the model looks like a   

regression model; hence the term autoregression. Using the backward shift operator B such     

that; 

          and            the AR(p) model may be written more simply in the form. 

                                                                                                                          

where       =          
       

  is a polynomial in B of order    The AR (p) time 

series is said to be stationary if the roots of the polynomial: 
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           are less than one in absolute terms. 

 

3.5 Moving Average Model of Order (MA (q)) 

A time series    is said to be a moving average process of order q if it is a weighted linear sum 

of the last q random shocks. That is, the current values of the series depend on its past shocks. 

The general MA model is given by: 

                                                                                                 

where q is the order of the model,    are the model parameters to be estimated and   

           . The random shocks are assumed to be a white noise process, that is a sequence of 

independent and identically distributed (i.i.d) random variables with zero mean and a constant 

variance σ
2
. Irrespective of the values of the weights, an MA process is always stationary. The 

MA(q) model can be expressed in terms of the backshift operator as: 

                                                                                                                        

where                 
  is a polynomial in B of order q. Generally, the random 

shocks are assumed to follow the traditional normal distribution. The MA(q) process is   

invertible if the characteristic roots of the polynomial       
       

           

are less than one in absolute terms 

3.6 Autoregressive Moving Average (ARMA) Model 

Autoregressive (AR) and Moving Average (MA) models can be combined together to form a 

precise and useful class of time series models, known as the ARMA (p, q) models, where p and 
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q are the orders of the AR and MA processes respectively (Box et al., 1994). Basically, an  

ARMA (p, q) model is given as: 

                                                                   

where    and    are parameters of the autoregressive and moving average components 

respectively, i= 1, 2… p and j= 1, 2, …, q. 

It can also be express as:               , where      and      are polynomials in B of  

finite order p, q respectively. The ARMA (p, q) process is stationary if the roots of the  

polynomial in the AR component are less than one in absolute terms. On the other hand, the 

process is invertible on the condition that the absolute values of the roots of the polynomial in 

the MA component are less than one. 

3.7 Autoregressive Integrated Moving Average (ARIMA) Model 

The ARIMA model is a generalisation of the ARMA model that is defined to incorporate an 

integrated component to carter for time series data that are non-stationary in nature. In practice 

many time series data show non-stationary behaviour and such data are made stationary by 

applying finite differencing of the data points. The backshift operator for the ARIMA (p, d, q) 

model is expressed as: 

                                                                                                  

where p, d and q are integers greater than or equal to zero and denote the order of the 

autoregressive, integration and moving average parts of the model respectively. The integer d 

handles the level of differencing. 
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3.8 Seasonal ARIMA (SARIMA) Model 

When a time series data exhibit seasonal behaviour, the ARIMA model is usually not able to 

capture the behaviour along the seasonal part of the series, hence, the tendency for wrong order 

selection for the non-seasonal component. Identification of relevant models and inclusion of 

suitable seasonal variables is therefore necessary when a time series data exhibit periodic 

patterns. The SARIMA model therefore has the advantage of capturing both seasonal and non-

seasonal components. The general expression for the order of a SARIMA model is         

             and can be expressed using the backshift operator as: 

                                                                              

              
         

                                                                   

           
     

          
                                                            

              
         

                                                                      

           
     

          
                                                              

where; 

   represents the time series data at period t 

  denotes the backshift operator, 

   is a sequence of i.i.d variables with mean zero and variance     
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s is the seasonal order 

   and    are the non-seasonal and seasonal AR parameters respectively, 

   and    are respectively non-seasonal and seasonal MA parameters, 

p, d and q denote the non-seasonal AR, I and MA orders respectively and 

P, D and Q respectively represent the seasonal AR, I and MA orders. 

 

3.9 SETAR Model 

Self-Excited Threshold Autoregressive (SETAR) model is a class of the Threshold 

Autoregressive (TAR) model proposed by Tong (1978) and further studied in Tong and Lim 

(1980), Tong (1983,1990). The SETAR model is a set of different linear AR models, 

changing according to the value of the threshold variable(s) which is the lagged values of the 

series. The process is linear in each regime, but the movement from one regime to the other 

makes the entire process nonlinear. The two regime version of the SETAR model of order p 

is given as by (Boero and Marrocu, 2004): 

 

   

{
 
 

 
 
 

 
   

 ∑ 
 
   

       
   

                

    

   

 
 
   

 ∑ 
 
   

       
   

                

    

   

                                                       

where  
 
   

 and  
 
   

 are the coefficient in lower and higher regime respectively which needs to  

be estimated;   is the threshold value;      and      are the order of the linear AR model in low 

and high regime respectively. In this work, the order of the AR model in both regimes are equal, 
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      is the threshold variable that governs the transition between the two regimes with d being 

the delay parameter which is a positive integer (   ); {  
   

} and {  
   

} are sequence of  

independently and identically distributed random variables with zero mean and constant     

variance (i.e. i.i.d. (0,   
 )). In this study we considers two regime SETAR model which can                               

be written in its simplest form as SETAR (2; p, d). The properties of the general SETAR     

model are hard to obtain and little is known about the condition under which the SETAR 

models generate time series that are stationary (Dijk, 2000). Such conditions has only been 

established for first-order SETAR model. For effective model selection, we follow the   

procedure discussed in Franses and van Dijk (2000). The approach of SETAR modeling start 

with AR (p) model specification and linearity against SETAR model, SETAR model 

identification, estimation and evaluation of the selected model and then forecasting which is 

precisely discussed as follows.  

3.10 Linearity Test  

In order to apply the SETAR model to an observable time series, the series must first be 

nonlinear in nature. That is the existence of nonlinear behaviour in the series must first be 

checked. In testing for the linearity in the series, we first have to specify an appropriate linear 

AR (p) model for the series under consideration. The choice of the maximum lag order is      

based on the autoregressive lag order that minimise the AIC value, Franses and van Djik    

(2000). After determining the linear AR (p) model we then test for linearity using a well-    

known linearity test such as Keenan test and Tsay F-test which are discussed below. 

3.10.1 Keenan Test  

Keenan test was introduced by Keenan (1985) to detect nonlinearity in an observable time  
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series. The  test  is  considered  as  a  special  case  of  the  RESET  test proposed by Ramsey 

(1969). The avoidance of multicollinearity makes it special. The Keenan test for nonlinearity 

analogous to Tukey‟s one degree of freedom for nonadditivity test is motivated by  

approximating a nonlinear stationary time series by a second-order Volterra expansion     

which is given by:  

     ∑       

 

    

 ∑ ∑            

 

    

 

    

                                                

where {         } is a sequence of independent and identically distributed with zero-    

mean random variable. The process {  } is linear if the double sum of the right-hand side of 

(3.26) does not exist. Thus we can test the linearity of the time series by testing whether or not 

the double sum of (3.26) does not exist. That is, the test requires that one distinguish between 

linearity versus a second-order Voltera expansion, by examining    =0 as well as the  

coefficients on higher orders. Cryer and Chan (2008) has shown that the Keenan`s test is 

equivalent to testing if      in the multiple regression model (with the constant 1 being      

absorb in to   ): 

       
 
        

 
        ̂ 

                                                         

The Keenan‟s test statistic for the null hypothesis of linearity (      ) is given as:  

 ̂  
          

      
                                                                                                    

where  

 m = lag order of the linear autoregressive process 

 n = same size considered 

 RSS = the residual sum of squares from the AR (m) process. 
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When the null hypothesis is satisfied,  ̂ is approximately F-distributed with 1 and n – 2m – 2 

degree of freedom. The null hypothesis of linearity is rejected if the p – value associated with  

 ̂ is small (p – value<  ) or when the value of  ̂ is greater than the selected critical value of     

the F-distribution with 1 and n – 2m – 2 degrees of freedom. 

 

3.10.2 Tsay`s F- test 

Tsay (1989) introduce a test for detecting nonlinearity in an observable time series. The test is 

been considered as more general nonlinear alternative and also a combined version of the 

nonlinear test of Keenan (1985). The test is further based on arranged autoregression and 

predictive residuals. For the arranged regression approach, the linear AR (p) model is 

considered in the null against the alternative hypothesis of nonlinear threshold model. For an 

AR (p) regression with n observation as    (             )     for               

where    is a (p + 1) dimensional vector of coefficients and     is the noise. Reference is made 

to (               ) in a case of data for the AR (p) model. Then an arranged auto regression 

is an autoregression with cases rearranged based on the values of a particular regressor. When 

we Consider a two regime TAR (2; p, d) model with n observations, the threshold variable      

may assume values (         ), where h = max {1, p + 1 - d}. Let   , be the time index of the 

i
th

 smallest observation of (         ).  Then the arranged autoregression with the first                          

s cases in the first regime and the rest in the second regime is given by: 

   

{
 
 

 
 
  

   
 ∑  

   
             

   
              

 

   

  
   

 ∑  
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where s satisfies    
         

.The arranged autoregression provides a means by which the 

observations are separated into two groups such that if the true model is indeed Threshold 

Autoregressive (2;p,d) process, the observations in a group follow the same linear   

autoregressive model. Accordingly the separation of the observation does not require knowing 

the precise value of    and only the number of observation in each group depends on   . But 

since the threshold value is unknown, however the sequential least square estimates  ̂ 
   

 are 

consistent for   
   

 if there is sufficiently large number of observations in the first regime. For  

the arranged autoregression, let  ̂   be the vector of least squares estimates based on the first m 

cases   , the associated     inverse matrix, and      the vector regressor of the next   

observation to enter the autoregression        
 Then the recursive least squares estimates can 

be computed efficiently by: 

 ̂     ̂       [        
   

     ̂  ]                                                         

                                                                                                          

                                     ⁄                                                                                                     

and 

     (    
         

    
)                                                                                

and the predictive and standardized predictive residuals is given by: 

 ̂      
         

   
      

̂                                                                                  

and 

 ̂      
        √    ⁄                                                                                

for fixed p and d, the effective number of observations in arranged autoregression is n – d –h 
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+1. Assuming the recursive autoregressions begin with b observation so that there are n – d –b 

- h predictive residuals available. We do the least squares regression 

  ̂    
    ∑  

 

   

                                                                                                  

For i = b + 1,…,n – d – h + 1, and compute the associated F statistic under the null hypothesis 

of linear AR (p). 

 ̂      
 ∑  ̂ 

  ∑  ̂ 
       ⁄

∑  ̂ 
            ⁄

                                                                                     

where the   ̂ is the square residual of equation (3.36) and the argument (p, d) of  ̂ is used to 

signify the dependence of the F-ratio on p and d. Supposed that  
 
, is a linear stationary 

autoregressive process of order p, then for large n the statistic  ̂       follows an asymptotic F 

distribution with p + 1 and n – d – b – p – h degrees of freedom. The null hypothesis of       

linearity is rejected if the p-value of  ̂      is greater than the selected critical value of the F-

distribution with p+1 and n – d – b – p - h degrees of freedom. 

 

3.11 Criterion for Model Selection 

In order to obtain the most adequate model that best describes a time series data, it is important 

for model selection criteria to be carried out. This is because there is the possibility of two or 

more models to compete in the selection of the best model for the study. The Akaike    

Information Criterion (AIC), the Akaike Information Criterion corrected (AICc) and the 

Bayesian Information Criterion (BIC) are the model selection criteria that were employed in    

this study to select the most adequate model. The information criteria include a penalty that is  
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an increasing function of the number of parameters. The penalty discourages overfiting, that is, 

increasing the number of parameters improves the goodness of fit. The best model is the one   

 

with the smallest AIC, AICc or BIC values, given a set of possible models. The AIC, AICc,      

and BIC are given by 

                                                                                                                              

         
       

     
                                                                                                     

          
   

 

 
                                                                                                          

where; 

k represents the number of parameters in the model 

L denotes the maximised value of the likelihood function 

n is the number of observations in the data 

  
  is the error variance. 

However, in the case of the Self-Excited Threshold Autoregressive (SETAR) approach for 

modelling, the AIC and BIC for the AR model in the two regimes as defined by Tong (1990)   

is given by: 

                ̂ 
       ̂ 
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                ̂ 
       ̂ 

                                                

  

 

 

where 

                     is the number of observations in the j
th

 regimes and 

   ̂ 
         is the variance of the residuals in the j

th
  regimes 

    and    are the selected lags order in regime 1 and 2 respectively for which the 

             information criterion is minimised. 

 3.12 Model Diagnostics 

After a model has been built, it is important to diagnose the model in order to ensure that it      

truly follows the real time series observations. When these checks are done the model can be 

used to make meaningful inferences. The Ljung-Box and ARCH-LM tests were employed in  

this study to diagnose the developed models as discussed as follows. 

3.12.1 Ljung-Box Test 

Serial correlation poses a major challenge to researchers when fitting time series models. For  

this reason, Ljung and Box (1978) proposed a test that is used to determine the presence or 

absence of serial correlation in a time series up to a given order say k. The test assumes that the 

residuals do not contain serial correlation up to order k. It tests the overall residuals based on a 

given number of lags. Hence it is considered as a portmanteau test. The test procedure is as 

follows;  
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H0: The data do not contain serial correlation up to order k. 

HA: The data contains serial correlation up to order k. 

The test statistic is given by; 

         ∑
  
 

   

 

   

                                                                                

where; 

  
  represent the residual autocorrelation at lag k 

n is the number of residuals 

h is the number of lags being tested 

We reject the null hypothesis if    is greater than the chi-square table value. The model is 

therefore considered adequate when the p-value associated with    is large; otherwise the    

whole estimation process has to be repeated again in order to get the most adequate model.  

3.12.2 ARCH-LM Test 

When the variance of the residuals is not constant, the issue of conditional heteroscedasticity is 

one of the key problems that a researcher is likely to encounter when fitting models. To ensure 

that the fitted model is adequate, the assumption of constant variance must be achieved. The 

ARCH-LM test proposed by Engle (1982) was used to test for the presence of conditional 

heteroscedasticity in the model residuals. The test procedure is as follows; 

H0: There is no heteroscedasticity in the model residuals 
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H1: There is heteroscedasticity in the model residuals 

The test statistic is 

                                                                                                                   

where n is the number of observations and    is the coefficient of determination of the      

auxiliary residual regression. 

  
           

        
            

                                               

where    is the residual. The null hypothesis is rejected when the p-value is less than the level  

of significance and is concluded that there is heteroscedasticity. 

3.13 Diebold-Mariano Test 

Sometimes when comparing the forecasting accuracy of two models, lower values of mean 

square errors of one forecast in comparison to the alternative do not necessarily translate into   

the superiority of this forecast. In order to verify whether there is significant difference in the 

forecasting accuracy of any two competing models, the Diebold and Mariano (1995) test of   

equal forecasting accuracy was used to assess whether the differences in the mean square errors 

of competing forecasts are statistically significant. The test statistic follows the standard normal 

distribution and tests the null hypothesis of equal forecast accuracy against the alternative. 

        [ ̂( ̅)]
  
  ̅                                                                                         

Where  ̅ is the mean of the coefficient of   , which is the difference between the sets of       

squared forecast errors from two competing models,       
     

  . 
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  ̂( ̅) is an estimate of the variance of  ̅. 

 

 

CHAPTER FOUR 

ANALYSIS AND DISCUSSION OF RESULTS 

4.0 Introduction 

This chapter deals with the analysis and discussion of the results obtained from the study. The 

chapter is sub-divided into three main headings namely; preliminary analysis, further analysis 

and discussion of results. 

4.1 Preliminary Analysis 

This section explains the descriptive statistics of the data on monthly pneumonia cases. 

The maximum and minimum values of the cases for the entire study period were 35.00 and      

0.00 respectively. Moreover, the average pneumonia cases was 17.77. The coefficients of 

variation (CV) for the pneumonia cases was 38.74%. Furthermore, the pneumonia cases  

recorded for the entire period was found to be negatively skewed and leptokurtic in nature, that 

is the cases were closely distributed around their mean value as shown in Table 4.1. 

Table 4.1: Descriptive Statistics of Pneumonia Cases 

Variable Mean Min Max CV (%) Skewness Kurtosis 

Pneumonia cases 17.774 0.000 35.000 38.740 -0.150 0.080 
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An investigation of the pneumonia cases for the various months revealed that, the highest 

average pneumonia (19.4) case occurred in the month of March as shown in Table 4.2. The  

least average pneumonia (16.63) occurred in the month of May. In terms of the minimum and 

maximum pneumonia cases, the months of January, February, March, April, May and June  

have the minimum pneumonia cases and the month of September recorded the maximum 

pneumonia case. The month of June has the largest variability followed by May as shown by 

their coefficient of variations in Table 4.2. Again, it was observed that pneumonia cases were 

positively skewed for the months of June, July, September, October and November while it    

was negatively skewed for the rest of the months. Moreover, the months of January, February, 

March, April, May, were found to be leptokurtic, indicating that pneumonia cases were closely 

distributed around their mean value, while those of the remaining months were platykurtic in 

nature, also demonstrating cases been widely distributed around their mean value.  

Table 4.2: Monthly descriptive statistics of Pneumonia Cases 

Month Mean Min Max CV (%) Skewness Kurtosis 

January 17.810 0.000 28.000 40.910 -0.580 1.050 

February 18.310 0.000 32.000 41.620 -0.410 1.280 

March 19.440 0.000 29.000 35.490 -1.420 3.270 

April 16.810 0.000 28.000 42.790 -0.720 0.520 

May 16.630 0.000 30.000 43.030 -0.450 1.030 

June 16.690 0.000 31.000 53.320 0.050 -0.520 

July 16.750 8.000 30.000 35.720 0.550 -0.220 

August 17.560 9.000 26.000 34.160 -0.090 -1.610 

September 19.190 9.000 35.000 41.700 0.510 -0.500 

October 17.630 9.000 32.000 38.420 0.700 -0.220 

November 17.730 7.000 30.000 38.100 0.410 -0.480 

December 18.800 11.000 25.000 25.130 -0.410 -0.670 
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A time series plots of the pneumonia cases depicts that the series fluctuates with time in an 

increasing and decreasing manner as shown in Figures 4.1. 

 

 

Figure 4.1: Time series plot of Pneumonia cases 

The nature of trend characterising the pneumonia cases overtime was investigated using the 

linear, quadratic, log-linear and log-quadratic trend models as shown in Table 4.3. The log-

quadratic trend model was observed as the best since it had the least AIC and BIC values. 

Table 4.3: Trend analysis of Pneumonia cases 

   

 

*: Means best based on the selection criteria 
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Quadratic 1165.406 1175.147 

Log-linear 281.328 287.822 

Log-quadratic 209.793* 219.534* 
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The parameters of the log-quadratic trend models for the pneumonia cases were estimated as 

shown in Table 4.4. All the parameters were highly significant at the 5% level of significance.  

It was also shown that the estimated log-quadratic model for the cases trends downwards and is 

quadratic in logarithm form. It therefore indicates that the presence of trend was the major     

cause of the variation in the pneumonia cases. Thus, the estimated log-quadratic trend model    

for pneumonia cases is given by; 

                                                                                                                

where, t=Time and Pnc means pneumonia cases. 

Table 4.4: Estimated parameters of the Log-quadratic trend Model 

Variable Coefficient Standard error T-statistic P-value 

Constant 2.3536 0.0917 25.6495 0.000** 

Time 0.0191 0.0022 8.6069 0.000** 

(Time)2 -0.0001 0.0001 -9.4009 0.000** 

AIC=209.7925 BIC=219.5336 

           **: Means significant at the 5% significance level 

4.2 Further Analysis 

4.2.1 Fitting the SARIMA Model 

A visual inspection of the ACF plot of the pneumonia cases showed a slow decay in the ACF 

suggesting non-stationarity of the series. The PACF plot also revealed very dominant    

significant spikes at lag 1 as shown in Figures 4.2. 
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Figure 4.2: ACF and PACF plot of Pneumonia cases 

To further confirm the non-stationarity of the series, the KPSS and ADF test for unit root were 

carried out on the original data. Using the KPSS test, the results in Tables 4.5 revealed that the 

calculated value was greater than the critical value at 5% level of significance. The null 

hypothesis of stationarity was therefore rejected indicating the series was not stationary. 

Table 4.5: KPSS test of Pneumonia cases 

 

 

The ADF test also confirms the existence of unit root with only a constant term and a constant 

with quadratic trend. This affirmed the presence of unit root in the series since the p-value was 

greater than the 0.05 level of significance as illustrated in Tables 4.6.  
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Table 4.6: ADF test of Pneumonia cases 

 

 

 The series was transformed logarithmically in order to stabilise the variance. The transformed 

series was then differenced and then tested for stationarity. The KPSS and ADF tests for the 

pneumonia cases revealed that the transformed differenced series were now stationary since the 

p-value for the ADF test is less than the 5% significance level and the test statistic being less 

than the critical value in the case of the KPSS test as shown in Table 4.7 and 4.8 respectively. 

Table 4.7: KPSS test of differenced series 

 

 

Table 4.8: ADF test of differenced series 

Test Constant Constant + Quadratic Trend 

 

Test  Statistic P-value Test Statistic p-value 

ADF -5.4783 0.0000 -5.4829 0.0000 

 

After obtaining the order of integration of the Pneumonia cases, the order of the Autoregressive 

and Moving Average components was determined by using Box and Jenkins (1976) approach 

based on the ACF and PACF plots. The ACF plot in Figure 4.3 shows significant spikes at lag 

1, 6, 12 and 13. The PACF plot also has significant spikes at lag 1, 6, 13 and 19. Using the     

lower significant lags of both the ACF and PACF, tentative SARIMA models were developed  

as shown in Table 4.9. Among these possible models SARIMA (1, 1, 1)(0, 0, 1)12 was adjudged 

the best since it had the least AIC, AICc and BIC values as compared to the other models. 

Test Constant Constant+Quadratic Trend 

 

Test  Statistic P-value Test Statistic P-value 

ADF -1.4342 0.567 -1.4314 0.852 

Test Test Statistic Critical value 

KPSS 0.0341 0.464 
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Figure 4.3: ACF and PACF plot of differenced series 

Table 4.9 Tentative SARIMA models 

 

*: Means best based on the selection criteria 

Using the method of maximum likelihood, the estimated parameters of our derived model are 

shown in Table 4.10. The SARIMA (1, 1, 1)(0, 0, 1)12 model can be expressed in terms of 

backshift operator as; 

                                                                                           

It is observed from Table 4.10 that the p-values of the parameters of the selected model for the 

Autoregressive and Moving Average components were highly significant at the 5% level of 

significance. The model thus appears to be the best model among the suggested models. 
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 Model AIC AICC BIC 

SARIMA (1, 1, 0)(0, 0, 1)12 95.55 95.62 102.03 

SARIMA (1, 1, 1)(0, 0, 1)12 86.35 86.48 96.48 

SARIMA (0, 1, 1)(0, 0, 1)12 93.83 93.89 100.31 

SARIMA (1, 1, 0)(0, 0, 1)12 93.83 93.96 103.56 

SARIMA  (1, 1, 1)(0, 0, 1)12 83.5* 83.71* 96.08* 

SARIMA (0, 1, 1)(0, 0, 1)12 92.76 92.89 102.48 
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Table 4.10: Estimates of parameters for SARIMA (1, 1, 1)(0, 0, 1)12 

Variable Coefficient Standard error Z-statistic P-value 

   -0.959552 0.0327374 -29.3106 0.00001 

   0.169451 0.0764908 2.2153 0.0267 

    0.754616 0.0689403 10.9459 0.00001 

 

The selection of the best model among competing models to fit a data in time series analysis 

depends largely on the performance of the residuals of the model. One of the assumptions of 

SARIMA model is that for a good model, the residual must follow a white noise process. That  

is the residuals have zero mean, constant variance and uncorrelated. It was observed from the 

diagnostic plot in Figure 4.4 that the standardised residuals of the model have zero mean and 

constant variance. Also, the ACF of the residuals depicts that the autocorrelation of the     

residuals are all zero that is they are uncorrelated. In addition, the Ljung-Box statistic clearly 

shows that the p-values of the test statistic exceed the 5% level of significance for all lag orders 

which implies that there is no significant departure from white noise for the residuals. 
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          Figure 4.4: Diagnostic plot of SARIMA (1, 1, 1)(0, 0, 1)12 

To ensure that the fitted model is adequate, both the Ljung-Box test and ARCH-LM test were 

performed. The Ljung-Box test and ARCH-LM test as shown in Table 4.11 revealed that, the 

model was free from serial correlation and conditional heteroscedasticity at lag 12, 24, 36 and 

48 respectively since the p-values of all the test statistics were insignificant at the 5%  

significance level. This implies that the residuals of the model was uncorrelated, thus have zero 

mean and constant variance overtime; hence are white noise series. It can therefore be     

concluded that the selected model, SARIMA (1, 1, 1)(0, 0 1)12 is the best model since it      

satisfies all the diagnostic conditions.  
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Table 4.11 Residuals diagnostic test for SARIMA (1, 1, 1)(0, 0, 1)12 

Lag 

Ljung-Box Test ARCH-LM Test 

Test statistic p-value Test statistic p-value 

12 20.8664 0.05237 35.1563 0.4422 

24 28.2171   0.251 41.1187 0.6161 

36 31.3243   0.6905 40.288 0.2862 

48 38.693   0.8288 63.6418 0.6471 

 

4.2.2 Fitting the SETAR model 

In this section the 2 regime Self Excited Threshold Autoregressive (SETAR) model approach 

was used to model and forecast the pneumonia cases. In the modelling cycle, the approach 

presented in Franses and Dijk (2000) was adopted in fitting the model. 

4.2.2.1 Linearity Test 

In order to model a time series with SETAR model, the series must be nonlinear, hence we       

have to test for the existence of nonlinearity in the pneumonia cases. To test for nonlinearity in 

the series we first specifies linear AR (p) model. Using Akaike information criterion, we found 

AR (4) model for the series. The choice of the AR (4) lag order is based on the Autoregressive 

lag order that gives the minimum AIC value based on the significant PACF lag orders. After we 

determined the linear AR model we employ Tsay F-test and the Keenan1-degree test to test for 

linearity against the alternative of nonlinearity for the Keenan test. The F-test of Tsay has the 

alternative of threshold-type nonlinearity. Both linearity tests depend on the linear AR (4)    

model selected. Table 4.12 below summarizes the results from the Tsay and Keenan1-degree 

test. From the results, in the Keenan1-degree test we reject the null hypothesis of linearity since 

the P-value is less than the 5% significant level. Also in the Tsay test, we reject the null 

hypothesis of no threshold nonlinearity since the P-value is less than 5% significant level.  
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 From both test about the nonlinearity of our data we conclude that the pneumonia cases is 

nonlinear and it can be well explained by the regime switching model as compare to the simple 

linear model. 

Table 4.12: Linearity test 
 

Test Test statistic P-value Decision 

Keenan 1-degree 6.24 0.01 Linearity rejected 

Tsay 1.83 0.02 No threshold nonlinearity rejected 

 

After confirming that the data is nonlinear, we then identify the specific SETAR model that      

best fit the data. We do this by determining the Autoregressive lag order P in each regime and 

the threshold variable      where d represent the delay parameter. We choose the model with P 

lag order for both regimes and      threshold variable with the minimal AIC value by  

performing a grid search on all possible combinations of SETAR models that can be fitted to   

the data. The grid search of the possible models combinations are illustrated in Table 4.13. 

                                    Table 4.13: Grid search for the best model 

 

Lag ML(mL) MH(mH) 

Threshold 

delay(d) 

Threshold 

variable 

Pooled-

AIC Model 

1 1 1 1 1.176 -154.732 SETAR(2, 1,1) 

2 1 1 2 1.176 -162.393 SETAR(2, 2,2) 

3 1 1 1 1.255 -160.534 SETAR(2, 3,1) 

4 1 1 3 1.255* -165.422* SETAR(2, 4,3)* 

5 1 1 1 1.279 -154.073 SETAR(2, 5,1) 

6 1 1 2 1.176 -151.940 SETAR(2, 6,2) 

7 1 1 1 1.204 -151.108 SETAR(2, 7,1) 

8 1 1 2 1.204 -149.700 SETAR(2, 8,2) 

9 1 1 1 1.230 -148.341 SETAR(2, 9,1) 

10 1 1 2 1.279 -145.793 SETAR(2, 10,2) 

                                  *: Means best based on the selection criteria 
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After performing a grid search on all possible combination of SETAR models that can be fitted 

to the data, SETAR (2; 4, 3) model with a threshold variable      could be appropriate to 

explain the nonlinearity in the data. This model have a minimum AIC value which is presented 

in Table 4.14. 

 

Table 4.14: AIC for the selected SETAR Model 

 

 

 

After we have found that SETAR (2; 4, 3) model with threshold variable        as  the  bes t  

model that fit the data well since it has the minimum value for AIC. Further assessment on the 

forecast ability of the model was done following the approach of Franses and Dijk (2000).    

Table 4.15 below present the estimated parameters of the selected SETAR model with the 

corresponding threshold value. The corresponding model for SETAR (2: 4, 3) with threshold 

variable       that governs the transitions between the two regimes with delay parameter 3 and 

threshold value 1.255 is given by; 

  

 {
                                                                 
                                                                 

         

 

 

 

 

 

 

 

 

 

 

 

Model AIC BIC 

SETAR(2: 4, 3) -165.42 90.06 
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Table 4.15: Estimates of parameters for SETAR (2; 4, 3) 

Coefficient 

Low Regime High Regime 

Estimate Std error t-value Estimate Std error t-value 

Constant 0.294926 0.079414 3.7138 -0.069301 0.251735 -0.2753 

   0.726973 0.082488 8.8130 0.484075 0.164587 2.9412 

   0.077171 0.101976 0.7568 0.085256 0.187513 0.4547 

   -0.141584 0.117673 -1.2032 0.300137 0.176860 1.6970 

   0.086578 0.110297 0.7849 0.170647 0.188192 0.9068 

Threshold value 1.255 

    Proportion 

 

43.55% 

  

56.45% 

  

After the parameters of the SETAR model have been estimated, we check the residuals of the 

model for best fit. That is we check for nonexistence of serial autocorrelation, zero mean and 

constant variance of the residuals. We used the ARCH-LM test to check for constant variance 

of the residuals. Ljung-Box test was also used to check for serial correlation. From the results  

as shown in Table 4.16, we fail to reject the null hypothesis of the two test for SETAR (2; 4, 3) 

model since their P-values were greater than the 5% significant level. 

 

Table 4.16 Residuals diagnostic test for SETAR (2; 4, 3) 

 

ARCH-LM Ljung Box Test 

lag Test Staistic p-value Test Statistic p-value 

12 18.2422 0.1085 14.6184     0.263 

24 38.9226 0.2782 32.8826 0.1066 

36 39.0165 0.3357 41.1826 0.2542 

48 44.2422 0.6276 50.6098 0.3709 

 

 

4.2.3 Comparative Analysis of the SARIMA and SETAR Models 

The main task of this research work is to compare the forecast performance between the linear 

SARIMA model and the non-linear SETAR model. Once the selected models from both linear 

and nonlinear have been shown to satisfy all the model assumptions, we can conclude that the 

models are adequate and can be used to predict the pneumonia cases. Hence, there is the need    
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to compare the forecasting accuracy of the SARIMA (1, 1, 1)(0, 0, 1)12 model with SETAR (2; 

4, 3) model. From Table 4.17, it can be revealed that most accuracy tests supports SETAR (2; 

4, 3) model which has the minimum value of BIC, AIC, MSE, RMSE and MAPE respectively.  

Table 4.17: Forecast accuracy test of models 

Model                                      BIC AIC MSE RMSE MAPE 

SARIMA (1, 1, 1)(0, 0, 1)12    96.08              -233.77
 

0.0797
 

0.128
 

8.735
 

SETAR (2; 4, 3)                      90.06* -768*  0.000245* 0.01566* 0.09025* 

    *: Means best based on the measure of accuracy 

Though the nonlinear SETAR model outperform the linear SARIMA model as suggested          

by the forecast measures, it is interesting to know whether there is significant difference in 

forecast from the two models. Using the approach of Diebold and Mariano (1995), we test         

the null hypothesis that there is no difference between the forecast accuracy from the two  

models against the alternative hypothesis that the selected SETAR provide better forecast 

accuracy as compare to the selected SARIMA model. The results from the test as     

presented in Table 4.18 fail to reject the null hypothesis of equal forecast accuracy at 5%     

level of significance and conclude that the forecast results from both models are the same.  

Table 4.18: Diebold-Mariano test 

Test statistic P-value 

0.9856 0.3256 

 

The developed models were cross validated using the chi-square goodness of fit test. The 

results, as shown in Table 4.19 revealed that, there is no significant difference between the 

observed pneumonia cases and their forecasted values. This can be seen from the 

insignificant chi-square statistic obtained for the results of both models. This indicates that     

the fitted models produce values that depicts the behaviour of the pneumonia cases over time 

even though the values of the observed and expected are not exactly the same. 
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                             Table 4.19: Chi-square Goodness of Fit Test of the Models 

Model Chi-squared Statistic p-value 

SARIMA 0.9705 0.9142 

SETAR 0.1819 0.9961 

 
It can therefore be concluded that both models are good for predicting the pneumonia cases    

since there is no significant difference in their forecasting accuracy. The two models were 

therefore used to predict the cases of pneumonia. The predicted values for SARIMA (1, 1, 1)(0, 

0, 1)12  model indicates that pneumonia cases are increasing while SETAR (2; 4, 3) model       

gives a constant pattern of the cases over the forecast period as shown in Tables A1 and A2 

respectively in the appendix. The predicted values for the models fall within the confidence 

interval. Hence, we say both models are adequate to be used for predicting pneumonia cases.  

The indication that the confidence interval becomes wider as the number of forecast increases 

suggests that the data was highly deterministic as evidence from the predicted values 

4.3 Discussion of Results 

The descriptive statistics of the pneumonia cases depict a leptokurtic in nature which gives 

information about how the cases were closely distributed around their mean value. The      

monthly distribution of the pneumonia cases clearly showed that the highest numbers of cases 

were recorded in the month of March. This may be attributed to the beginning of the change of 

dry season to rainy season which provides non favourable condition for those whose genetic 

makeup is non-resistance to change of weather and also provides room for bacterial and viral 

infections. An investigation was carried out on the data set to determine whether or not a trend 

exists in the data set. The results clearly showed that there was a log-quadratic trend in the data 

set. The log-quadratic trend model indicates that pneumonia cases was decreasing at a certain 

constant quadratic rate of about 0.00001. 
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A unit root test conducted to investigate the stationarity of the pneumonia cases clearly 

revealed that the data was not stationary. This was affirmed by the time series plot, ACF and 

PACF plots of pneumonia cases. The series was then transformed logarithmically and first 

differenced. From the results, the ADF test revealed that the transformed first differenced 

series was stationary. The stationary series was then used to investigate the comparative 

analysis of the linear SARIMA model and nonlinear SETAR model in predicting 

pneumonia cases in the region. Further, before fitting the SETAR model to the pneumonia 

cases the series must be nonlinear, hence, the existence of nonlinearity in the pneumonia cases 

was tested by the use of Tsay F-test and the Keenan1-degree test. The results shows that 

Keenan1-degree test reject the null hypothesis of linearity since the p-value was less than the 

5% significant level. Also in the Tsay test, the null hypothesis of no threshold nonlinearity was 

rejected since the p-value was less than 5% significant level. Hence we conclude that the data 

follows a threshold nonlinearity. 

Forecast values are of importance for decision making and policy formulation. As described   

by Box and Jenkins (1976), forecasting provide basis for economic and business planning, 

inventory and production control and optimization of industrial processes. Obtaining a good 

model that produce best forecast is the core point of every researcher hence, it was imperative 

to forecast the incidence of pneumonia cases. This will serve as a guiding tool to the  

Government of Ghana, individuals and stakeholders in the health sector in strengthening 

existing control measures and also implement new ones with the aim of reducing the cases of 

the disease to the barest minimum or possibly eliminate it. Two forecasting models were 

developed to aid in the monthly prediction of the pneumonia cases. The two models were the 

SARIMA (1, 1, 1)(0, 0, 1)12 model and the SETAR (2; 4, 3) model. 
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The diagnostic checks carried out on these models proved that both models were adequate for 

predicting the monthly pneumonia cases in the region. To identify which of these models has  

the best forecasting accuracy measures, a comparison of the forecasting accuracy measures of 

these models were made. The SETAR (2; 4, 3) model with the least information criteria     

happens to have the least measures of accuracy. Therefore, a Diebold-Mariano test was 

performed to check whether there were significant difference in the forecasting performance 

of the two models. The results of the test revealed that there is no significant difference in the 

forecasting performance of the models. Further assessment on cross validation of the models 

with chi-square revealed that the models were fit for forecasting.  Hence, it was concluded that 

both models were good for forecasting pneumonia cases. A twenty six months forecast with  

these models revealed an increasing pattern as in the case of the SARIMA model and a       

constant trend in terms of the SETAR model. This increasing trend for pneumonia cases as in 

the case of the SARIMA model as evidence from the forecast result could be worrying to the 

health development of the state as it could lead to loss of lives. Whiles, the constant trend as 

portrays by the forecast values of the SETAR model should not be taken for granted because it 

might not be sustainable in the long run.   

4.4 Conclusion 

This chapter dwelled on the analyses and discussion of the results obtained. It presented the 

major findings of the study in detailed and concise manner. 

 

 

                  CHAPTER FIVE 
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CONCLUSION AND RECOMMENDATIONS 
 
5.0 Introduction 

This chapter presents the conclusion and recommendations of the study.  

5.1 Conclusion 

In this study, the monthly number of inpatients pneumonia cases, from January 2000 to 

October 2015 was studied. Before fitting model to the pneumonia cases, the monthly 

characteristics of the series were examined. The carefull examination of the series revealed that 

pneumonia cases was decreasing at a constant quadratic rate. 

The two models developed for predicting the monthly pneumonia cases were both adequate for 

representing the series as evident from all the diagnostics and model comparison techniques 

employed in the study. However, based on the forecast assessment from the linear SARIMA  

and the nonlinear SETAR model, the forecast measures suggest that the nonlinear SETAR   

model outperform the linear SARIMA model. Also, the forecast performance of the nonlinear 

SETAR models is superior to that of the linear SARIMA model in predicting pneumonia cases 

in Northern Region of Ghana. Predicted Pneumonia cases were made beyond the period under 

consideration based on the developed models. The Ghana Health Service (GHS), Ministry of 

Health (MOH), and other stakeholders in the health sector can also predict pneumonia cases 

based on the developed models. There is however, the need for continuous monitoring of the 

forecasting performance of these models, strengthening and maintenance of the existing health 

systems in order to make the use of these models more reliable. 

 

 

 

 

5.2 Recommendations 
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Based on the findings of this research work, the following recommendations were made; 

i. The results revealed that the nonlinear SETAR Model outperforms the linear SARIMA 

Model in predicting pneumonia cases in the region. It is therefore recommended that   

this study should be carried out in other regions to monitor the performance of the two 

models in predicting Pneumonia cases in the country. 

ii. The log-quadratic trend model depicts a decreasing levels in the number of pneumonia 

cases for a unit change in time. This decreasing levels does not warrant public health 

workers to suggest that pneumonia cases are not prevalent in the region. It is rather 

recommended that the MoH should collaborate with health personnel to provide 

intensive education on some of the dangers of the disease and the need to seek early 

treatment in any nearby health facility because there can be a reverse trend of the cases 

as in the case of the recent outbreak of pneumococcal meningitis in some parts of the 

country. 

iii. This study compared the nonlinear SETAR model and the linear SARIMA model in 

predicting pneumonia cases in the region. It is therefore recommended that further 

studies should be carried out by comparing the nonlinear SETAR model with other  

linear model to see which one would outperforms the other since the nonlinear 

SETAR model is the best model in this study. 

iv.  It is also recommended that the MoH and GHS advise the heads of its various 

institutions in the country to make data on pneumonia cases available. This will     

make it possible for researchers to study and predict pneumonia cases ahead of time 

for policy formulation and implementation to advert future loss of lives as in the                           

case of the recent pneumococcal meningitis in the country.   
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APPENDIX 

 

Table A1: Forecast values for SARIMA (1, 1, 1)(0, 0, 1)12 

 

 

 

 

  

 

Year Month Forecast LCL UCL 

2015 November 14 13.89 14.39 

2015 December 15 14.85 15.49 

2015 January 16 15.8 16.52 

2016 February 17 16.83 17.6 

2016 March 20 17.8 20.59 

2016 April 21 20.76 21.58 

2016 May 22 21.75 22.58 

2016 June 24 22.73 24.57 

2016 July 25 24.68 25.53 

2016 August 26 25.67 26.53 

2016 September 27 26.67 27.53 

2016 October 28 27.69 28.56 

2016 November 29 28.68 29.57 

2016 December 30 29.67 30.58 

2016 January 31 30.67 31.58 

2017 February 33 31.66 33.59 

2017 March 34 33.65 34.59 

2017 April 35 34.66 35.59 

2017 May 36 35.65 36.6 

2017 June 37 36.65 37.61 

2017 July 38 37.64 38.61 

2017 August 39 38.64 39.6 

2017 September 40 39.64 40.61 

2017 October 42 40.64 42.61 

2017 November 43 42.64 43.62 

2017 December 44 43.63 44.62 



ii 
 

  Table A2: Forecast values for SETAR (2; 4, 3) 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Year Month Forecast 

2015 November 3.08 

2015 December 3.14 

2016 January 3.16 

2016 February 3.18 

2016 March 3.19 

2016 April 3.2 

2016 May 3.21 

2016 June 3.22 

2016 July 3.22 

2016 August 3.22 

2016 September 3.22 

2016 October 3.23 

2016 November 3.23 

2016 December 3.23 

2017 January 3.24 

2017 February 3.24 

2017 March 3.24 

2017 April 3.24 

2017 May 3.24 

2017 June 3.24 

2017 July 3.24 

2017 August 3.24 

2017 September 3.23 

2017 October 3.24 

2017 November 3.24 

2017 December 3.24 



iii 
 

                 Table A3: Data on Monthly Pneumonia Cases 

Year Month Pnc Year Month  Pnc 

2000 January 11 2003 January  12 

2000 February 11 2003 February  10 

2000 March 13 2003 March  9 

2000 April 10 2003 April  12 

2000 May 10 2003 May  14 

2000 June 12 2003 June  11 

2000 July 10 2003 July  15 

2000 August 14 2003 August  14 

2000 September 16 2003 September  17 

2000 October 14 2003 October  14 

2000 November 10 2003 November  16 

2000 December 11 2003 December  10 

2001 January 14 2004 January  12 

2001 February 16 2004 February  14 

2001 March 14 2004 March  20 

2001 April 10 2004 April  20 

2001 May 12 2004 May  22 

2001 June 10 2004 June  18 

2001 July 13 2004 July  17 

2001 August 14 2004 August  18 

2001 September 16 2004 September  16 



iv 
 

2001 October 10 2004 October  17 

2001 November 10 2004 November  18 

2001 December 12 2004 December  20 

2002 January 16 2005 January  20 

2002 February 14 2005 February  22 

2002 March 17 2005 March  21 

2002 April 16 2005 April  19 

2002 May 15 2005 May  18 

2002 June 13 2005 June  16 

2002 July 19 2005 July  21 

2002 August 18 2005 August  24 

2002 September 20 2005 September  35 

2002 October 22 2005 October  19 

2002 November 25 2005 November  28 

2002 December 17 2005 December  25 

2006 January 18 2009 January  28 

2006 February 16 2009 February  20 

2006 March 14 2009 March  25 

2006 April 15 2009 April  28 

2006 May 17 2009 May  30 

2006 June 20 2009 June  29 

2006 July 26 2009 July  24 

2006 August 25 2009 August  24 



v 
 

2006 September 25 2009 September  32 

2006 October 24 2009 October  28 

2006 November 20 2009 November  27 

2006 December 22 2009 December  24 

2007 January 20 2010 January  20 

2007 February 26 2010 February  22 

2007 March 24 2010 March  26 

2007 April 26 2010 April  29 

2007 May 20 2010 May  25 

2007 June 24 2010 June  18 

2007 July 28 2010 July  24 

2007 August 25 2010 August  31 

2007 September 26 2010 September  30 

2007 October 24 2010 October  22 

2007 November 20 2010 November  28 

2007 December 30 2010 December  32 

2008 January 30 2011 January  8 

2008 February 18 2011 February  5 

2008 March 22 2011 March  13 

2008 April 20 2011 April  9 

2008 May 22 2011 May  9 

2008 June 21 2011 June  9 

2008 July 20 2011 July  7 



vi 
 

2008 August 23 2011 August  19 

2008 September 21 2011 September  0 

2008 October 18 2011 October  0 

2008 November 20 2011 November  0 

2008 December 22 2011 December  0 

2012 January 18 2014 January  0 

2012 February 20 2014 February  0 

2012 March 14 2014 March  12 

2012 April 15 2014 April  24 

2012 May 20 2014 May  13 

2012 June 18 2014 June  11 

2012 July 16 2014 July  15 

2012 August 14 2014 August  25 

2012 September 13 2014 September  16 

2012 October 12 2014 October  32 

2012 November 16 2014 November  22 

2012 December 18 2014 December  16 

2013 January 16 2015 January  32 

2013 February 20 2015 February  22 

2013 March 13 2015 March  16 

2013 April 14 2015 April  14 

2013 May 20 2015 May  12 

2013 June 8 2015 June  8 
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2013 July 12 2015 July  9 

2013 August 24 2015 August  9 

2013 September 13 2015 September  11 

2013 October 11 

  

 

 2013 November 15 

  

 

 2013 December 25 
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              Source: Tamale Teaching Hospital, 2015 

 

 


